
Digital Object Identifier (DOI) 10.1007/s00530-004-0155-2
Multimedia Systems 10: 245–260 (2005) Multimedia Systems

Multimedia layout adaptation through grammatical specifications

Kang Zhang, Jun Kong, Meikang Qiu, Guang-Lei Song

Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75083-0688, USA

Published online: 2 February 2005 – c© Springer-Verlag 2005

Abstract. Online multimedia presentations, such as news,
need to be constantly updated. Increasing demands are also
being made for accessing online multimedia documents from
mobile devices such as PDAs. There is an urgent need for a
sound but practical formalism that supports automatic adapta-
tion to the change of media content, display environments, and
user intention. This paper presents a visual language approach
to the layout adaptation of multimedia objects. The underlying
theory of our approach is a context-sensitive graph grammar
formalism enriched with facilities for spatial representation
and specification. The paper focuses on the issues and tech-
niques for size adaptation and style adaptation in response to
the change of device requirements and user interactions.

Keywords: Multimedia authoring and presentation – Graph
transformation – Graph grammars – Visual languages – Adap-
tive presentation

1 Introduction

With rapid advances in Internet and Web technology, an in-
creasing volume of graphs and media content is delivered over
the Web. The content and the presentation structure of an on-
line multimedia presentation may also be frequently updated.
On the client side there are various kinds of viewing condi-
tions, such as varying screen size, style preference, and device
capabilities. For example, consider a diagram representing an
organizational structure on the Web that may be of consider-
able complexity occupying a large screen space, and thus may
be unsuitable for small displays [18]. Thus, if the diagram is
to be viewed on the screen of a mobile device, such as a PDA
(Personal Digital Assistant), the original diagram layout may
not be appropriate.Another example is a news Web site, which
generally needs to be constantly updated with incoming news
items. Such a site may have to adapt itself frequently to the
changing space and style requirements for different news cat-
egories. It would be highly desirable for the site to be able to
dynamically adapt its layout.

Correspondence to: Kang Zhang (kzhang@utdallas.edu)

With current document markup languages such as HTML
and WML the layout of a Web page is relatively static and
fixed [4]. When a user’s requirement or the device capability
is changed, the layout may become unsatisfactory. The reason
is that such markup languages do not provide any mecha-
nism powerful enough for specifications to be adaptable to
the changing context. Though SMIL [35] and CSS [36] pro-
vide more flexible markups for multiple alternative layouts,
the markups provide absolute layout functionality rather than
being adaptable to user intentions or the existing layout. There-
fore, a metalevel design mechanism capable of adapting mul-
timedia presentations in response to dynamic changes in in-
formation content is highly desirable.

To illustrate the concept of multimedia adaptation that we
perceive, we use Ishizaki’s schematic diagram of a process
between content creation and information reception [14] as
depicted in Fig. 1. The design system should be able to adapt
itself to the changes in information content and in individual
users’intentions.As mobile devices provide an increasing pro-
portion of online content accesses, we argue that a multimedia
authoring system should support an additional type of context
changes – i.e., adaptation to the change of device capabilities.
In other words, the designer of a multimedia system needs to
be able to specify how the presentation would evolve based
on the change of environments (e.g., from a desktop screen
to a mobile display panel), user intention (e.g., zooming in or
out), and information content (e.g., news update).

This paper presents a visual language approach, specif-
ically a spatial graph grammar, for adaptive multimedia au-
thoring and presentation. The approach is highly intuitive yet
also sound in theory. The central theme of this paper is to
demonstrate how to use a graph grammar formalism to spec-

Designer

Design
System

Media Information
Content

Users

Fig. 1. Multimedia presentation design and delivery process

246 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

ify and support automatic transformation and adaptation of
multimedia presentations. The approach has two major ad-
vantages due to its metatool capability: a graphical authoring
tool can be automatically generated by a visual language gen-
erator, such as VisPro [38]; and the generated authoring tool
can be used by novices who have no computing knowledge.

The remaining part of the paper is organized as follows.
Section 2 introduces the visual language approach using graph
grammars, followed by a description of spatial grammatical
representation and specification in Sect. 3. Section 4 focuses
on adaptation techniques to support size and style changes of
multimedia presentations. Sections 5 and 6 demonstrate size
and style adaptations with two real-world examples. Section 7
presents a system architecture implementing the grammatical
approach. Related work is reviewed in Sect. 8. Finally, Sect. 9
concludes the paper and proposes future work.

2 A visual language and graph grammar approach

Information visualization has played an important role in fa-
cilitating easy comprehension of sophisticated systems [13].
Applying information visualization to programming, research
in visual languages [6] aims at effectively improving pro-
gramming productivity by applying graphical user interface
technologies to support program construction. Popular visual
languages include UML, automata, Petri nets [38], etc.

Designers of complex systems typically use diagramming
methods as conceptual devices to organize their design space.
Compared with text, graphs can represent semantic and struc-
tural information more intuitively. In most visual languages,
programs are represented as graphs and thus called visual
programs. Such graphs to be compiled/parsed are called host
graphs. A visual programming environment includes a visual
editor for graphical construction of host graphs representing
visual programs and a parser for validating the syntax of host
graphs.A visual language may be defined by a graph grammar
[26], which consists of a set of rewriting rules called produc-
tions, as shown in Fig. 2a in the form of Reserved Graph
Grammars (RGGs) [39]. Such a grammar is used to generate
the parser for the language. Each production consists of two
subgraphs, called left graph (with one node named “Section”
in Fig. 2a) and right graph (two nodes interconnected by an
edge). The nodes of the graphs symbolize real-world objects,
and edges between nodes represent predetermined relation-
ships. A subgraph in the host graph is called a redex if it is
isomorphic to the left or right graph.

A graph transformation process is a sequence of applica-
tions of productions. Applications can be L-applications or
R-applications. An L-application (or R-application) is to find
a redex that matches the left (or right) graph and replace it
with the right (or left) graph of a production. One of the most
difficult problems with graph transformation systems is decid-

ing which applications are allowed and which are disallowed.
Even for the most restricted classes of graph grammars the
membership problem is NP-hard [25].

Another obstacle restricting applications of graph gram-
mars is that most proposed parsing algorithms [11,15,34]
are based on context-free graph grammars. Many interest-
ing graphs, however, cannot be specified by pure context-free
grammars. Additional control mechanisms are necessary for
context sensitivity. In many applications, the logic structure of
a graph is too complex to be defined by a context-free gram-
mar.

As the underlying formalism for automatic generation
of visual languages [38], Zhang et al. proposed a context-
sensitive graph grammar called RGG (Reserved Graph Gram-
mar) [39]. It is context-sensitive since its right and left graphs
can have an arbitrary number of nodes and edges. In the RGG,
a node has a two-level structure: the node itself and the small
rectangles embedded in the node called vertices. An edge is
uniquely determined by two vertices in the participating nodes.
All vertices in a node should be uniquely labeled. The RGG
introduces context information with a simple embedding rule
and is thus sufficiently expressive to handle complicated pro-
grams. In order to identify any graph elements that should
be reserved during the transformation process, we mark each
isomorphic vertex in a production graph by suffixing its label
with an integer unique in the node. The purpose of marking a
vertex is to preserve the context. We introduce the following
embedding rule:

If a vertex in the right graph of the production is un-
marked and has an isomorphic vertex v in the redex of
the host graph, then all edges connected to v should
be completely inside the redex.

