
Multimedia Service Configuration and Reservation in Heterogeneous

Environments
�

Dongyan Xu, Duangdao Wichadakul, Klara Nahrstedt

Department of Computer Science

University of Illinois at Urbana-Champaign✁
d-xu, wichadak, klara ✂ @cs.uiuc.edu

Abstract

Widely deployed multimedia services are expected to ac-

commodate clients in a highly heterogeneous environment.

Clients of a multimedia service may vary greatly in pro-

cessing and communication capabilities. In addition, due to

workload, location, and service time differences, the avail-

ability of end-to-end resources between a client and a serv-

er may also vary. Current solutions tend to focus on either

the qualitative heterogeneity (in client and resource type-

s) or the quantitative heterogeneity (in resource availabil-

ity) problem. In this paper, we present a framework for

dynamic end-to-end multimedia service configuration and

reservation - an integrated solution to both aspects of the

heterogeneity problem. Service configuration is responsible

for choosing appropriate service components to compose

a customized service delivery to each client; while service

reservation is responsible for reserving the end-to-end re-

sources in a coordinated manner, and providing the best

possible quality within the chosen configuration. We have

implemented a prototype of this framework as part of the

2K operating system, and tested it by building a proof-of-

concept video streaming service on top of it. Our experi-

ments show the soundness of this framework.

1 Introduction

The deployment of multimedia services is becoming u-

biquitous. Clients of various capacity in a wide-area and

heterogeneous environment will all be able to access multi-

✄
This work was supported by the National Science Foundation under

contract number 9870736, the Air Force Grant under contract number

F30602-97-2-0121, National Science Foundation Career Grant under con-

tract number NSF CCR 96-23867, NSF PACI grant under contract num-

ber NSF PACI 1 1 13006, NSF CISE Infrastructure grant under contract

number NSF EIA 99-72884, NSF CISE Infrastructure grant under con-

tract number NSF CDA 96-24396, and NASA grant under contract number

NASA NAG 2-1250.

media services such as audio/video-on-demand, digital li-

brary, remote camera surveillance, and distributed visual

tracking. In this paper, we propose a systematic approach

to the provision of multimedia services in heterogeneous

environments. More specifically, we address the challenges

rising from the heterogeneity in multimedia client and serv-

er capabilities, and their end-to-end resource availabilities.

For example, clients of a multimedia service may range

from supercomputers to commodity PCs and smart hand-

held devices such as palm-tops. The network connections

between the server and clients may range from high speed

LANs to low speed dial-ups, from wireline to wireless. Fur-

thermore (and less addressed), even for clients with the

same machine type and connection type, the amounts of re-

sources available to each of them may still vary, depending

on their location, workload, and the time they make ser-

vice requests. In particular, the bottleneck resource in each

client’s resource requirement may be different. Therefore,

to deal with the heterogeneity problem, any solution that

only targets one specific type of bottleneck resource (for

example, the network) may not be effective in all situations.

We identify two co-related key issues in multimedia ser-

vice provision in heterogeneous environments: service con-

figuration and service reservation.

☎ Service configuration: how to choose appropriate ser-

vice components along the path from the multimedia

server to the client, and possibly via an intermediate

gateway, so that the service can be delivered by the se-

lected components with satisfactory end-to-end quali-

ty. Service configuration primarily deals with qualita-

tive heterogeneity in client and resource types.

☎
Service reservation: for a chosen service configura-

tion, how to properly reserve resources needed by the

service components to achieve the best possible end-

to-end QoS with resource efficiency. Service reserva-

tion should be performed in a coordinated manner due

to its distributed and multi-resource nature, and it deals

with quantitative heterogeneity in resource availability.

Most current solutions deal with only one aspect of het-

erogeneity. To integrate these solutions, we propose an

integrated multimedia service management framework for

dynamic end-to-end service configuration and reservation.

The key entity in our framework is the QoSProxy running

on each host. Every multimedia service session is set up

by the relevant QoSProxies in a two-level iterative proce-

dure, using the service configuration protocol and the ser-

vice reservation algorithm.

