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1. Introduction

Multimedia search and retrieval has become an active research field thanks to the increasing
demand that accompanies many new practical applications. The applications include large-
scale multimedia search engines on the Web, media asset management systems in corporations,
audio-visual broadcast servers, and personal media servers for consumers. Diverse
requirements derived from these applications impose great challenges and incentives for
research in this field.

Application requirements and user needs often depend on the context and the application
scenarios. Professional users may want to find a specific piece of content (e.g., an image) from
a large collection within a tight deadline, while leisure users may want to browse the clip art
catalog to get a reasonable selection. On-line users may want to filter through a massive
amount of information to receive information pertaining to their interests only, while off-line
users may want to get informative summaries of selected content from a large repository.

With the increasing interest from researchers and application developers, there have been
several major publications and conferences dedicated to survey of important advancements and
open issues in this area. Given the dynamic nature of applications and research in this broad
area, any survey paper is also subject to the risk of being incomplete or obsolete. With this
perspective, we focus this chapter on several major emerging trends in research, as well as
standards related to the general field of multimedia search and retrieval. Our goal is to present
some representative approaches and discuss issues that require further fundamental studies.

Section 2 addresses a promising direction in integrating multimedia features in extracting the
syntactic and semantic structures in video. It introduces some domain-specific techniques (i.e.,

news) combining analysis of audio, video, and text information in analyzing content at multiple
levels. Section 3 focuses on a complementary direction in which visual objects and their
features are analyzed and indexed in a comprehensive way. These approaches result in search
tools that allow users make direct manipulation visual content to form multimedia queries.
Section 4 shows a new direction, incorporating knowledge from machine learning and
interactive systems, to break the barriers of decoding semantics from multimedia content. Two
complementary approaches are presented: probabilistic graphic model and semantic template.
Section 5 covers an important trend in the multimedia content description standard, MPEG-7,
and its impact on several applications such as interoperable meta search environment.

Published as a chapter in Advances in Multimedia: Systems, Standards, and
Networks, A. Puri and T. Chen (eds.). New York: Marcel Dekker, 1999.
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2. Video Segmentation, Indexing, and Browsing

As discussed in the previous section, different methods are suitable for each context when
people access large collections of information. Video content has unique characteristics that
further affect the role of each access method. For example, the sequential browsing method
may not be suitable for long video sequences. In this case, methods using content summaries,
such as those based on the Table of Contents (ToC), are very useful in providing quick access
to structured video content.

Different approaches have been used to analyze the structures of video. One technique is to do
it manually as in the cases of books (ToC) or broadcast news (closed captions) delivered by
major American national broadcast news companies. Since manual generation of an index is
very labor intensive, and thus, expensive, most sources of digital data in practice are still
delivered without meta information about content structures. Therefore, a desirable alternative
is to develop automatic or semi-automatic techniques to extract semantic structure from the
given linear data of video. The particular challenges we have to address include identification
of the semantic structure embedded across multiple media, and discovery of the relationship
among the structures across time and space (so that higher levels of categorization can be
derived to further facilitate automated generation of a concise index table).

Typically, to address this problem, a hierarchy with multiple layers of abstractions is needed.
To generate this hierarchy, data processing in two directions has to be performed. First,
hierarchically segmenting the given data into smaller retrievable data units, and the second,
hierarchically grouping different units into larger yet meaningful categories. In this section, we
focus on issues in segmenting multimedia news broadcast data into retrievable units that are
directly related to what users perceive as meaningful. The basic units after segmentation can be
indexed and browsed with efficient algorithms and tools. The levels of abstraction include
commercials, news stories, news introductions, or news summaries of the day. A particular
focus is development of a solution that effectively integrates the cues from video, audio, and
text.

Much research has concentrated on segmenting video streams into "shots" using low level
visual features [44][45]. Based on such segmentation, the retrievable units are low level
structures such as clips of video represented by key frames. The insufficiency associated with
such approaches is multifold. First, these low-level structures do not correspond in a direct and
convenient way to the underlying semantic structure of the content, hence, making it difficult
for users to browse. Second, due to the large amount of low-level structures generated from the
segmentation, it provides little improvement in browsing efficiency compared with linear
search. When users interacts with an information retrieval system, they expect the system to
provide a condensed, concise characterization of the content available. The system should offer
a mechanism for users to construct clear, unambiguous queries, and also return requested
information that is long enough to be informative and as short as possible to avoid irrelevant
information [46]. Thus, multimedia processing systems need to understand, to a certain extent,
the content embedded in the multimedia data so that they can recover the semantic structure
originally intended to be delivered. The conventional "scene cut" based systems can not meet
such requirements although they are able to facilitate retrieval in a limited sense. Therefore,
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recently, more attention has been directed towards automatically recovering semantically
meaningful structures from multimedia data.

Integrated Semantic Segmentation Using Multimedia Cues

One recent direction in semantic-level segmentation focuses on detecting an isolated,
predefined set of meaningful events. For example, Chang et al. [47] attempted to extract
"touchdown" events from a televised football game video by combining visual and audio data.
Another recent approach generates a partition over the continuous data stream into distinct
events, so that each segment corresponds to a meaningful event such as a news story
[46][48][49][50][51][52][53][54][55][56]. In other words, the effort aims to recover the overall
semantic structure of the data that reflects the original intention of the information creator
(such structure is lost when the data is being recorded on the linear media). Some work along
this line has made use of the information from a single media (visual or text)
[48][49][50][51][52][53]. With visual cues only, it is extremely difficult to recover the true
semantic structure [51][52][53]. With text information only, due to the typical use of fixed
processing windows, it has been shown that obtaining a precise semantics boundary is difficult
and the accuracy of segmentation varies with the window size used [49][50]. Other more recent
works integrated the cues from different media to achieve story segmentation in broadcast
news [56][54][46]. By combining cues, the story boundaries can be identified more precisely.