The theoretical treatment of the marking mechanism is pro-
vided elsewhere [39]. Consider the example production in
Fig. 2a; vertex P in node Text is marked, while T in Pic-
ture is not. Assume that a Text node may connect to multiple
Picture nodes, while a Picture node is allowed to connect to
only one Text node, as a story (Text) may be illustrated by
several photos (Pictures) but not vice versa. Such a restriction
is easily expressed by marking P and leaving T unmarked in
the definition of the production (as in Fig. 2a). According to
the embedding rule, the isomorphic graph in Fig. 2b is not a
redex because vertex T in node Picture has an edge that is not
inside the redex (isomorphic graph in the dashed box) while its
isomorphic vertex in the right graph is unmarked. Therefore,
the graph in Fig. 2b is invalid. On the other hand, the graph
in Fig. 2c is valid according to the embedding rule. There is a
redex (in the dashed box) in the graph because the vertex of
Text connecting to Picture has its isomorphic vertex marked
in the right graph of the production, even though it has an edge
connected outside the redex. It is this structure that makes an
RGG effective in specifying a wide range of visual languages

Section
P:1

:=

Text
P:1

T
Picture

Text
P

T
Picture

Text
P

T
Picture

T
Picture

Text
P

a production b illegal c legal

Fig. 2. A production in Reserved Graph Grammar
(a) and its application in host graphs (b,c)

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 247

Fig. 3. Horizontal layout (a) transformed to vertical layout (b)

and efficient in parsing a certain class of visual languages.
An RGG is equipped with a deterministic parsing algorithm,
called selection-free parsing algorithm (SFPA), that only tries
one parsing path. Zhang et al. prove that the time complexity
of SFPA is polynomial [39].

To apply the marking technique to multimedia adaptation,
consider a simple example in graphical presentation: a verti-
cal layout provides a different visual perception and requires
a different screen (usually smaller) estate from a horizontal
layout, as shown in Fig. 3. This is one of the most common
issues in graphical design and can be effectively applied to
transforming Web graphics to suit small-screen mobile de-
vices. Figure 4 depicts the rewriting rule (production) for this
required transformation.

Since there may be multiple nodes chained in the same
direction, we mark the vertices on both ends of the two nodes
by attaching unique integers to the vertex labels (i.e., “N:1”
and “S:2”). This means that during transformation, the edges
connected to both ends will be reserved. The direction change
from horizontal to vertical is reflected in the positions of the
vertices, as explained in Sect. 3.1. The edges between the
nodes will be shortened after transformation, as specified by
“-S” and “-N”. The next section will provide more details on
the visual notations.

The original RGG defines the logical relations among con-
structs of a graph. To support graphic layout, it may be ex-
tended to take constraint rules [19] represented by (x, y) coor-
dinates, as in our earlier work [41]. Doing so, however, sacri-
fices the intuitiveness and visualization potential of the RGG.
In this paper, we follow the general principle of context sen-
sitivity while increasing expressiveness and propose a set of
visual notations to enhance the RGG with the capability of
spatial specifications. The enhanced RGG formalism is con-
sistent with the original RGG but more powerful for applica-
tions that require spatial knowledge, such as Web page design,
graph layout, multimedia authoring, graphical user interface
design, and PCB design. Furthermore, parsing spatially ex-

:=
-S

-N

N:1 S N S:2

S:2

N:1

P

P

Q

Q

Fig. 4. A production for the transformation in Fig. 3

tended graph grammars can be faster than parsing the original
RGGs due to the additional spatial information [16].

3 Spatial relationships and representations

When considering adding spatial notations to the RGG form-
alism, we generally aim at

• Retaining the original RGG syntax and semantics and
• Introducing minimal additional notations that are intuitive

for spatial specifications.

We propose five categories of spatial relationships between
any two given objects: direction, distance, topology, align-
ment, and size. When used to specify desired layout rearrange-
ment, the relationships can be used to specify changes to be
applied during graph transformation. The spatial relationships
are currently restricted to a two-dimensional multimedia de-
sign space. It is entirely feasible that such relationships and
notations could be extended to a three-dimensional space for
specifying a virtual reality environment.

All the spatial relationships are defined between two ob-
jects, one referred to as the primary object and the other as
the reference object. When discussed in the context of a spa-
tial grammar, media objects are represented and referred to as
nodes in grammar productions, as termed in Sect. 2.

3.1 Direction

To represent the relative direction between two nodes, each
node is arranged as a 3×3 grid in dotted lines inside the node,
as shown in Fig. 5. The central region (marked C) represents
the node itself. Surrounding the central region, the eight grid
regions represent eight directions: N (north), NE (northeast),
E (east), SE (southeast), S (south), SW (southwest), W (west),
and NW (northwest), in clockwise order. Each of these di-
rections indicates the relative position of the reference object
connected to the current object (primary object). The bound-
ary of the area occupied by the reference object is outlined by
dotted lines surrounding the primary object.

Each of the eight direction regions may include more than
one vertex. The objects that are connected to a primary object

W

NNW NE

SSW SE

E1
C

E2

NW N NE

W E

SW S SE

Fig. 5. Notation for direction relationships

248 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

through the vertices of the same region are in the same direc-
tion. For instance, the east region of the node in Fig. 5 has two
vertices, E1 and E2, if there are two nodes connected to E1
and E2 from the right side of the present node.

3.2 Distance

The distance between two objects’ centers measures an im-
portant class of spatial relationships. To specify the distance
relationship, we prefix a “+” to the vertex label to indicate a
long (or increased) distance to the object that the vertex con-
nects to, “−” to indicate a short (decreased) distance, and blank
to represent a distance not emphasized (or not changed). Four
special cases of distances are treated separately as topological
relationships due to their importance in spatial reasoning.

3.3 Topology

We can generally define four topological relationships be-
tween two nodes: nonoverlapping, overlapping, touching, and
containing. Assume that Dx is the set of all points on an object
x, and Bx (⊆ Dx) is the boundary point set of x. Considering
a primary object a and a reference object b and Da ∩Db = R,
four topological relationships are defined as follows:

• a is nonoverlapping with b iff R = Φ;
• a is overlapping with b iff R �= Φ, and further:

◦ a is touching with b iff R ⊆ (Ba ∩ Bb); or
◦ a is containing b iff Db ⊆ Da.

Using a rectangle to represent an object, Fig. 6 shows the
four types of topological relationships. Nonoverlapping indi-
cates that there is no common point on both involved objects.
Overlapping means that there are common points between the
two objects. It is represented by dotted lines on the boundary
of the overlapped area. We define touching and containing as
two special cases of overlapping. If common points exist only
on the boundaries of two objects, the objects are touching each
other. The touched part is represented by a dotted line. Con-
taining means that all the points on one object belong to the

b Illustrationa Notation

Nonover lappi ng

Touching

Overlapping

Containing

Fig. 6. Topological relations

a Notation b Illustration

Fig. 7. Alignment relations in horizontal direction

other. In Fig. 6, the boundary of an object is totally dotted,
indicating that the object is contained in the other object.