We have implemented a prototype of this framework as

part of the 2K system - a component-based distributed op-

erating system for the new Millennium [10]. We will show

the soundness of this framework with a CORBA-compliant

proof-of-concept video streaming service, which is able to

accommodate heterogeneous video clients (ranging from

workstations to lap-top and palm-top computers) under var-

ious resource availability conditions. Furthermore, our ex-

periments show a higher success rate for service reserva-

tions using a contention-aware resource reservation policy.

The rest of the paper is organized as follows. In Sec-

tion 2, we describe the overall architecture of the proposed

framework. In Section 3 we present the service configura-

tion protocol and the service reservation algorithm executed

by the QoSProxy. In Section 4, we describe our implemen-

tations of the framework prototype and the example video

streaming service, and evaluate their performance. Section

5 discusses related work. Section 6 concludes this paper.

2 Overall Architecture

The overall architecture of the integrated multimedia ser-

vice management framework is shown in Figure 1. The

framework encompasses service components, QoSProxies,

and resource brokers. Service components are the ba-

sic building blocks to compose multimedia services. A

QoSProxy is deployed on each host. Multiple resource bro-

kers are running on each host, one for each type of resource.

The QoSProxy interacts with the local service components

and resource brokers, as well as QoSProxies on other host-

s. The roles of these entities are described in the following

subsections.

2.1 Service Components and Configurations

Our framework encourages developers to implement a

multimedia service as reusable service components and

their combinations, rather than a single monolithic program.

A service component is a functional unit participating in a

service, and multiple components work together to deliver

a service. Furthermore, it is often possible that the same

type of service can be delivered by different combinations

of components. This is especially necessary in a heteroge-

neous environment where client capability and end-to-end

Resource Brokers

Q
o
S

P
ro

x
y

Multimedia Server

Media Gateway

Multimedia Client

CPU Disk Network

To other

Service
Config.

Service
Resv.

...

Translator

Service
Components

Import

QoSProxies

�✁��✁��✁��✁�✂✁✂✂✁✂✂✁✂
✄✁✄✄✁✄☎✁☎☎✁☎✆✁✆✝✁✝

✞✁✞✞✁✞✞✁✞✞✁✞✟✁✟✟✁✟✟✁✟
✠✁✠✁✠✠✁✠✁✠✡✁✡✁✡✡✁✡✁✡☛✁☛☞✁☞✌✌✌✌

✌✌✌✌
✍✍✍✍
✍✍✍✍

✎✎✎✎
✎✎✎✎
✏✏✏✏
✏✏✏✏

Figure 1. Overall Architecture

resources availability vary. Therefore, service configuration

is to choose the suited service components on the server, on

the client, and possibly on an intermediate gateway, in order

to deliver the service to the client with satisfactory quality.

Figure 2 shows an example of multiple service configu-

rations for the same type of service. The available service

components on the server side include
✑✓✒✕✔✖✑✘✗

and
✑✘✙

; the ser-

vice components on the clients include
✑✓✚

,
✑✜✛

, or
✑✜✢

. In ad-

dition, there is a service component
✑✜✣

on a media gateway

that may also participate in this service. The Figure shows

four possible end-to-end service configurations ✤✦✥ ✔ ✤★✧ ✔ ✤★✩ ,
and ✤✫✪ . Arrows between the components indicate the direc-

tions of the media streams. For client I, ✤ ✥ ✔ ✤ ✧ , and ✤ ✩ can

be the candidate service configurations; for client II, there

are ✤ ✥ and ✤ ✧ ; for client III, the only possibility is ✤✬✪ .

ca cb cc

Multimedia Server

cg

Media Gateway

cd

Client II

cf

Client III

cd ce

Client I

Multimedia Clients

ca cd

cb cd

cc ce

ca cg cf

Configurations:

C1:

C2:

C3:

C4:

✭✁✭✭✁✭✭✁✭✮✁✮✮✁✮✮✁✮
✯✁✯✁✯✯✁✯✁✯✰✁✰✰✁✰✱✁✱✁✱✲✁✲

✳✁✳✳✁✳✳✁✳✴✁✴✴✁✴✴✁✴
✵✁✵✁✵✵✁✵✁✵✶✁✶✶✁✶✷✁✷✁✷✸✁✸
✹✹✹✹
✹✹✹✹

✺✻✼✁✼✽

Figure 2. Example of Service Components

and Configurations

The framework also requires (and defines uniform inter-

face for) a translator to accompany each service componen-

t. The translator is responsible for translating multimedia

service quality into system level resource requirement. The

resource requirement specifies the types and quantities of

system resources needed by a service component. As will

be described in Section 2.2, translators are dynamically im-

ported by the QoSProxy, and serve as the bridge between

the service configuration and reservation tasks. Note that a

translator is highly dependent on the service component’s

implementation. For example, it is possible that the MPEG

encoder components by company X and company Y have d-

ifferent resource requirements for the same level of service

quality.

2.2 QoSProxy

The QoSProxy is the key entity in the framework. It can

be logically organized in two layers: the service configu-

ration layer for end-to-end service configuration, and the

service reservation layer for end-to-end service reservation.

2.2.1 End-to-End Service Configuration

The QoSProxy executes the service configuration protocol

to select the proper set of service components along the

end-to-end path for each service request. Each QoSProx-

y maintains a Service Component Table with information

about the registered local service components. Further-

more, the QoSProxy of each multimedia server maintains

’knowledge’ about the candidate service configurations and

the service component dependencies in each configuration.

The knowledge is stored in Configuration Tables, one table

for each type of multimedia service.

In a Configuration Table, each entry contains a depen-

dency graph for one candidate service configuration. Fur-

thermore, the Configuration Table is organized such that the

smaller the index of a candidate service configuration, the

higher the priority of its selection. Priority rankings of al-

l the candidate configurations are also part of the knowl-

edge specified by the service provider. The reasons for this

design include: (1) the service provider is more likely to

have the expertise and incentive to accommodate heteroge-

neous clients, and a server is typically dedicated to one or

just a few types of services; and (2) clients may be simple

and wish to be free from fairly complicated service man-

agement, and they may request any type of service. As a

result, the client-side QoSProxy is ’thinner’ at the service

configuration layer than the server-side QoSProxy.

2.2.2 End-to-End Service Reservation

Once a service configuration has been chosen, the server-

side QoSproxy initiates the end-to-end service reservation,

which is performed cooperatively by each QoSProxy whose

local service component(s) is in the chosen configuration.

In order to compute the resource requirement of each ser-

vice component, the QoSProxy imports the corresponding

translator of the component (as shown in Figure 1). The

QoSProxy then dispatches the translated resource require-

ment to each resource broker, which performs the individu-

al resource reservation.

2.3 Resource Broker

A resource broker is responsible for the monitoring,

reservation, and scheduling of a certain type of system re-

source. Different resource brokers have been developed in-

dependently for resources such as CPU, network, disk, and

memory. For example, the QualMan system [8] includes

QoS-aware resource brokers for CPU, network, and mem-

ory, respectively; and Cello [9] provides a disk scheduling

framework. Before any resource broker can be integrated

into our framework, it is necessary to put a thin ’wrap-

per’ outside the broker’s native interface. This allows the

QoSProxy to interact with different resource brokers using a

uniform interface. The interface includes at least the follow-

ing operations: (1) reporting current resource utilization and

availability, (2) reserving resource, (3) releasing resource,

and (4) reporting possible reservation degradation.

3 Operations in the Framework

After introducing the overall architecture, we now de-

scribe the operations within the framework, which include

the service configuration protocol and the service reserva-

tion algorithm.