Some existing approaches rely on fixed textual phrases or exploit the known format of closed
captions. In the works of Merlino and Maybury [54][55][56], particular phrases (e.g., “still to
come on the news...'') are exploited as cues for story boundaries. In Hauptmann's work [46],
particular structures of closed captions (markers for different events) are used to segment both
commercials and stories. Other techniques aimed at developing an approach that can be used in
more general settings, i.e., solutions that do not make assumptions about certain cue phrases,
the availability of closed captions, or even the particular format of closed captions [57].
Acoustic, visual, and textual signals are utilized at different stages of processing to obtain story
segmentation. Audio features are used in separating speech and commercials; anchorperson
segments are detected based on speaker recognition techniques; story level segmentation is
achieved using text analysis that determines how blocks of text should be merged to form news
stories, individual story introductions, and an overall news summary of the day. Once different
semantic units are extracted, they are aligned in time with the media data, so that proper
representations of these events can be constructed across different media, in such a way that
the audio-visual presentation can convey the semantics effectively.

In this section, we review an integrated solution for automated content structuring for
broadcast news programs. We use this example to illustrate the development of tools for
retrieving information from broadcast news programs in a semantically meaningful way at
different levels of abstraction.
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A typical national news program consists of news and commercials. News consists of several
headline stories, each of which is usually introduced and summarized by the anchor prior to
and following the detailed reports by correspondents, quotes, and interviews of news makers.
Commercials are usually found between different news stories. With this observation, we try to
recover this content hierarchy by utilizing cues from different media whenever it is
appropriate. Figure 1 shows the hierarchy we intend to recover.

Figure 1. Content hierarchy of broadcast news programs.
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In this hierarchy, the lowest level contains the continuous multimedia data stream (audio,
video, text).  At the next level, we separate news from commercials. The news is then
segmented into the anchorperson's speech and the speech from others. The intention of this
step is to use the recognized anchor's identity to hypothesize a set of story boundaries that
consequently partition the continuous text into adjacent blocks of text. Higher levels of
semantic units can then be extracted by grouping the text blocks into news stories and news
introductions. In turn, each news story can consist of either the story by itself or augmented by
the anchorperson's introduction. Detailed semantic structure at the story level is shown in
Figure 2.

Figure 2. Relationship among the semantic structures at the story level.

In this Figure, input consists of news segments with boundaries determined by the location of
anchorperson segments. Commercial segments are not included. Using duration information,
each news segment is initially classified as either the story body (having longer duration) or
news introduction or non-story segments (having shorter duration). Further text analysis
verifies and refines the story boundaries, the introduction associated with each news story, and
the news summary of the day.

The news data is segmented into multiple layers in a hierarchy to meet different needs. For
instance, some users may want to retrieve a story directly; some others may want to listen to
the news summary of the day in order to decide which story sounds interesting before making
further choices; while yet others (e.g., a user employed in the advertising sector) may have a
totally different need to monitor commercials from competitors in order to come up with a
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competing commercial. The segmentation mechanism partitions the broadcast data in different
ways so that direct indices to the events of different interests can be automatically established.

Representations and Browsing Tools

Once semantic structures are recovered and indexed, efficient tools are needed to present the
extracted semantic units in a form that is compact, concise, easy to understand, and at the same
time visually pleasing. Now, we discuss three aspects of this task. First, how to present the
semantic structure to the users; second, how to represent the particular semantics based on the
content of the news story; and third, how to form the representation for news summary of the
day.

A commonly used presentation for semantic structure is in the form of a table of content. In
addition, in order to give users a sense of time, we also use a streamline representation for the
semantic structure.  Figure 3 shows one presentation for the semantic structure of a news
program. On the left side of the screen, different semantics are categorized in the form of a
table of contents (commercials, news, and individual news stories, etc.). It is in a familiar
hierarchical fashion which indexes directly into the time stamped media data. Each item listed
is color coded by an icon or a button. To play back a particular item, a user simply clicks on
the button of the desired item in this hierarchical table. On the right of this interface is the
streamline representation where the time line runs from left to right and top to bottom. The
time line has two layers of categorization. The first layer is event based (anchor’s speech,
others' speech, and commercials) and the second layer is semantic based (stories, news
introduction, and news summary of the day). Each distinct section is marked by a different
color and the overall color codes correspond to the color codes used in the table of content.
Obviously, the content categorized in this representation is aligned with time.
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Figure 3. Representation for extracted semantic structures.

For each extracted news story, we developed two forms of representation. One is textual and
another is a combination of text with visual. Our goal is to automatically construct the
representation in a form that is most relevant to the content of the underlying story. For textual
representation, keywords are chosen from the story according to their importance computed as
weighted frequency. In the table of content shown in Figure 3, next to each story listed, a set of
10 keywords are given. The intention is that users will get a feeling about the content of the
story. Another more detailed representation for a story is called ``story icon''. Figure 4
demonstrates this kind of story representation.
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Figure 4. Visual representation for stories about El Nino.