3.4 Alignment

Two objects may be aligned vertically or horizontally, along
the directions of N, S, W, or E. In the horizontal direction,
we define three different horizontal alignment cases for each
object, i.e., top alignment, bottom alignment, and center align-
ment, giving a total of 9 different alignment relationships be-
tween any two objects. The alignment relationships in the ver-
tical direction are similarly defined. The boundary of a node
is divided into 12 segments according to the 3×3 grid. A bold
segment is used to indicate the alignment relationship. Figure 7
illustrates the three most common alignment relationships.

3.5 Size

Transforming a multimedia document from a desktop Web
page to a PDA display may involve size changes of various
media objects. To represent the changes, we mark the node’s
center box with a “+” to indicate that the object is large in
size (or zoomed in to become larger), “−” to indicate small in
size (or zoomed out to become smaller), and blank to indicate
a size not emphasized (or unchanged).

3.6 Event driven

As discussed above, the spatial relationships can be used to
specify a static layout structure or some predetermined struc-
tural changes. Similarly, the SWITCH construct in SMIL
[35] allows different layouts to be applied upon different
predetermined conditions, which are defined through test at-
tributes. Many media players, however, do not provide suf-
ficient support for the specification and run-time evaluation
of application-dependent test attributes. On the other hand,
the grammatical approach allows great flexibility to associate
domain-specific triggering conditions with productions with-
out relying on the media player’s capability. There are increas-
ing demands for providing users a sense of focusing, realized
by interactively changing the details of certain parts of a multi-
media document during viewing. Such a mechanism is called
interactive semantic zooming [18].

To address the dynamic issues, we classify graph produc-
tions into conditional and unconditional ones. A transforma-
tion is performed on an unconditional production when a redex

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 249

a

b

Fig. 8a,b. An example of differential scaling

is found in the host graph that matches the right graph of the
production. A conditional production can only be triggered by
a specific event, such as the change in the device’s capability,
the user’s interaction, etc. Since graph transformations can be
performed according to dynamic events, such as user inputs,
the appearance of a multimedia document may be adjusted by
triggering such conditional productions when the layout struc-
ture, user interaction method, or display environment needs to
be changed. More flexible than SMIL SWITCH, conditional
productions are able to handle user interactions and individu-
ally produce local effects.

3.7 Syntax-directed computations

The RGG supports syntax-directed computations by associ-
ating data and operators to nodes in productions in terms of
attributes and actions. An attribute expresses a piece of data
related to the object represented by a node and can be retrieved
and evaluated in the process of parsing. Different actions can
be performed on different attributes of the redex of a produc-
tion to achieve the desired execution effects. Writing an action
code is like writing a standard exception handler in Java by
treating each attribute as an object. Attributes can supplement
graphical and qualitative specifications by providing precise
quantitative values. For example, to shorten the distance be-
tween two connected nodes by half as in Fig. 8, we can attach
the following action code to the production in Fig. 9:
Action(AAMGraph g) {

int OriginalDistance = Q.left - P.right;
P.right = P.right + OriginalDistance/4;
Q.left = Q.left - OriginalDistance/4;

}

In summary, a visual representation defines an approximation
of layout while attributes and action codes supplement quali-
tative specifications with precise quantitative information and
associated computation.

4 Adaptation to context changes

As discussed at the beginning of the paper, context changes
may be due to a change in information content such as a traffic

W:1 -E -W E:2P Q := W:1 E W E:2P Q

Fig. 9. Grammar specification of differential scaling in Fig. 8

monitoring system, device capabilities such as from a desk-
top screen to a PDA panel, or viewer intention. Our graph-
grammar-based approach is able to adjust the appearance to
different displaying environments.

This section outlines automatic adaptation of the size and
style of a multimedia presentation in response to any of these
changes, though other aspects of adaptation may also be sup-
ported by the graph grammar approach. Detailed examples of
adaptive presentations will be discussed in Sects. 5 and 6.

4.1 Size adaptation

The most typical application of size adaptation is for Web dis-
play layout to be reduced to suit mobile devices. The simplest
solution to the problem of the limited screen size is linear scal-
ing (or normal zooming), but this is often not the best way. A
more elaborate technique is differential scaling, in which dif-
ferent components of a document are scaled differently. Dif-
ferential scaling is effective in compressing white spaces. For
example, rather than performing a linear scaling, each white
space is compressed while the box sizes are maintained [18],
as illustrated in the simple example in Fig. 8. To specify such
a transformation, we can use distance relationships as shown
in Fig. 9.

To represent the change of a node size, we use “+” in the
node’s center box to indicate that the node will become larger
(or zoomed in as discussed below) in the transformation, “−”
for smaller (zoomed out), and blank for unchanged size.

4.2 Style adaptation

To suit different display spaces and devices, the layout of in-
dividual media objects and that of the entire document may
need to be adapted. One such adaptation techniques is known
as alternative layout. Figure 10 illustrates a typical example of
alternative layout. Originally object B is on the right of object
A. After transformation, as in Figs. 10b and 11b, object B is
at the bottom of object A, and thus the connecting direction is
changed.

Another type of multimedia style adaptation is called se-
mantic zooming [18]. For varying interest in detail, an adapted

A

A

B

B

Fig. 10. Semantic zooming with an alternative layout

WA BE

E

W

E-

W-

A A

-B B

Fig. 11. Application of semantic zooming and distance rules to
achieve the effect in Fig. 10

250 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

layout may initially show one level of detail. It allows the
viewer to zoom in hierarchically while adapting the layout
level of each individual component or group of components
to the available screen size or to the viewer’s preference. For
example, we may need to enlarge one part, in which the user
is particularly interested, while compressing unrelated parts,
as illustrated in Fig. 10. We need to look into the detail of
object A first, so we may view the details of A and B sepa-
rately. Figure 10 illustrates the combined effects of alternative
layout and semantic zooming. Figure 11 depicts the snapshots
of using grammatical rules to achieve the style transformation
from a to b, including the reduced size of B, and shortened
distance between A and B in c.

In some systems [20], the above viewing technique is
called fisheye view. The more commonly accepted concept
of fisheye views refers to the geometric distortion technique
when highlighting a focused area of a large display [27]. Geo-
metric distortion enlarges the focused area while proportion-
ally reducing other areas depending on their distances to the
focused area. Hyperbolic trees offer another similar viewing
technique and are widely used for Web browsing.

5 Example 1: Adapting sizes for PDA displays

This and next sections focus on two detailed examples of size
and style adaptations through grammatical specifications and
graph transformations. This section describes how to trans-
form a desktop Web page to several small pieces for mobile
Web browsers – an example of size adaptation.

5.1 Original Web and resulting PDA presentations

Figure 12 shows the popular NASA home page, whose size and
layout may be adapted to suit small-screen Web browsers. We
will transform this page into the WML format to be displayed
on PDAs. The XML description for the above Web page is as
follows:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<page>

<section1>
<block1>

<Logo>
<pic>

<id> nasa </id>
<source> ./images/nasa.bmp </source>

</pic>
</Logo>
<text>

02.01.03 Building Planets in Cyberspace
</text>

</block1>
<block2>

<theme>
<pic>

<id> shuttle </id>
<source> ./images/shuttle.bmp </source>

</pic>
</theme>
<button>

<link>
<pic>

<id> missions </id>
<source> ./images/missions.gif </source>

</pic>
<href>

http://www.nasa.gov/missions/current/
</href>

</link>
...