3.1 Service Configuration Protocol

The service configuration protocol is executed by

QoSProxies at the service configuration layer as shown in

Figure 3. The protocol steps are as follows:

RBRB RBRB RBRB

T

T TT

RB

Service
Configuration

Service
Reservation

Multimedia
Service

Resource
Reservation

QoSProxy

Candidate list :

Media GatewayServer Client

Configuration Table

C3C2C1

(2)

(1)

(3)

(3)

(4)(4) (4)

(4)(4)(4)

(5.b)(5.b)

(5.b)

C1

C2

C3

 a b c

 a c

 a
T T

 b c

a,b,c: Service Components RB: Resource Broker T: Translator

Figure 3. Service Configuration Protocol (cur­

rent configuration is ✤ ✥)

Step (1): When a client makes a multimedia service re-

quest, the client-side QoSProxy forwards the service re-

quest to the server-side QoSProxy, together with the names

of client-side service components that may participate in

this service (for example, the set of available media play-

ers).

Step (2): The server-side QoSProxy looks up its Con-

figuration Table for the requested service, pulls out a list of

candidate service configurations, whose client-side compo-

nent matches one of the component names passed by the

client-side QoSProxy. The server-side QoSProxy chooses

head of the list as the current candidate configuration.

Step (3): The server-side QoSProxy notifies the client-

side QoSProxy of the current candidate configuration. If a

media gateway is involved in the candidate configuration,

the QoSProxy of the media gateway is also notified1.

Step (4): Each QoSProxy involved imports the transla-

tor(s) of its local service component(s) in the current config-

uration, and executes the service reservation algorithm. De-

pending on the feedback from the service reservation layer,

the protocol proceeds to either Step (5.a) or (5.b).

Step (5.a): If the service reservation algorithm fails, The

server-side QoSProxy chooses the next candidate configu-

ration from the list. If there is no more candidate, it reports

service request failure to the client-side QoSProxy; other-

wise the protocol returns to step (3).

Step (5.b): If the service reservation algorithm succeeds,

each QoSProxy will start its local service component(s) at

the contracted QoS level returned by the service reservation

algorithm.

3.2 Service Reservation Algorithm

The service reservation algorithm is executed by the

QoSProxies at the service reservation layer. The main

objectives of this algorithm are to deal with heterogene-

ity in end-to-end resources availability, and to achieve the

best end-to-end QoS within a chosen service configuration.

More specifically, the following issues need to be consid-

ered: (1) the relation between the service quality and it-

s resource requirements is non-linear, both of which are

generally expressed as partially ordered multi-dimensional

vectors; (2) the success of a service reservation depend-

s on the success of every required resource’s reservation;

and (3) any resource could become the bottleneck in multi-

resource reservations. Our solution to these issues is based

on a general QoS-aware resource model, and a contention-

aware reservation policy.

3.2.1 A QoS-Aware Resource Model

In the QoS-aware resource model, each service component✑ is associated with a pair of �✂✁☎✄ and �✝✆✟✞✡✠ - the quality of

its input and output data, respectively. �✝✁☎✄ and �✝✆✟✞✡✠ are

vectors of multiple quality parameters (however, �☛✁☞✄ and

�✝✆✟✞✡✠ may not have the same parameter list). QoS vectors

with the same parameter list can only be ranked in a partial

order. As is often the case in practice, we assume that each

1The location of the media gateway can be dynamically discovered by

MeGaDiP, a wide-area and resource-aware media gateway discovery pro-

tocol [11].

parameter takes discrete values, therefore the QoS vectors

for �✌✁☎✄ and �✝✆✟✞✡✠ are enumerable.

The translator of a service component is defined as a

function ✍ (✍✏✎✑�✌✁☎✄✓✒✔�✂✆✕✞✖✠✘✗✚✙) which computes the

required resources ✙ to achieve �☛✆✟✞✡✠ with the presence of

� ✁☞✄ .

✙✜✛✢✍✝✣✤� ✁☎✄ ✔ � ✆✟✞✡✠✦✥ (1)

where resource vector ✙✧✛✩★ ✪ ✥ ✔ ✪✓✧ ✔✖✫☞✫☎✫ ✪✭✬✯✮ , and ✪✖✰✱✣✦✲✴✳✵ ✳✷✶ ✥ is the required quantity of the mth resource. Sim-

ilarly, the resource vectors computed by the same translator

can be ranked in a partial order.