The presentation for each story has three parts: the upper left corner is a set of 10 keywords
automatically chosen from the segmented story  based on the relative importance of the words;
the right part displays the text of the story; the rest is the visual presentation of the story
consisting of five images chosen from video in the content based manner described above.
Figure 9a is the visual representation of the story about El Nino. It is compact, semantically
revealing, and visually informative with respect to the content of the story.  A user can choose
either to scroll the text on the right to read the story or to click on the button of that story to
playback synchronized audio, video, and text, all starting from where the story begins.
Compared with linear browsing or low level scene cut browsing, our system allows for more
effective content based non-linear information retrieval.

Finally, we construct the representation for the news summary of the day. It is composed of K
images, where K is the number of headline stories on a particular day. The K images are chosen
so that they are the most important in each story, measured by the covered area size in the
keyword histogram.  Figure 5 gives the visual presentation for the news summary of the day
for the NBC Nightly News on the 12th of February, 1998. From this presentation, a user can
see immediately that there are a total of six headline stories on that particular day. Below the
representative image for each story, the list of its keywords is displayed as a dynamic right-to-
left flow so that users can get a sense of the story from the keywords (The movement of
keywords is not apparent in Fig. 5 because we can not show a dynamic video sequence). From
these examples, the effectiveness of this story-telling visual representation for the news
summary is evident.
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Figure 5. Representation for news summary of the day.

3. Object-based Spatio-Temporal Visual Search and Filtering

An active research direction complementary with the above one using semantic-level
structuring is the one that directly exploits low-level objects and their associated features in
images or videos. An intuitive and popular approach is to segment and provide efficient
indexes to salient objects in the images. Such segmentation processes can be implemented
using automatic or semi-automatic tools [6][8]. Examples of salient objects may correspond to
meaningful real-world objects such as houses, cars, and people, or low-level image regions
with uniform features, such as color, texture, or shape.

Several notable image/video search engines have been developed using this approach, namely
searching images/videos by example, by features, or by sketches. Searching for images by
examples or templates is probably the most classical method of image search, especially in the
domains of remote sensing and manufacturing. From an interactive graphic interface, users
select an image of interest, highlight image regions, and specify the criteria needed to match
the selected template. The matching criteria may be based on intensity correlation or feature
similarity between the template image and the target images.

In feature-based visual query, users may ask the computer to find similar images according to
specified features such as color, texture, shape, motion, and spatio-temporal structures of
image regions [1][3][4][5]. Some systems also provide advanced graphic tools for users to
directly draw visual sketches to describe the images or videos they have in mind [5][6][7].
Users are also allowed to specify different weightings for different features. Figure 6 shows
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query examples using the object color and the motion trail to find a video clip of a downhill
skier, and using color and motions of two objects to find football players.

Figure 6. Object-oriented search using example image objects, features, and their
relationships. By matching the object features and their spatio-temporal relationships
(e.g., query sketches shown in (a) and (c)), video clips containing most similar objects
and scenes (e.g., (b) downhill skiing and (d) soccer players) are returned. (Video
courtesy of Actions, Sports, and Adventure, Inc.)

Object-Based Video Segmentation and Feature Extraction

To demonstrate the processes involved in developing the above object-based video search
tools, we review the process of developing the VideoQ search system [6] in this subsection.

Video sequences are first decomposed into separate shots.  A video shot has a consistent
background scene, although the foreground objects may change dynamically (they may even
occlude each other, disappear, or re-appear). Video shot separation is achieved by scene
change detection.  Scene change may include abrupt scene change, transitional changes (e.g.,
dissolve, fade in/out, and wipe). Once the video is separated into basic segments (i.e., video
shots), salient video regions and video objects are extracted.  Video object is the fundamental
level of indexing in VideoQ. Primitive regions are segmented according to color, texture, edge,
or motion measures.  As these regions are tracked over time, temporal attributes such as
trajectory, motion pattern, and life span are indexed. These low-level regions may also be used
to develop a higher level of indexing that includes links to conceptual abstractions of video
objects.

Based on the object-based representation model, a visual feature library (VFL) has also been
developed. The VFL includes a rich set of visual features automatically extracted from the
video objects.  For example, color may include single color, average color, representative
color, color histogram, and color pairs [10][11][12]. Texture may include wavelet-domain
textures, texture histogram, Tamura texture, and Laws Filter-based texture [13][14][39][40].
Shape may include geometric invariants, moments of different orders, polynomial
approximation, spline approximation, algebraic invariants etc. Motion may include trajectories
of the centroid of  each object and the affine models of each object over time (with camera
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motion compensation). The concept of VFL is to capture distinctive features that can be used
to distinguish salient video objects efficiently and effectively. The final selection of features
and their specific representations should depend on the resource (computing and storage)
available, and the application requirements (e.g., geometric invariance in object matching).

In measuring the similarity between video objects, various distance functions for measuring the
feature similarity could be used, such as the Euclidean distance, the Mahalalobis distance, the
quadratic distance with cross-element correlation, and L1 distance.  Usually it’s difficult to find
the optimal distance function. Instead, it’s more beneficial to develop a flexible framework that
can support various search methods, feature models, and matching metrics.