</button>
</block2>

</section1>
<section2>

<pic>
<id> improve life </id>
<source> ./images/improvelife.bmp </source>

</pic>
...

</section2>
</page>

Assume the desirable outcome as illustrated in Fig. 13. We
divide the original Web page into four small pages based on
the four images and copy the top-left heading information and
top-right hyperlinks to all the small pages. As a result, each
small page contains three parts: the top part contains date and

Fig. 12. The original NASA homepage

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 251

Fig. 13. Resulting presentation as
four pages on a PDA

title (tagged “Text”) and NASA logo (“Logo”), the middle
part is an image (“Theme” or “Picture”), and the bottom part
contains three hyperlinks (“Link”).

The output tree structure is translated into a WML docu-
ment. Each page, or a single interaction between a user agent
and a user, is known as a card. One advantage of this arrange-
ment is that multiple screens can be downloaded to a client in a
single retrieval and vice versa. Our task is simply to transform
the XML description into several cards, each to be displayed
as a PDA page. The following is part of the WML document
for the PDA presentation in Fig. 13, where “card” represents
a separate page:

<wml>
<card id="section1" Title="nasa">

<p>

02.01.03 Building Planets in Cyberspace

</p>
<p>

</p>
<p>

<img src="./images/multimedia.bmp"

alt="shuttle"/>

</p>
</card>
<card id="improve" Title="improve life">

<p>

02.01.03 Building Planets in Cyberspace

</p>
<p>

<img src="./images/improvelife.bmp" alt="improve
life"/>

</p>
<p>

<img src="./images/multimedia.bmp"

alt="shuttle"/>

</p>
<card>
...

</wml>

5.2 Structural transformation

Each Web page is a multimedia document that has a layout
constructed by many media objects. We start by analyzing the

Pic

Page

Button

Pic Pic

Text Theme Logo

Block1

Section1 Section2

Block2

Link Link Link

…

…

Fig. 14. Tree structure of the Web page

logical structure (automatically generated as a tree) and de-
sired layout and adaptive properties of the given Web page. In
the spatial graph grammar, each object is presented by a node.
A Web page in XML is a tree structure whose elements can
be grouped hierarchically, as shown in Fig. 14 for the given
example. To convert the tree to a more structured arrangement
suitable for transformation, we need to introduce the concepts
of logical nodes and grouping. The tree contains several log-
ical nodes (LNs) such as Page, Section1, Section2, etc. As
the root, Page contains two Section nodes. Section1 contains
two Block nodes. Block1 contains Logo and Text, and Block2
contains Theme and LN Button. LN Button includes a number
of Link nodes. Section2 has a number of child nodes, called
Pictures. Such hierarchical relationships can be automatically
derived from the XML document and used to generate the data
structure in Fig. 15.

We use an abstract node to head a group that has many
objects of a single type. Such a group header has a generic set
of attributes applicable to the whole group. Each group mem-

Logo Text

LN(Section1) N(Page) LN(Section2)

N(Section1))

LN(Block1) LN(Block2)

N(Section2)

N(Block1)

Theme

N(Block2)

Link Link Link

Pic Pic Pic

LHead

PHead

LN(Button)

N(Button)
LHead

Non-terminal

Termina

Abstract

Fig. 15. A hierarchial data structure

252 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

Logo

ThemeText

Pic

LHead

Pic Pic

Link

Link

PHead

Card1

Logo

Theme

LHead Link LinkLink

Card2

Logo Text

Pic

LHead Link

Link

LinkLink

Text

Fig. 16. a Host graph of original structure. b Resulting layout struc-
ture

ber inherits from its parents attributes such as vertices with
spatial information. This arrangement improves the presen-
tation efficiency. Using the concepts of groups and LNs, we
only need to consider spatial relations of a node with its parent,
child, and sibling nodes (i.e., direct relatives). For example, we
will consider the relationship between the siblings LN Block1
and LN Block2 but not the relationships between the children
of N(Block1) (i.e., Logo, Text) and those of N(Block2) (i.e.,
Theme, N(Button)). Combining the spatial information from
Fig. 12 and the above logical and hierarchical information
from Fig. 15, the host graph in Fig. 16a can be automatically
generated to be processed by the spatial graph grammar. The
application of the SGG generates the new layout structure in
Fig. 16b for PDA presentations, as explained in the next sub-
section.

5.3 Grammatical specification

In order to perform the desired transformation, we define a
set of productions as illustrated in Fig. 17. There are two right
graphs for some productions. The right graph not enclosed in
a dashed box participates in syntactical parsing and, together
with the left graph, will be called a syntax production or simply
S in the following description. The right graph enclosed in a
dashed box is used for the layout transformation and, together
with the left graph, will be called a layout production or simply
L. A set of L productions generates a new layout either from
an existing layout or from logical relationships between media
objects.

Syntax productions

Syntax production <1> (or simply S<1>) expresses the ini-
tial state to start with a Page. If a parsing eventually reaches
the state λ (initial state), it is regarded as successful [39].

S<2> illustrates that a Page consists of Card and PHead,
and Card is on top of PHead. S<3> abstracts a Card from
Section1.

S<4> specifies that Section1 contains two blocks, and Block1
is next to Block2. The gray vertex in a node means that it
is marked and will be reserved during parsing. For example,
the vertex labeled P is marked and will stay unchanged after
parsing.

 := Page

<1>

Block1 :=

Logo Text
TE

<5>

D:1

Text

Logo

E

T

P:1

P:1

P:1

<2>

PHead

Page :=

C

D

Card

P

<4>

Block1

Block2

P:1

D

T

:=Section1

P:1

Block1 D Block2

P:1

T

<8>

PHead:= CardPDPHead

<7>

LHead Link
D TD:1

LHead

:=

LHead

Link

D

T

C:1

C:1

D:2

D:2

<6>

Block2 :=
LHead

T:1 C
Theme

LT:1

LHead

Theme

L

 C

T:1

D

D

<9> Card
:=

Picture
P:1 P:1

Block1

D

Picture
P

D

LHead
C

P

D

Card := Section1

P:1 P:1

<3>

- -

-

D:1

D:1

D:1

D:1

 C:1 C:1

D:1

D:1D:1

Fig. 17. Productions for the transformation from the presentation in
Fig. 12 to the one in Fig. 13

S<5> specifies that Block1 consists of Text and Logo, and
Text is directly on top of Logo. The vertices labeled P and D
are marked.

S<6> indicates that Block2 includes Theme and LHead.
LHead is a Group Header in the Link structure and is used to
inherit the attributes from its parents. If the Link structure con-
tains many members, using LHead will significantly improve
the efficiency of the graphical presentation. To represent the
containing relationship between Theme and LHead, we use a
dotted boundary in LHead and connect the two nodes’ central
grids.

S<7> specifies that the Link structure consists of several ter-
minal nodes of Link stacked on top of each other.

S<8> and S<9> indicate that Section2 includes several Pic-
tures. In S<8>, PHead and Card can be reduced to PHead.
Card is an intermediate node and can be abstracted from Pic-

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 253

ture (Pic for short) by using S<9>. We can apply S<9> con-
tinuously until no terminal node exists.