Qend-to-end

C2

=

CK

RB RB RB RB RB RB

C1

Q
1

=Q
1

Q
2 Q2 Q3

=Q
K

out in out in

out
in

RB

RB: Resource BrokerC1, C2,...CK: Service Components

Figure 4. Quality Dependencies of Service
Components in a Configuration

In this paper, we assume that the service components

in a service configuration have linear quality dependen-

cies as shown in Figure 4 (extension to the linear depen-

dencies assumption is our on-going work). The �☛✁☞✄ of✑✹✸ ✔ ✣✟✲✔✺✼✻✴✳✾✽ ✥ is the �✂✆✕✞✖✠ of ✑✹✸✭✿ ✥ . �✌✁☞✄ of ✑ ✥ is the

original quality of the source multimedia data (for exam-

ple, a stored or live video source). The �☛✆✕✞✡✠ of ✑❁❀ is the

end-to-end QoS achieved by this service configuration. For

presentation simplicity (without decreasing the problem’s

complexity), we further assume that (1) the � ✁☞✄ of ✑ ✥ takes

a single vector, i.e. the quality of the source data is fixed;

and (2) the �✝✆✟✞✡✠ vectors of ✑ ❀ can be ranked into a total

order, which reflects the client’s preferences (for example,

when two �✝✆✟✞✡✠ vectors are not comparable, the one with

shorter end-to-end delay is better).

3.2.2 A Contention-Aware Reservation Policy

Each resource needed in a service configuration may also be

requested by others, and the degree of resource contention

varies from time to time, resource to resource. We introduce

a dynamic, contention-aware resource reservation policy as

follows.

Let ✪ be the required amount of a resource computed by

a translator, and ✪ ✒❃❂ ✒ ✁☞❄ be the currently available amount of

this resource reported by the resource broker. We first define

a metrics to evaluate how ’competitive’ it is to reserve ✪
under the availability of ✪ ✒❃❂ ✒ ✁☞❄ . We choose a simple metrics❅

as follows (there are other possible metrics):

❅ ✛✢❆✭❇❉❈ ✞ ✒ ✪
✪ ✒❃❂ ✒ ✁☞❄

✔ ✣❊✪☛✳❋✪ ✒❃❂ ✒ ✁☞❄ ✥ (2)

where � and ✁ are also provided by the resource broker: ✁
is the recent average utilization of this resource and � ✣✄✂✆☎ ✥
is a resource-specific constant2. We call

❅
the contention

index. Intuitively, the larger the portion (✝✝✟✞✄✠✡✞✄☛✌☞), the less

likely the reservation will succeed with the presence of oth-

er requesters. Furthermore, the higher the recent utilization

(✁), the larger the current resource demand can be - we as-

sume an exponential increase in resource demand with the

growth of ✁ . Therefore,
❅

is a reasonable indication of the

potential contention faced by the reservation request for ✪ .

Correspondingly, for the resource vector ✙ ✛ ★ ✪ ✥ ✔ ✪ ✧ ✔✹✫☎✫☎✫ ✪ ✬ ✮
associated with a service component ✑ , let

✍ ✛ ✶✏✎✒✑ ✬✰✔✓ ✥ ❅ ✰ ✛ ✶✏✎✒✑ ✬✰✔✓ ✥ ✣✤❆ ❇✖✕ ❈ ✞ ✕ ✒ ✪ ✰
✪ ✒❁❂ ✒ ✁ ❄✰ ✥ (3)

be the contention index of ✑ . Hence, for a service config-

uration with service components ✑ ✥ ✔✖✑ ✧ ✔✹✫☎✫☞✫ ✑❁❀ , if
✍ ✸ ✔ ✣ ✻❋✛

✲ ✔✘✗ ✔✹✫☎✫☞✫ ✽ ✥ is the contention index of service component ✑✭✸ ,

then in order to minimize the end-to-end reservation con-

tention with other requesters, our contention-aware policy

is to minimize ✶✏✎✒✑ ❀✸ ✓ ✥ ✍ ✸ , under the constraint of the best

achievable end-to-end QoS by the service configuration.