The above visual paradigm using the object-based representation and the VFL opens up a great
opportunity for image/video search. In VisualSEEk [5], we integrated image search based on
visual features and spatial constraints. It used a generalized technique of 2D-strings to provide
a framework for searching for and comparing images by the spatial arrangement of
automatically segmented feature regions.  Multiple regions can be queried either by their
absolute or relative locations.  As shown in Figure 7, the overall query strategy consists of
"joining" the queries based on the individual regions in the query image. Each region in the
query image is used to query the entire database of regions. The resulting list of matched
regions are then combined by the join operation, which consists of intersecting the results of
region matches. The join operation identifies the candidate images which contain matches to
all the query regions, and then evaluates the relative spatial locations to determine the best
matched image that satisfies the constraints of relative region placement. For video, more
sophisticated spatio-temporal relationships can be verified at this stage to find video clips
including rich spatio-temporal activities.

Figure 7. Query processing architecture supporting multiple regions and verification of
spatio-temporal relationships among regions

The above video object search system achieves fully automatic object segmentation and feature
extraction at a low-level. However, the results of object segmentation remain at a low level
(e.g., image regions with uniform features). These usually do not correspond well to the real
world physical objects. One way to solve this problem is to use some input from users or
content providers. For example, in the new MPEG-4 standard [25], video scenes consist of
separate video objects that may be created, compressed, and transmitted separately. The video
objects in MPEG-4 usually correspond to the semantic entities (e.g., people, car, and house).
Region segmentation and feature extraction mentioned above can be applied to analyze these
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objects and obtain efficient indexes for search and retrieval. Some systems combine some
initial user interaction and automatic image region tracking to extract semantic video objects in
a semi-automatic process [42]. Figure 8 shows the interface of a search engine for MPEG-4
semantic video objects [43]. Note that in addition to the single-level spatio-temporal search
functions available in VideoQ, the semantic object search engine indexes spatio-temporal
relationships at multiple levels (i.e., regions and objects) and thus allows for more flexible
search.

Figure 8 Search interface for the AMOS semantic object search engine.
Objects are at the semantic level (e.g., people, animals, cars) rather than
the region-level objects used in VideoQ.

4. Semantic-Level Content Classification and Filtering

The spatio-temporal search tools described above provide powerful capabilities for searching
videos or images at the low level. In many situations, users prefer to use simple and direct
methods. For example, users may just want to browse through the content categories in which
each image or video is classified into one or several meaningful classes. In other cases, we
have found that the combination of feature-based similarity search tools and the subject
navigation utilities achieves the most successful search results.

Recently, more research interest has emerged in developing automatic classification or filtering
algorithms for mapping images or videos to meaningful classes, e.g., indoor, outdoor, or people
[15][16][17][18]. In this section, we discuss two complementary approaches for identifying
semantic concepts in multimedia data.

Content Modeling Using Probabilistic Graphic Models

The first approach uses probabilistic graphic models to identify events, objects, and sites in
multimedia streams by computing probabilities like P(underwater AND shark | segment of
multimedia data). The basic idea is to estimate the parameters and structure of a model from a
set of labeled multimedia training data.

A multiject (multimedia object) has a semantic label and summarizes the time sequences of
low-level features of multiple modalities in the form of a probability, P(semantic label |
multimedia sequence). Most multijects fall into one of the three categories: sites, objects, and
events. While some multijects are supported mainly by video (e.g., shark), others are supported
mainly by audio (e.g., interior of traveling train), still others are strongly supported by both
audio and video (e.g., explosion).
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The lifetime of a multiject is the duration of multimedia input that is used to determine its
probability. In general, some multijects (e.g., family quarrel) will live longer than others (e.g.,

gun shot) and the multiject lives can overlap. For simplicity, we could break the multimedia
into shots and within each shot fix the lifetimes of all multijects to the shot duration. Given the
multiject probabilities, this leads to a simpler static inference problem within each shot.
Although this approximation ignores event sequences within a shot (e.g., gun shot followed by
family quarrel), it leaves plenty of room for useful inferences, since directors often use
different shots to highlight changes in action and plot.

We model each modality in a multiject with a Hidden Markov Model (HMM) [18]. We
investigate what combinations of input features and HMM structure give sufficiently accurate
models. For example, we found that in the case of the explosion multiject, a color histogram of
the input frames and a 3-state HMM give a reasonably accurate video model [20].  In contrast,
a video model for a bird may require object detection and tracking.

Each HMM in a multiject summarizes the time sequence for its corresponding modality. In
order to summarize modalities, it is necessary to identify likely correspondences between
events in the different modalities. For example, one of our experiments calculated the posterior
probabilities that an explosion occurred in a movie clip at or before time t under an audio and a
video HMM that were each trained on examples of explosions. In one case, the sound of the
explosion begins roughly 0.15 seconds (8 audio frames at 50 Hz or 5 video frames at 30 Hz)
later than the video of the explosion. In other cases, we found that the audio and video events
were more synchronized. To accurately detect explosions, the explosion multiject should be
invariant to small time differences between the audio and video events. However, if the
multiject is overly tolerant of the time difference, it may falsely detect non-explosions. For
example, a shot consisting of a pan from a sunrise to a waterfall will have a flash of bright red
followed, after a large delay, by a thundering sound with plenty of white noise. Although the
audio and video features separately match an explosion, the large time delay indicates it is not
an explosion.

We have used two methods [20][21] for summarizing the modalities in a multiject. In the first
method, each HMM models an event in a different modality and the times at which the event
occurs in the different modalities are loosely tied together by a kernel (e.g., Gaussian). An
example of a pair of such event-coupled HMMs is shown in Figure 9, where tA and tV are the
times at which the explosion event begins in the audio and video. In [20], we discussed an
efficient algorithm for computing the probability of the multiject, e.g., P(explosion | video
sequence, audio sequence). In the second method [21], a high-level HMM is trained on the
states of the HMMs for the different modalities. Using a fast, greedy, bottom-up algorithm, the
probability of the multiject can be approximated quite accurately. Note that the above model
and structure can be greatly expanded to determine a multiject representation that is simple
enough for learning and inference while being powerful enough to answer useful queries.
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Figure 9. A graphic model for a multiject (multimedia objects) that couples together the
two HMMs.