The R-application in the SGG is a parsing process that in
general consists of: selecting a production from the grammar
and applying an R-application of the production to the host
graph; the process continues until no productions can be ap-
plied. If the host graph is transformed into an initial graph λ,
the parsing process is successful and the host graph belongs
to the language defined by the graph grammar. We first use
S<9> and S<8> to reduce the Picture structure to PHead.
S<7> is used to reduce the Link structure to LHead. S<6> is
then used to reduce LHead and Theme to Block2, and S<5>
is used to reduce Logo and Text to Block1. Then we use S<4>
to obtain Section1. Finally, S<2> reduces Card and PHead
to Page and S<1> to λ, and thus the parsing process is suc-
cessful.

Layout productions

Based on the above syntax productions for parsing the host
graph, we add several extended productions enclosed in dotted
boxes called layout productions for transforming the presen-
tation in Fig. 12 to the one in Fig. 13. The layout productions
are thus an additive set to the syntax productions. Combin-
ing these two sets of productions we can generate the desired
layout.

Layout production <4> (or simply L<4>) transforms
Block1 and Block2 from a horizontal relationship to a vertical
relationship with Block1 on top of Block2.

L<5> transforms Text and Logo from a vertically touching
relationship to a horizontally touching relationship.

L<6> specifies how to transform two objects from a contain-
ing relationship to a vertical relationship. Before the trans-
formation, Theme contains LHead. After the transformation,
Theme is on top of LHead.

L<7> transforms a sequence of Links from vertically touch-
ing relationships to horizontally touching relationships; this
transformation is repeatedly applied.

In L<9>, when Picture with left and right vertices finds a
match, it is converted to a Block1-Picture-LHead structure,
whose three nodes are vertically aligned along the left edges.

We first parse the host graph in Fig. 16a to λ. During pars-
ing, a stack is used to record the sequence of the productions

being used. Then, from λ, the original parsing tree is retrieved.
At each step, the corresponding layout productions are popped
from the stack to perform layout transformations. For exam-
ple, when Card with its southern vertex is matched, S<3>
is used to generate Section1. Then, we use L<4> to obtain
a new layout in which Block1 and Block2 hold a vertical re-
lationship. For Block1, L<5> is used to derive a horizontal
relationship between Logo and Text. Using L<6>, Theme is
moved to the top of LPHead. L<7> is used to obtain the
horizontal Link structure. Now we obtain the first PDA page,
represented as Card1 in Fig. 16b. L<9> is used to expand
Card to the Block1-Picture-LHead structure. Logo and Text
are then generated using L<5> and the Link structure gener-
ated using L<7>. We therefore obtain the second PDA page
(marked Card2 in Fig. 16b). The third and fourth pages, also
of the Card2 structure, are generated in the same fashion. The
layout in Fig. 16b can be automatically transformed to the final
layout illustrated in Fig. 13.

6 Example 2: Adapting presentation styles

This section provides another example, this one on the adap-
tation of presentation styles.

6.1 A presentation style

As an example of style adaptation, consider an art museum
that organizes its multimedia documents in a predetermined
logical structure, as shown in Fig. 18. In one exhibition season,
the museum would like to display the documents on the Web
as displayed in Fig. 19 with the following presentation organi-
zation. The page consists of a menu bar of various hyperlinks
on the left side for the whole museum, hyperlinks to all the
curatorial departments at the top, and the collection highlights
occupying the main page area. The highlights of each museum
department consist of a number of well-known artworks (i.e.,
pictures).Assuming the pictures need to be displayed with 3 in
each row, six pictures of the selected “Painting and Sculpture
Highlights” are displayed in two rows by three columns in the
main area.

6.2 Grammatical specification

The logical structure of Fig. 18 is regarded as a host graph,
which is used to dictate the presentation layout according to

lHead

Link

Link

lHead

Link

Link

……

Link

Title

Sub-t

dHead

Name Home Hilight

Name Home Hilight

pHead Icon

Illus

Icon

Illus

Icon

Illus

Icon

Illus

Icon

Illus

Icon

Illus

……

Fig. 18. Host graph of the Museum multi-
media document

254 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

Fig. 19. A museum multimedia presentation

a grammar specification. The complete set of graph grammar
production rules that meet the requirements of the presentation
style of Fig. 19 is listed in Fig. 20. The document consists
mainly of two composite objects, Sections and Content, which
participate in production <2> in Fig. 20.

The Sections object consists of a number of hyperlinks that
enable the user to navigate other museum documents from
the same page. The hyperlinks are organized hierarchically.
A link at level i may include several links at level (i + 1).
The links at the same level are aligned to the left, and level
(i + 1) links are indented from its level i links. Production
<3> abstracts a terminal node called Link to a nonterminal
node Section. Production <4> dictates how to reduce two
links (represented by two Sections) while establishing their
spatial relations – vertically aligned and touching each other.
Production <5> is for reducing the last Section node, which is
characterized by an unmarked N vertex in Section. Production
<6> demonstrates how to attach hyperlinks (upgraded from
Link to Section) at level (i + 1) to a hyperlink at level i with
right indentation (realized by a partially touched relationship
as shown in the right graph of the production).

The right side of Context consists of three objects, Title,
Depts, and Pics, as specified in production <7>. The Title
object presents the title of the document and is placed above the
other two composite objects. The Depts object, representing a
list of departments in the museum, consists of multiple Dept

objects to be aligned to the left and vertically touching each
other. As shown in production <9>, each Dept object consists
of three primitive objects, Name, Home, and Hilight, which are
to be touching each other and aligned horizontally. Production
<8> reduces two Dept objects into one, and production <10>
provides the syntax of a Depts object.

A Pic object represents a picture displayed in the main area
and has Icon and Illus objects as specified in Production<11>.
The Icon object is placed above the Illus object, and both are
center aligned. Representing the highlights of a department to
be displayed in the main area, a Pics object is abstracted from
a pHead object in production <12> and consists of multiple
Pic objects to be laid out according to productions <13> and
<14>. By applying production <13> repeatedly to reduce
two Pic objects into one Pic object, a sequence of Pic objects
is generated.

Since three Pic objects are required to be displayed in each
row, we need to use action codes to specify the constraint. An
action code associated with a production is a Java exception-
handling method [39] used to specify the semantics of the
production and to provide additional control information to
the parser. We introduce a global variable, called NumOfCol,
to record the current number of the Pic objects in the current
row. Initially, NumOfCol is set to 1 in production <12>. Every
successful application of production <13> increases NumOf-
Col by 1 until its value reaches 3. Production <14> is applied

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 255

Pic :=

Icon

Illus

E

V

P:1 N:2

P:1 N:2

 := Doc

<1>

<2>

Section := Link

P:1

N:2 S:3 S:3 N:2

P:1 <3>

Dept

Dept

Dept :=

P:1

N:2

N

P

P:1

N:2

<8>

Dept := Name Home Hilight

N:2

P:1P:1

N:2

R L R L

<9>

<11>

<13>

Pics

Pic

:= Pics

Pic

P

N P

D:1D:1

N

Pic

N

P

N:2 N:2
Pic

P

Pics := Pics

D:1 D:1

N

<14>

N:2

N:2

pHead := Pics

D:1D:1<12>

N:2 N:2

Section :=

Section

Section

P:1

N:2

N

PN:2

P:1

<4>

S

S

S

Sections :=

lHead

Section

C:1

P:2

C:1

P:2
S

P

<5>

N S

Section :=

Section

Sections

P

S

P:1

N:2

N:2

P:1

<6>

N

C

S

Depts :=

Dept

dHead

Sub-T

T:1

P:2

T:1

P:2

P

D

C

T

<10>

N

Content :=

Title

Depts

Pics

S:1

D

T

S:1

P

D

<7>

N

Doc := Sections Content SC

P

action (AAMGraph g)
{
 if (NumOfCol < 3)
 NumOfCol ++;
 else exit();
}

action (AAMGraph g)
{
 NumOfCol =1;
}

action (AAMGraph g)
{
 if (NumOfCol = 3)
 NumOfCol = 1;
 else exit();
 } Pic

P

Pics := Pics

D:1 D:1

N

<15>

N

N

Fig. 20. Graph grammar definition of both the document structure in Fig. 18 and presentation in Fig. 19

only when NumOfCol is equal to 3, indicating that there are
already three Pic objects in a row. However, the last row may
contain less than three Pic objects. Production <15> handles
such a special case. Apart from the action code (production
<15> has no action code), the only difference between pro-
ductions <14> and <15> is that the N vertex is marked in
<14> and unmarked in <15>.