c c c

Qin

Qout/Qin Qout/Qin

Qout

1 2 3

0.5

0.3

0.6

0.4

0.7

0.5

0.6

0.2

0.4

0.8

0.8

Q b

Q c

Q d

Q e

Q f

Q g

Q h

0.5

0.3

0.6

0.5

0.6

0.5

0.8

Q a

0

Figure 5. An Example of the Service Reserva­

tion Algorithm (
✍

values are shown)

We use an example to illustrate our service reservation

algorithm which is based on this policy. Figure 5 shows

a QoS-resource graph for a three-component service con-

figuration. Notice the significant representation differences

from previous Figures: here, each dotted rectangle repre-

sents a service component; each node represents a QoS vec-

tor; and each directed edge from node �✚✙ to �✜✛ represents

resource vector ✙ ✛ ✍✝✣✤�✜✙ ✔ �✜✛ ✥ . The edge for ✙ exists if

and only if ✙✏✳ ✙ ✒❃❂ ✒ ✁☞❄ , and vector ✙ ✒❃❂ ✒ ✁ ❄ represents the

available amounts of resources required by that component.

The corresponding
✍

value is the edge’s weight, as shown

in the Figure.

We can see that both � ✣
and �✚✢ are achievable end-to-

end QoS vectors, because there exist paths from node � ✒
to

2The resource broker uses ✣ to indicate the degree of sharing for this

resource. For example, a server’s CPU may have a higher ✣ than a client’s

CPU.

� ✣
and to � ✢ , and each path represents a possible reserva-

tion plan under the current resources availability. Suppose

that the client prefers � ✣
to �✜✢ , then � ✣

is the best achiev-

able QoS, and our reservation policy is reduced to the fol-

lowing problem: ”find the shortest path from � ✒
to � ✣

- if

we re-define the ’ ✤ ’ operation as the ’ ✶✏✎✥✑ ’ operation”.

Figure 5 shows such a (thicker) path. Then, backtracking

this path, resources will be reserved for each component

(from ✑ ✩ back to ✑ ✥) according to the resource vector repre-

sented by each edge on the path.

The service reservation algorithm is executed by the

QoSProxies in a distributed fashion. The computational

complexity of this algorithm is ✦ ✣❊✽★✧ ✧ ✥ , where ✽ is the

number of service components in a service configuration,

and ✧ is the maximum number of candidate QoS vectors

as the input or output quality for any service component.

For example, in Figure 5, ✧ ✛ 3, which is the number of

candidate QoS vectors as the output (input) quality for
✑ ✥

(
✑ ✧). Fortunately, ✽ and ✧ usually have fairly small values

in practice.

4 Prototype Implementation and Perfor-

mance

We have implemented a prototype of the integrated

framework as part of the 2K system - a component-based

distributed operating system for flexible configuration and

adaptive execution of distributed objects. Our prototype has

been implemented as CORBA objects.

4.1 Framework Prototype Implementation

Our prototype implementation is outlined in Figure 6.

We use the CORBA Naming, Trader, and Property Ser-

vices to organize and manage the entities in our frame-

work, including the service components, the translators, the

QoSProxies, and the resource brokers.

To demonstrate the soundness of the framework, we have

also implemented a video streaming (VS) service on top of

it. The VS clients in our testbed include workstations and

palm-top devices (3COM PalmPilot). They vary greatly in

CPU and memory capacities, and they are connected to the

VS server via network connections of different bandwidth.

Furthermore, their client-side VS components are differen-

t. The workstations are installed with one or more of the

following: a MPEG-I player, a simulated low bit-rate play-

er (called SimH261 player), or a simple bitmap player; the

palm-top we use only have the simple bitmap player. How-

ever, the VS server only has stored videos in MPEG-I for-

mat.