Suppose we are interested in automatically identifying movie clips of exotic birds from a
movie library. We could compute the probability of the bird multiject for each multimedia shot
in the library and then rank the shots according to these probabilities. However, by computing
the probabilities of other related multijects, we may be able to derive additional support for the
bird multiject. For example, an active waterfall multiject provides evidence of an exotic
location where we are more likely to find an exotic bird. As a contrasting example, an active
underwater multiject decreases the support for a bird being present in the shot.

We use the multinet (multiject network) as a way to represent higher-level probabilistic
dependencies between multijects. Figure 10 shows an example of a multinet. In general, all
multijects derive probabilistic support from the observed multimedia data (directed edges), as
described in the previous section. The multijects are further interconnected to form a graphical
probability model. Initially, we will investigate Boltzmann machine models [22] that associate
a real-valued weight with each undirected edge in the graph. The weight indicates to what
degree  two multijects are correlated a priori (before the data is observed). In Figure 10, plus
signs indicate the multijects are correlated a priori whereas minus signs indicate the multijects
are anti-correlated.

Returning to the bird example, a plus sign on the connection between the bird multiject and the
waterfall multiject indicates that the two multijects are somewhat likely to be present
simultaneously. The minus sign on the connection between the bird multiject and the
underwater multiject indicates that the two multijects are unlikely to be present simultaneously.
The graphical formulation highlights interesting second-order effects. For example, an active
waterfall multiject supports the underwater multiject, but these two multijects have opposite
effects on the bird multiject.
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Figure 10. A multinet (multimedia network) probabilistically links multijects
(multimedia objects) to the data and also describes the probabilistic relationships
between the multijects. Plus signs indicate the multijects are correlated a priori (before
the data is observed); minus signs indicate the multijects are anticorrelated.

In general, exact inference such as computing P(bird | multimedia data) in a richly connected
graphical model is intractable. The second-order effects described above imply that many
different combinations of multijects need to be considered to find likely combinations.
However, there has been promising work in applying approximate inference techniques to such
intractable networks in areas including pattern classification, unsupervised learning, data
compression and digital communication [23]. In addition, approaches using Markov chain
Monte Carlo methods [22] and variational techniques [24] are promising.

Indexing Multimedia with Semantic Templates

In this subsection, we discuss a different semantic-level video indexing technique, Semantic
Templates (STs) [26]. Semantic templates associate a set of exemplar queries with each
semantic. Each query in the template has been chosen since it has been successful at retrieving
the concept. The idea is that since a single successful query rarely completely represents the
information that the user seeks, it is better to cover the concept using a set of successful
queries. Semantic Templates can be defined over any type of indexable media. Here we focus
on video, semantic visual templates (SVTs). Figure 11 shows example SVTs for the “high
jumper” concept and the “sunsets” concept.
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Figure 11. A semantic-level search paradigm using semantic visual templates. Image
icons shown are subsets of optimal templates for each concept ((a) “sunset” (b) “high
jumper”) generated through the two-way interactive system.

The goal of the ST is similar to that of multijects mentioned above to detect and recognize
video objects, sites, or events at the semantic level. However, it is based on different but
synergistic principles. The generation of a semantic template involves no labeled ground truth
data. What we do require is that some positive examples of the concept be present in the
database so that they can be used in the interactive process when users interact with the system
to generate the optimal set of STs. Development of STs utilizes the following unique
principles.

Two-way Learning: The template generation system emphasizes the two-way learning
between the human and the machine. Since the human being is the final arbiter of the
“correctness'' of the concept, it is essential to keep the user in the template generation
loop. The user defines the video templates for a specific concept with the concept in
mind.  Using the returned results and relevance feedback the user and the system
converge on a small set of queries that best match (i.e., provide maximal recall) the
user's concept.

Intuitive Models: Semantic templates are intuitive, understandable models for semantic
concepts in the videos. The final sets of SVT's can be easily viewed by the user. Users
can have direct access and make manipulation to any template in the library.

Synthesizing new Concepts: Different ST's can be graphically combined to synthesize
more complex templates.  For example, templates for high-jumpers and crowds can be
combined to form a new template for “high-jumpers in front of a crowd.'' The audio
templates for “crowd'' and “ocean sounds'' and the visual template for “beach'' can be
combined to form the “crowds at a beach'' template.

The template framework is an extended model of the object-oriented video search engine that
has been described in Section 3. The video object database consists of video objects and their
features extracted in the object segmentation process. A visual template may consist of two
types of concept definitions: object icons and example scenes/objects. The object icons are
animated sketches like the ones used in VideoQ. In VideoQ, the features associated with each
object and their spatial and temporal relationships are important. The example scenes or
objects are represented by the feature vectors extracted from these scenes/objects. Typical
examples of feature vectors that could be part of a template are histograms, texture information
and structural information (i.e., more or less the global characteristics of the example scenes).
The choice between an icon-based realization or an example based realization depends upon
the semantic that we wish to represent. For example, a “sunset'' can be very well represented by

(a)

(b)
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using a couple of objects, while a waterfall or a crowd is better represented using example
scenes characterized by a global feature set. Hence, each template contains multiple icons, and
example scenes/objects to represent the idea.  The elements of the set can overlap in their
coverage. The goal is to come up with a minimal template set with maximal coverage.