6.3 Adapting to an alternative style

Assume in another exhibition season the museum homepage
will be presented in an alternative layout, as illustrated in
Fig. 21, where the main area has a different arrangement. It
would be a time-consuming and error-prone process to manu-
ally adjust the layout of each page for a large number of simi-
lar pages. Fortunately, the spatial graph grammar provides an

256 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

Fig. 21. An alternative presentation style

adaptive approach to document presentation since the system
can select an appropriate set of productions and automatically
generate a desired layout when the context is changed. To sup-
port the above alternative presentation style, what is needed
is simply a subset of new productions that will replace pro-
ductions <11> to <15>, as listed in Fig. 22. By applying the
alternative productions, the document not only displays two
Pic objects in each row, but also interleaves the Icon and Illus

objects. Other presentation styles could also be easily adapted
by modifying the relevant part of the grammar. A typical ex-
ample is when the width of the viewing device is too narrow
to fit three Pic objects, so that the layout can be adjusted to
two Pic objects or even one in each row.

Pic2 := Icon Illus E V

D:1

N:2

N

P

Pic1

N

D:1

Icon Illus EV P N:2

Pic1

D:1

N:2

pHead

D:1

:=

N:2

Pic1 := Illus Icon EV

D:1

N:2

N

P

Pic2

N

D:1

Illus Icon E VP

N:2

Pic2 := Icon Illus E V

D:1 P

Pic1

N

D:1

N N

Pic2

D:1

Pics

D:1

:=

NN

Pic1

D:1

Pics

D:1

:=

N N

Pic1 := Illus Icon EV

D:1 P

Pic2

N

D:1

N N

Fig. 22. Revised subset of productions (replacing productions 11–14 in Fig. 20) for generating the alternative presentation style of Fig. 21

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 257

Event
Database

Production
Authoring

Parser Event
Listener

Event
Encoding

Message
dispatching

User Input

Document
Layout

Fig. 23. System architecture

Fig. 24. Specifying productions using Rule Generator

7 System architecture and implementation status

At the system level, the grammatical approach described above
is realized by four modules, as shown in Fig. 23: event en-
coding, event listener, production authoring, and parser. The
event-encoding module lets the user describe the events to
which the grammar should be sensitive. The event listener
dynamically monitors the system to see if any changes have
occurred due to content update or user interactions. When the
event listener retrieves user inputs and messages from the event
database, the parser performs the corresponding graph trans-
formation according to the predefined graph grammar.

The production-authoring module provides a tool to define
a graph grammar according to the desired document layout and
its dynamic behavior. The grammar dictates how to construct a
multimedia document layout through various types of media
objects, as described in the previous sections. A production
specifies not only how to construct composite objects but also
what the constructs look like and how they adapt to dynamic
changes.

The parser validates the structure of a host graph and auto-
matically generates a parsing tree that reflects the hierarchical
structure. Also, the layout is adjusted according to the spatial
specifications, which are integrated with the structural speci-
fications. For example, when a user modifies the font sizes or
device characteristics, a message is dispatched to the parser,

and a conditional (event-driven) production may be triggered
to perform a graph transformation. The positions and styles
of objects are adjusted according to the spatial specifications
in the grammar. During the process of graph transformation,
some objects may collectively construct a composite object,
which is treated as one entity whose position change in the
later layout process will not affect the spatial relationships
among its internal objects.

When defining grammar productions for graph layout
where edges represent only geometric relations, we allow only
one relation between any pair of nodes. Such relationships can
be efficiently handled by the original RGG formalisms. Our
graph grammar formalism with spatial specification mecha-
nisms is sufficiently expressive in specifying multiple con-
nectivity and complex presentation structures.

The whole system except the layout component has so
far been implemented based on a visual language generation
(VPL) framework. A VPL framework is essentially a metatool
for the automatic generation of visual specification tools [38]
with which different multimedia authoring and presentation
languages can be automatically generated according to varied
requirements specified through spatial graph grammars. For
the example in Sect. 5, we can specify the original document
structure through syntax productions as shown in a snapshot of
Fig. 24 (i.e., production-authoring module in Fig. 23; events
are not used in this example). The production without spa-
tial specification is slightly different from the full version of
Fig. 17. The metatool then automatically generates the lan-
guage environment with a graphical editor and a parser. A
user can then use the graphical editor to draw an application
document structure and provide desired texts and attributes,
as illustrated in the snapshot in Fig. 25. When the compiler
is triggered from the menu on top of the editor, the result-
ing document structure is visualized (Fig. 26) and the WML
document listed in Sect. 5.1 is generated.

8 Related work

There have been a number of systems and approaches for
the authoring and presentation of multimedia systems [24].
The Synchronized Multimedia Integration Language (SMIL)
[5,35] allows control over which media elements and where
and when those media elements are to appear in a multimedia
presentation. Though the SMIL is flexible enough to support
multiple alternative layouts, there are several fundamental dif-
ferences between the SMIL and our graph-grammar-based ap-
proach. First, rather than providing absolute layout positioning
as in the SMIL, a graph grammar defines the desirable layout
adaptive to the existing layout or user intention. Second, when
a media element is deleted or inserted, satisfying predefined
structural constraints, an updated representation can be au-
tomatically generated in the grammatical approach through
parsing, but this is not possible with the SMIL. Third, the po-
sition of a media element in the SMIL is defined relative to
the size of the element’s parent geometry. The RGG can not
only define a representation in the same way through attributes
and action codes, but it can also specify the position of one
element relative to another through graphical notations.

Cascading Style Sheets (CSS) [36] define how to display
Web documents, including specification of fonts, background,

258 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

Fig. 25. Specifying original document structure
using the generated graphical editor

Fig. 26. Automatically translated document structure

foreground, and so on. They allow both the author and reader
to provide rules that specify various attributes of a Web docu-
ment. Multiple style definitions will cascade into one accord-
ing to some conflict-resolving rules. The layout mechanism
of both the CSS and SMIL works on a predefined specifica-
tion. Only through a transformation language, such as XSLT
[37], may CSS and SMIL allow the layout mechanism to work
conditionally on a previous layout or a spatial property. The
graph grammar approach, however, allows the new layout to
be generated based on the previous layout as well as on a
specification.