A QoSProxy is deployed on each host in the testbed. In

order to deal with the heterogeneity, we provide configura-

tion knowledge to the QoSProxy of the VS server. Specifi-

CORBA

Naming

Service

CORBA

Property

Service

CORBA

Trader

Service

Resource

Broker

Translator
initiate

translate

export(IOR,

Component

ServiceFactory

QoS

Service

Configurator

Q
o

S
 P

ro
x

y Q
o

S
 P

ro
x

y

Configurator

Service

Service Service

Reservation

Agent Agent

Reservation

st
ar

t

te
rm

in
at

e

component type,
properties)

q
u
er

y
(r

es
o
u
rc

e

b
ro

k
er

 o
r

co
m

p
o
n
en

t
ty

p
e,

 c
o
n
st

ra
in

t,
..

.)

ex
p
o
rt

(I
O

R
,

re
so

u
rc

e
b
ro

k
er

 t
y
p
e,

p
ro

p
er

ti
es

)

re
le

as
e

b
in

d
(t

ra
n
sl

at
o
r

n
am

e,
 I

O
R

)

re
so

lv
e(

Q
o
S

P
ro

x
y
 o

r
tr

an
sl

at
o
r

n
am

e)

b
in

d
(Q

o
S

P
ro

x
y
 n

am
e,

IO
R

)

fr
o
m

d
er

iv
ed

re
so

lv
e(

Q
o
S

P
ro

x
y
 n

am
e)

re
se

rv
e

Template

Figure 6. Framework Prototype Implemented

as CORBA Objects

cally, we fill its Configuration Table with the following can-

didate configurations:

☎ ✤✬✥ (end-to-end streaming): this configuration involves

two service components: MpegSender on the server

and MpegPlayer on the client. We apply video stream-

ing methods such as smoothing [4], buffering, and s-

elective frame dropping to achieve different levels of

QoS under various resources availability conditions.

☎ ✤ ✧ (streaming via MPEG-H.261 transcoder): this

configuration involves three service components: M-

pegSender on the server, SimH261Player on the client,

and SimMpegH261Transcoder, a simulated MPEG-to-

H.261 transcoder on a media gateway. This configura-

tion targets clients with a low bandwidth or congested

connection. Video streaming methods similar to the

ones in ✤ ✥ are also applied.

☎ ✤ ✩ (streaming via MPEG-Bitmap transcoder): this

configuration involves three service components: M-

pegSender on the server, BitmapPlayer on the clien-

t, and MpegBmpTranscoder [6] on the media gate-

way. This configuration targets clients with very limit-

ed CPU and memory (for example, the palm-top in our

testbed). There is very little buffering on the client due

to its limited memory.

Note that the streaming techniques in these service con-

figurations are not new. Our purpose here is to demonstrate

how these configurations can be organized and dynamically

selected in a systematic manner using our framework.

4.2 Performance Evaluation

We have performed a number of experiments and simula-

tions based on the prototype. The VS server in our testbed is

a Sun Ultra-2 workstation with two UltraSPARC 200MHz

processors and 256MB memory, running Solaris 2.6 oper-

ating system. The media gateway is a 266MHz Pentium II

PC with 128MB memory, running Windows NT 4.0. Each

client is either (1) a Sun Ultra-1 workstation with a Ultra-

SPARC 143Mhz processor and 128MB memory running

Solaris 2.6; or (2) a Palm III running PalmOS 3.0 with 8M-

B memory. The server and the media gateway are on the

same 10Mbps Ethernet. The palm-top is connected to the

media gateway via a serial line of 56.6kbps. One worksta-

tion client is on the same LAN as the server, and the other

workstation client is two hops away from the server3. The

video file used in the experiments is a MPEG-1 clip with a

resolution of 352x240 pixels and a recording rate of 24fps.

4.2.1 End-to-End Service Quality

We will show that our framework is able to provide very

flexible levels of end-to-end QoS to heterogeneous clients,

under various resources availability conditions. We perfor-

m the following sets of experiments, each set assuming a

different bottleneck resource. The value of � in the con-

tention index for each resource is 1.0, and we set different

✪ ✒❁❂ ✒ ✁ ❄ values of the bottleneck resource4. We load all three

player components on the workstation client two hops away

from the server. Then the client requests VS service under

different ✪ ✒❁❂ ✒ ✁ ❄ values of the bottleneck resource.