Each icon for the concept comprises multiple objects which are associated with a set of visual
attributes. The relevance of each attribute and each object to the concept is also specified using
a context specification questionnaire.  For example, for the concept “sunsets'', color and spatial
structures of the objects (sun and sky) are more relevant. The object “sun'' may be non-
mandatory since some sunset videos may not have the sun visible.  For the concept “high
jumper'', the motion attribute of the foreground object (mandatory) and the texture attribute of
the background object (non-mandatory) are more relevant than other attributes.

Development and application of semantic templates requires the following components:

Generation: This is used to generate ST's for each semantic concept. We will describe
an interactive learning system in which users can interactively define their customized
ST's for a specific concept.

Metric: This is used to measure the “fitness'' of each ST in modeling the concept
associated with the video shot or the video object.  The fitness measure can be modeled
by the spatio-temporal similarity between the ST and the video.

Applications: An important challenge in applications is to develop a library of semantic
concepts that can be used to facilitate video query at the semantic level. We will
describe the proposed approaches to achieving such systems later.

Automatic generation of the ST's is a hard problem. Hence we use a two-way interaction
between the user and system in order to generate the templates (shown in Figure 12). In our
method, given the initial query scenario and using relevance feedback, the system converges on
a small set of icons (exemplar queries for both audio and video) that gives us maximum recall.
We now explain the mechanisms for generation of semantic visual templates.
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Figure 12. System architecture for Semantic Visual Template.

The user comes to the system and sketches out the concept that for which he wishes to generate
a template. The sketch consists of several objects with spatial and temporal constraints. The
user can also specify whether the object is mandatory or not. Each object is comprised of
several features. The user also assigns relevance weights to each feature of each object. This is
the initial query scenario that the user provides to the system.

The initial query can also be viewed as a point in a high dimensional feature space. Clearly, we
can also map all videos in the database in this feature space. Now, in order to generate the
possible icon set automatically, we need to make jumps in each of the features for each object.
Before we do so, we must first determine the jump step size i.e. quantize the space. This we do
with the help of the weight that the user has input along with the initial query. This weight can
be thought of as the user’s belief in the relevance of the feature with respect to the object to
which it is attached. Hence, a low weight gives rise to coarse quantization of the feature and
vice versa.

Since the total number of icons possible using this technique increases very rapidly, we don't
allow for joint variation of the features. For each feature in each object, the user picks a
plausible set for that feature. The system then performs a join operation on the set of features
associated with the object. The user then picks the joins that are most likely to represent
variations of the object. This results in a candidate icon list.

In a multiple object case, we do an additional join with respect to the candidate lists for each
object. Now, as before, the user picks the plausible scenarios. After we have generated a list of
plausible scenarios we then query the system using the icons the user has picked. Using
relevance feedback on the returned results (the user labels the returned results as positive or
negative), we then determine the icons that provide us with maximum recall.

We now discuss a detailed example showing the generation mechanism for creating the
semantic visual template for slalom skiers.
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• We begin the procedure by answering the context questionnaire shown in Figure 13(a).  We
label the semantic visual template “slalom''. We specify that the query is object-based and
will be composed of two objects. Then (Figure 13(b)), we sketch the query.  The large,
white background object is the ski slope and the smaller foreground object is the skier with
its characteristic zigzag motion trail.

• We assign maximum relevance weights to all the features associated with the background
and skier. We also specify that the features belonging to the background will remain static,
while those of the skier can vary during template generation. Then, the system
automatically generates a set of test icons, and we select plausible feature variations in the
skier's color and motion trajectory.

• A set of potential icons including both the background and the foreground skier are shown
in Figure 13(c). The user then chooses a candidate set to query the system. The 20 closest
video shots are retrieved for each query. The user provides relevance feedback, which
guides the system to a small set of exemplar icons associated with slalom skiers.

Figure 13. Example of semantic template development – Slalom. (a) questionnaire for users
to define the objects and features in a template; (b) initial graphic definition of the
template; and (c) candidate icons generated by the system.

(b)(a)

(c)
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As mentioned earlier, the framework of the semantic templates can be applied to multiple
medium modalities including audio and video. Once we have the audio and the visual
templates for different concepts such as “skiing'', “sunsets'' etc. the user can interact with the
system at the concept level. The user can compose a new multimedia concept that is built using
these templates. For example if the user wants to retrieve a group of people playing beach
volleyball, he would use the visual templates of beach volleyball and beach sounds to generate
a new query: {{Video: Beach volleyball, Beach}, {Audio: Beach Sounds}}. Then, the system
would search for each template and return a result based on the users search criterion. For
example he may indicate that he needs only some of the templates to be matched or that he
needs all templates to be matched. Also, once we have a collection of audio and video
templates for a list of semantics, we then use these templates to match with the new videos and
thereby generating a list of potential audio and video semantics (thereby generating a semantic
index) that are associated with the video clip. Early results on querying using SVT's indicate
that the concept works well in practice. For example, in the case of sunsets, the original query
over a large heterogeneous database yields only 10% recall. Using eight icons for the template,
we boost this result to 50%.