Among knowledge-based approaches, Comet [10] and
WIP [2] employ some forms of rule-based mechanisms to rep-
resent the graphical design knowledge. The rules control the
search of all possible solutions and determine an appropriate
solution. One of the most difficult issues in these systems is
how to specify the control mechanism, which could be more
easily addressed by a parsing algorithm for graph grammars.

Vazirgiannis et al. propose a spatiotemporal composition
model [30] and indexing schemes for efficient querying in such
a spatiotemporal coordinate system [31]. The model translates
spatial and temporal relationships among multimedia objects
into minimal and uniform expressions and allows authors to
specify an object’s spatial features either as absolute coor-
dinates or in relation to other objects. Algorithms and tools
have been developed to transform relative data into absolute
coordinates and to verify the integrity of spatial and tempo-
ral relationships. The model does not address its adaptability
to the changing space and layout requirements. Based on the
nested context model (NCM) [7], HyperProp [29] emphasizes
the importance of document logical structuring. It supports
event-based spatial synchronization and behavior specifica-

tion but offers no explicit specification of document layout and
spatial adaptation. Temporal aspects are also investigated by
Guan et al. in their model of Distributed Object Composition
Petri Net (DOCPN) [12] that facilitates the synchronization of
multimedia presentations in a distributed computing environ-
ment. The present paper does not address the temporal issue
but rather leaves it as our future work.

In a dynamic interface, the attributes of elements are de-
fined in terms of other elements and attributes of the viewing
environment: information links indicate a (semantic) connec-
tion between two pieces of information that can belong to dif-
ferent information domains, and an information view is a col-
lection of correlated objects displayed together to help the user
perform some activities on the objects [3]. Interactivity allows
the display to be dynamically adapted to user requirements.
Borning et al. present a system architecture in which both the
author and the viewer can impose page layout constraints [4].
The final appearance of a Web page is thus the result of nego-
tiation between the author and the viewer. Marriott et al. [18]
extend Scalable Vector Graphics (SVG) with constraint-based
specification. Such an extension supports client-side adapta-
tion of documents to different viewing conditions. These ap-
proaches do not offer visual specifications, and their layout
solutions rely on constraint solvers.

In dynamic authoring, “authoring” refers to creating the
content for any kind of presentation or document [21]. Dy-
namic authoring advocates that capture-based systems should
support flexible hypertext structures generated by linking
through interactive operations [23]. Some user interface toolk-
its use the approach of recognition and mediation by construct-
ing a library of reusable error correction tools, that can provide

K. Zhang et al.: Multimedia layout adaptation through grammatical specifications 259

structured support for resolving ambiguity at the input event
level [17].

Our work was influenced by that of Weitzman and Witten-
burg [32], who applied a graph grammar formalism – Relation
Grammar [33] – to the automatic presentation of multimedia
documents. The grammar governs the structure of the docu-
ment. One or more parsing trees, each of which represents an
independent presentation, are derived through a parser. Then,
a syntax-directed translation is made on the tree. The final lay-
out is created by a constraint solver following the translation.
In this approach, relational grammar functions as a mapping
from a representation of one style of multimedia documents
to the forms that specify how to realize the media objects.
Inspired by the work of Weitzman and Wittenburg, Cruz and
Lucas developed a visual querying and presentation system
called DelannayMM [8], but grammars are not used in this
system.

Another area of research that has influenced our work is
graph drawing [9]. Six et al. [28] proposed postprocessing
techniques (after some major graph layout process), called
refinement, for effective graph drawing. The techniques can
significantly improve the quality of orthogonal drawings by
reducing a graph’s area, bends, crossings, and total edge length
[9]. In a graphical layout, maintaining a consistent view by au-
tomatically beautifying the display is desirable [19]. We apply
a grammatical approach rather than an algorithmic approach
to the graph layout problems addressed by Six et al. [28]. In
[42], Zhang et al. present an approach to combining the RGG
formalism with constraint rules to support the automatic layout
of orthogonal graphs. The work reported in this paper repre-
sents a major extension that introduces spatial representation
and specification.

Research has been done on graph grammar support for
Web information transformations. To support the automatic
layout of flowcharts, Zhang et al. [40] recently presented a
visual approach to XML document design and transformation
that uses RGGs [39] to define the XML syntax and to specify
the transformation between different XML formats.

9 Conclusions and future work

The grammatical approach is promising in that it provides a
powerful mechanism for representing layout structures graph-
ically and for performing online validation and adaptation
through an automatically generated parser. This paper has
presented the concept of applying graph grammars to the
transformation of multimedia presentations to achieve auto-
matic adaptation to the change of media content, different
layout requirements, and user interactions. Such transforma-
tions usually involve location change, differential scaling, and
semantic zooming. To graphically represent these three types
of changes, we have proposed the notation of grid nodes,
and five categories of spatial relationships. We use a context-
sensitive graph grammar formalism to explicitly describe the
syntax of Web application layouts and transformation meth-
ods. The parsing algorithm of our spatial graph grammars has
polynomial-time complexity in most cases [16], and the parser
performs an automatic validation on the layout structure.

The graph transformation tool can be considered an au-
thoring language generator, i.e., a metatool, that can generate

any authoring tool environment or regenerate a modified tool
whenever needed. A multimedia author without any knowl-
edge of graph grammars or design rules will be able to use the
generated authoring tool to make adaptive presentations by
drawing graphical structures. Syntax check and design vali-
dation are then automatically performed by the authoring tool.
A graph layout can be transformed according to the defined
grammar or run-time events such as a user interaction.

We are currently implementing the layout component and
will apply it to a rendering tool. More work needs to be done to
enrich the grammar formalism and enhance the event-handling
capability. An important issue is the scalability of graphical
views. One solution is to introduce hierarchical views [22].
Another is to apply the grammar replacement process to sup-
port graph expansion and shrinking, which would, however,
limit one to context-free graph grammars. Writing production
rules and their action codes to handle adaptation is not an easy
task, even for a design expert, since it requires a good com-
mand of the grammar formalism. It has been the authors’ goal
to partially automate the production authoring tool to create
part of the rules when layout requirements are spelled out.
This and support for scalability will be our immediate future
work.

Designing dynamic mobile interfaces to support interac-
tive communication with mobile devices is a research and de-
sign problem. In dynamic capture, access, and authoring of
multimedia presentations, the attributes of some media ele-
ments may be defined in terms of those of other media ele-
ments or in relation to the attributes of the viewing environ-
ment. We will investigate attributed grammars that adapt to
multiple simultaneous changes.

Another future project is to add the time dimension to the
design of multimedia presentations. Temporal specifications
determine the sequence of presentation. Allen presented some
common temporal relations such as during, before, and meet
relations [1], which are potentially adaptable to the grammar
as conditional attributes. Extensive research has been devoted
to the temporal aspects of multimedia authoring and presen-
tations. We plan to investigate the combined use of temporal
and spatial specifications and explore the full power of the
grammatical approach.

Acknowledgements. The authors would like to thank anonymous re-
viewers for their constructive comments and suggestions, which have
helped us to significantly improve the paper. The work is partially
supported by the National Science Foundation under grant number
IIS-0218738.