5. Interoperable Content Description Schemes and Meta Search Engines

Techniques discussed above contribute to the state of the art in multimedia search and retrieval.
Efficient tools and systems have been developed at different levels, including the physical level
(e.g., image object matching) and the semantic level (e.g., news video content structure and
semantic labeling). These tools can be optimized for the maximum power in specialized
application domains. However, in many cases customized techniques may be used by different
service providers for specialized content collection. Interoperability among the content indexes
and the search functions becomes a critical issue. How do we develop a transparent search and
retrieval gateway to hide the proprietary indexes and search methods and  for users to access
content in heterogeneous content sources?

Content-describing Schemes and MPEG-7

To describe various types of multimedia information, the emerging MPEG-7 standard [27] has
the objective of specifying a standard set of descriptors as well as Description Schemes (DSs)
for the structure of descriptors and their relationships. This description (i.e., the combination of
descriptors and description schemes) will be associated with the content itself to allow fast and
efficient searching for material of a user's interest. MPEG-7 will also standardize a language to
specify description schemes, (i.e., a Description Definition Language (DDL)), and the schemes
for encoding the descriptions of multimedia content.

In this section, we briefly describe a candidate interoperable content description scheme [30]
and some related research on image meta search engines [28]. The motives of using these
content description schemes for multimedia can be explained with the following scenarios.

• Distributed processing: The self-describing schemes will provide the ability to interchange
descriptions of audio-visual material independently of any platform, any vendor, and any
application. The self-describing schemes will enable the distributed processing of
multimedia content. This standard for interoperable content descriptions will mean that
data from a variety of sources can be easily plugged into a variety of distributed
applications such as multimedia processors, editors, retrieval systems, filtering agents, etc.
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• Content exchange: A second scenario that will greatly benefit from an interoperable
content description is the exchange of multimedia content among heterogeneous audio-
visual databases. The content descriptions will provide the means to express, exchange,
translate, and reuse existing descriptions of audio-visual material.

• Customized views: Finally, multimedia players and viewers compliant with the multimedia
description standard will provide the users with innovative capabilities such as multiple
views of the data configured by the user. The user could change the display's configuration
without requiring the data to be downloaded again in a different format from the content
broadcaster.

To ensure maximum interoperability and flexibility, our description schemes use the
eXtensible Markup Language (XML), developed by the World Wide Web Consortium (W3C)
[29].  We briefly discuss the benefits of using XM and its relationship with other languages
such as SGML here. SGML (Standard Generalized Markup Language, ISO 8879) is a standard
language for defining and using document formats. SGML allows documents to be self-
describing, i.e. they describe their own grammar by specifying the tag set used in the document
and the structural relationships that those tags represent. However, full SGML contains many
optional features that are not needed for Web applications and has proven to be too complex to
current vendors of Web browsers.

The W3C has created an SGML Working Group to build a set of specifications to make it easy
and straightforward to use the beneficial features of SGML on the Web [58]. This subset,
called XML (eXtensible Markup Language), retains the key SGML advantages in a language
that is designed to be vastly easier to learn, use, and implement than full SGML. A major
advantage of using XML is that it allows the descriptions to be self-describing, in the sense that
they combine the description and the structure of the description in the same format and
document. XML also provides the capability to import external document type definitions
(DTDs) into the image description scheme DTD in a highly modular and extensible way.

The candidate description scheme consists of several basic components: object, object

hierarchy, entity relation graph, and feature structure. Each description includes a set of
objects. The objects can be organized in one or more object hierarchies. The relationships
between objects can be expressed in one or more entity relation graphs.

An object element represents a region of the image for which some features are available. It
can also represent a moving image region in a video sequence. There are two different types of
objects: physical and logical objects. Physical objects usually correspond to continuous regions
of the image with some descriptors in common (semantics, features, etc.). Logical objects are
groupings of objects (which may not occupy a continuous area in the image) based on some
high-level semantic relationships (e.g. all faces in the image). The object element comprises
the concepts of group of objects, objects, and regions in the visual literature. The set of all
objects identified in an image is included within the object set element.

The description scheme also includes one or more object hierarchies to organize the object
elements in the object set element. Each object hierarchy consists of a tree of object node
elements. Each object node points to an object. The objects in an image can be organized by
their location in the image or by their semantic relationships. These two ways to group objects
generate two types of hierarchies: physical and logical hierarchies. A physical hierarchy
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describes the physical location of the objects in the image. On the other hand, a logical
hierarchy organizes the objects based on a higher level semantics, such as information in
categories of  who, what object, what action, where, when, why.

In addition to the object hierarchy, an entity-relationship model is also used to describe general
relationships among object elements. Examples include spatial relationships, temporal
relationships, and semantic-level relationships (e.g., A is shaking hands with B).

Each object includes one or more associated features. Each object can accommodate any
number of features in a modular and extensible way. The features of an object are grouped
together according to the following categories: visual, semantic, and media. Multiple
abstraction levels of features can be defined. Each object may be associated with objects in
other modalities through modality transcoding.

Examples of visual features include color, texture, shape, location, motion etc. These features
can be extracted or assigned automatically or manually. Semantic features include annotations
and semantic-level description in different categories (people, location, action, event, time,
etc). Media features describe information such as compression format, bit rate, file location,
etc.

Each feature of an object has one or more associated descriptors. Each feature can
accommodate any number of descriptors in a modular and extensible way. External descriptors
may also be included through linking to external DTD. For a given descriptor, the description
scheme also provides a link to external extraction code and similarity matching code.

The unified description scheme may be applied to image, video, and combinations of
multimedia streams in a coherent way. In the case of multimedia, a multimedia stream is
represented as a set of multimedia objects that include objects from the composing media
streams or other multimedia objects. Multimedia objects are organized in object hierarchies.
Relationships among two or more multimedia objects that can not be expressed in a tree
structure can be described using multimedia entity relation graphs. The tree structures can be
efficiently indexed and traversed, while the entity relation graphs can model more general
relationships.

Details of the description schemes mentioned above can be found in [59][60][61].

Multimedia Meta Search Engines

The above self-describing schemes are intuitive, flexible, and efficient. We have started to
develop an MPEG-7 testbed to demonstrate the feasibility of our self-describing schemes. In
our testbed, we are using the self-describing schemes for descriptions of images and videos that
are generated by a wide variety of image/video indexing systems. In this section, we will
discuss the impact of the MPEG-7 standard on a very interesting research topic, image
metasearch engines.

Metasearch engines act as gateways linking users automatically and transparently to multiple
search engines. Most of the current metasearch engines work with text. Our earlier work on
metasearch engine, MetaSEEk [28], explores the issues involved in querying large, distributed,
on-line visual information systems. MetaSEEk is designed to intelligently select and interface
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with multiple on-line image search engines by ranking their performance for different classes
of user queries. The overall architecture of MetaSEEk is shown in Figure 14.  The three main
components of the system are standard for metasearch engines; they include the query

dispatcher, the query translator, and the display interface. The procedure for each search is as
follows:

Figure 14. System architecture of metasearch engines such as MetaSEEk

• Upon receiving a query, the dispatcher selects the target search engines to be queried by
consulting the performance database at the MetaSEEk site. This database contains
performance scores of past query successes and failures for each supported search engine.
The query dispatcher only selects search engines that provide compatible capabilities with
the user's query (e.g. visual features and/or keywords).

• The query translators, then, translate the user query to suitable scripts conforming to the
interfaces of the selected search engines.

• Finally, the display component uses the performance scores to merge the results from each
search engine, and displays them to the user.

MetaSEEk evaluates the quality of the results returned by each search engine based on the
user's feedback. This information is used to update the performance database. The operation of
MetaSEEk is very restricted by the interface limitations of current search engines. For
example, most existing systems can only support query by example, query by sketch, keyword
search. Results usually are just a flat list of images (with similarity scores, in some cases).

As discussed in the previous section, we envision a major transformation in multimedia search
engines thanks to the development of the MPEG-7 standard. Future systems will accept not
only queries by example and by sketch, but also queries by MPEG-7 multimedia descriptions.
Users will be able to submit desirable multimedia content (specified by MPEG-7 descriptions)
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as the query input to search engines. In return, search engines will work on a best effort basis
to provide the best search results. Search engines unfamiliar with some descriptors in the query
multimedia description may just ignore those descriptors. Others may try to translate them to
local descriptors. Furthermore, queries will result in a list of matched multimedia data as well
as their MPEG-7 descriptions. Each search engine will also make available the description
scheme of its content and maybe even proprietary code.

We envision the connection between the individual search engines and the metaseach engine to
be a path for MPEG-7 streams, which will enhance the performance of metasearch engines. In
particular, the ability of the proposed description schemes to dynamically download programs
for feature extraction and similarity matching by using linking or code embedding will open
the door to improved metasearching capabilities. Metasearch engines will use the description
schemes of each target search engine to learn about the content and the capabilities of each
search engine. This knowledge also enables meaningful queries to the repository, proper
decisions to select optimal search engines, efficient ways of merging results from different
repositories, and intelligent display of the search results from heterogeneous sources.

6. Discussion

Multimedia search and retrieval involves multiple disciplines, ranging from image processing,
computer vision, database, information retrieval, and user interfaces. The content types
contained in multimedia data can be very diverse and dynamic. This paper focuses on the
multimedia content structuring and searching at different levels. It also addresses the
interoperable representation for content description. The impact of the emerging standard,
MPEG-7, is also discussed from the perspective of developing metasearch systems.

There are many other important research issues involved in developing a successful
multimedia search and retrieval system. We briefly discuss several notable ones here. First,
user preference and relevance feedback is very important and has been used to improve the
search system performance. Many systems have taken into account user relevance feedback to
adapt the query features and retrieval models during the iterated search process
[31][32][33][34].

Secondly, content-based visual query poses a challenge due to the rich variety and high
dimensionality of features used. Most systems use techniques related to pre-filtering to
eliminate unlikely candidates in the initial stage, and to compute the distance of sophisticated
features on a reduced set of images [35]. A general discussion of issues related to high-
dimensional indexing for multimedia content can be found in [36].

Investigation of search and retrieval for other types of multimedia content has also become
increasingly active recently. Emerging search engines include those for music, audio clips,
synthetic content, and images in special domains (e.g., medical and remote sensing). Wold et al

[37] developed a search engine that matches similarities between audio clips based on the
feature vectors extracted from both the time and spectral domains. Paquet and Rioux [38]
presented a content-based search engine for 3D VRML data. Image search engines specialized
for remote sensing applications have been developed in [39][40] with focus on texture-based
search tools.
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Finally, a very challenging task in multimedia search and retrieval is performance evaluation.
The uncertainty of user need, the difficulty in obtaining the ground truth, and the lack of a
standard benchmark content set have been the main barriers to developing effective
mechanisms for performance evaluation. To address this problem, MPEG-7 recently has
incorporated the evaluation process as a mandatory part of the standard development process
[41].
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