References

1. Allen JF (1983) Maintaining knowledge about temporal inter-
vals. Commun ACM 26(11):832–843

2. Andre E, Finkler W, Graf W, Rist T, Schauder A, Wahlster W
(1993) WIP: The automatic synthesis of multimodal presenta-
tions. In: MayBury M (ed) Intelligent multimedia interfaces.
AAAI Press/MIT Press, Cambridge, MA, pp 75–93

3. Bjork S, Redstrom J, Ljungstrand P, Holmquist LE (2000) Pow-
erView – using information links and information views to nav-
igate and visualize information on small displays. In: Proc.
HUC’2000, pp 46–62

260 K. Zhang et al.: Multimedia layout adaptation through grammatical specifications

4. Borning A, Lin RK, Marriott K (2000) Constraint-based docu-
ment layout for the Web. Multimedia Syst 8:177–189

5. Bulterman DCA, Rutledge L (2004) SMIL 2.0 – interactive
multimedia for Web and mobile devices. Springer, Berlin Hei-
delberg New York

6. Burnett MM (2004) Visual language research bibliography.
http://www.cs.orst.edu/∼burnett/vpl.html

7. Casanova M, Tucherman L, Lima M, Rodriguez N Soares L
(1991) The nested context model for hyperdocuments. In: Proc.
Hypertext, San Antonio, TX, pp 193–201

8. Cruz IF, Lucas WT (1997) A visual approach to multimedia
querying and presentation. In: Proc.ACM Multimedia’97, Seat-
tle, November 1997, pp 8–14

9. Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph
drawing: algorithms for the visualization of graphs. Prentice
Hall, Englewood Cliffs, NJ

10. Feiner S, McKeown K (1993) Automating the generation of co-
ordinated multimedia explanations. In: MayBury M (ed) Intelli-
gent multimedia interfaces.AAAI Press/MIT Press, Cambridge,
MA, pp 117–138

11. Golin EJ (1991) A method for the specification and parsing of
visual languages. Ph.D. thesis, Brown University, Providence,
RI, May 1991

12. Guan SU, Yu H-Y, Yang J-S (1998) A prioritized Petri Net
model and its application in distributed multimedia systems.
IEEE Trans Comput 47(4):477–481

13. Herman I, Melancon G, Marshall MS (2000) Graph visualiza-
tion and navigation in information visualization. IEEE Trans
Visual Comput Graph 6(1):24–43

14. Ishizaki S (2003) Improvisational design – continuous respon-
sive design communication. MIT Press, Cambridge, MA

15. Kaul M (1982) Parsing of graphs in linear time. In: Proc. 2nd
international workshop on graph grammars and their application
to computer science. Lecture notes in computer science, vol 153.
Springer, Berlin Heidelberg New York, pp 206–218

16. Kong J, Zhang K (2003) Spatial graph grammars for graphical
user interfaces. Technical report, UTDCS-47-03, Computer Sci-
ence Department, University of Texas at Dallas, October 2003

17. Mankoff J, Abowd GD, Hudson SE (2000) OOPS: A toolkit
supporting mediation techniques for resolving ambiguity in
recognition-based interfaces. Comput Graph 24(6):819–834

18. Marriott K, Meyer B, Tardif L (2002) Fast and efficient client-
side adaptability for SVG. In: Proc. WWW 2002, Hawaii, 7–11
May 2002, pp 496–507

19. Minas M, Viehstaedt G (1993) Specification of diagram edi-
tors providing layout adjustment with minimal change. In: Proc.
IEEE symposium on visual languages, pp 324–329

20. Muchaluat DC, Rodrigues RF, Soares LFG (1998) WWW
fisheye-view graphical browser. In: Proc. IEEE Multimedia
Modeling

21. Myers BA (1998) Authoring interactive behaviors for multi-
media. In: Proc. 9th NEC research symposium, Nara, Japan,
August–September 1998

22. Pietriga E, Vion-Dury J-Y, Quint V (2001) VXT: A visual ap-
proach to XML transformations.ACM symposium on document
engineering, Atlanta, GA, 9–10 November 2001, pp 1–10

23. Pimental M, Abowd G, Ishiguro Y (2000) Linking by interact-
ing: a paradigm for authoring hypertext and hypermedia. In:
Proc. Hypertext 2000, Austin, TX, pp. 39–48

24. Prabhakaran B (2000) Multimedia authoring and presentation
techniques, guest editor’s introduction. Multimedia Syst 8:157

25. Rozenberg G, Welzl E (1986) Boundary NLC graph grammars
– basic definitions, normal forms, and complexity. Inf Control
69:136–167

26. Rozenberg G (ed) (1997) Handbook on graph grammars and
computing by graph transformation: foundations, vol 1. World
Scientific, Singapore

27. Sarkar M, Brown MH (1994) Graphical fisheye views. Commun
ACM 37(12):73–84

28. Six JM, Kakoulis KG, Tollis IG (2000) Techniques for the re-
finement of orthogonal graph drawings. J Graph Algor Appl
4(3):75–103

29. Soares LFG, Rodrigues RF, Saade DCM (2000) Modeling, au-
thoring and formatting hypermedia documents in the HyperProp
system. Multimedia Syst 8:118–134

30. Vazirgiannis M, Kostalas I, Sellis T (1999) Specifying and
authoring multimedia scenarios. IEEE Multimedia, July–
September 1999, pp 24–37

31. Vazirgiannis M, TheodoridisY, Sellis T (1998) Spatio-temporal
composition and indexing for large multimedia applications.
Multimedia Syst 6:284–298

32. Weitzman L, Wittenburg K (1998) Grammar-based articulation
for multimedia document design. In: Maybury MT, Wahlster
W (eds) Readings in intelligent user interfaces. Morgan Kauff-
mann, San Francisco, CA, pp 310–327

33. Wittenburg K, Weitzman L (1996) Relational Grammars: The-
ory and practice in a visual language interface for process mod-
eling. In: Proc. AVI’96, Gubbio, Italy, 27–29 May 1996

34. Wills LM (1992)Automated program recognition by graph pars-
ing. Ph.D. thesis, MIT AI Lab, Cambridge, MA

35. W3C (2001) Synchronized multimedia integration lan-
guage (SMIL 2.0). http://www.w3.org/TR/2001/REC-smil20-
20010807/, August 2001

36. W3C (2004) Cascading Style Sheets (CSS).
http://www.w3.org/Style/CSS/

37. W3C (1999) XSL Transformation (XSLT).
http://www.w3.org/TR/xslt

38. Zhang K, Zhang DQ, Cao J (2001) Design, construction and ap-
plication of a generic visual language generation environment.
IEEE Trans Softw Eng 27(4):289–307

39. Zhang DQ, Zhang K, Cao J (2001) A context-sensitive graph
grammar formalism for the specification of visual languages.
Comput J 44(3):186–200

40. Zhang K, Zhang DQ, Deng Y (2001) Graphical transformation
of multimedia XML documents. Ann Softw Eng 12:119–137

41. Zhang KB, Zhang K (1999) An incremental approach to graph
layout based on grid drawing. In: Proc. 3rd workshop on soft-
ware visualization (SoftVis’99), University of Technology, Syd-
ney, 3–4 December 1999

42. Zhang KB, Zhang K, Orgun MA (2002) Grammar-based lay-
out for a visual programming language generation system. In:
Proc. 2nd international conference on the theory and applica-
tion of diagrams (Diagrams’02),Atlanta, GA, 18–20April 2002.
Lecture notes in computer science, vol 2317. Springer, Berlin
Heidelberg New York, pp 106–108