First, we assume that the bottleneck resource is the band-

width of the LAN to which the client is connected. Table 1

shows (1) the amount of available network bandwidth, (2)

the service configuration to be chosen and the QoS vector

(frame rate, end-to-end delay) computed by the service con-

figuration protocol, and (3) our measurement of the actual

service quality during the service execution.

Second, we assume that the bottleneck resource is the

CPU capacity of the client. Table 2 shows the results.

For the same frame rate, the bitmap player requires less

CPU than the simulated H.261 player, which requires less

CPU than the MPEG player. Therefore, the configuration

changes from ✤ ✥ to ✤ ✧ to ✤ ✩ , with the decrease of client

CPU capacity.

The results demonstrate wide ranges of achievable end-

to-end QoS - both within a service configuration and in dif-

ferent service configurations. Notice that the actual service

quality is more or less different from the quality comput-

ed by the service configuration protocol. The reason is that

3We are implementing a RSVP-based network broker. Currently, band-

width reservation is simulated by end-to-end measurement and flow con-

trol in our networks with light external load.
4For simplicity, we ensure that other resources are always suffi cient.

the translators we implement only use a very rough pro-

file (frame rate, average and maximum frame sizes) derived

from the source MPEG file, when computing the amounts

of required resources. Therefore, the amounts of required

resources are not accurate, affecting the actual service qual-

ity.

Available Cfg. Computed QoS Measured QoS

Bandwidth

2.5Mbps ✤ ✥ 24.0fps, 200ms 21.2fps, 178ms

1.8Mbps ✤ ✥ 24.0fps, 7.0s 22.0fps, 9.8s

1.8Mbps ✤ ✥ 16.0fps, 200ms 12.8fps, 165ms

1.0Mbps ✤ ✥ 16.0fps, 7.0s 14.4fps, 10.3s

1.0Mbps ✤ ✥ 8.0fps, 200ms 6.6fps, 159ms

0.3Mbps ✤ ✥ 8.0fps, 7.0s 8.0fps, 10.1s

64Kbps ✤★✧ 24.0fps, 280ms 21.3fps, 228ms

32Kbps ✤ ✧ 24.0fps, 12.0s 21.5fps, 17.4s

32Kbps ✤ ✧ 16.0fps, 280ms 14.0fps, 213ms

32Kbps ✤★✩ 8.0fps, 250ms 6.4fps, 197ms

16Kbps ✤ ✩ 4.0fps, 250ms 4.0fps, 193ms

Table 1. Multiple End­to­End QoS Levels with

Different Bandwidth

Available Cfg. Computed QoS Measured QoS

CPU

80 � ✤ ✥ 24.0fps, 200ms 24.0fps, 172ms

60 � ✤ ✥ 16.0fps, 200ms 14.8fps, 152ms

40 � ✤ ✥ 8.0fps, 200ms 8.0fps, 180ms

40 � ✤★✧ 24.0fps, 280ms 24.0fps, 218ms

25 � ✤ ✧ 16.0fps, 280ms 15.6fps, 252ms

15 � ✤★✧ 8.0fps, 280ms 8.0fps, 193ms

10 � ✤ ✩ 8.0fps, 250ms 8.0fps, 200ms

5 � ✤ ✩ 4.0fps, 250ms 4.0fps, 198ms

Table 2. Multiple End­to­End QoS Levels with

Different Client CPU

4.2.2 Service Reservation Success Rate

In this section, we evaluate the success rate of end-to-end

service reservations achieved by the service reservation al-

gorithm. Unlike the previous section which evaluates per-

formance from the point of view of an individual client, we

evaluate the success rate of service reservations in the pres-

ence of multiple clients. Due to the total resources limita-

tion in our testbed, the results in this section are obtained

from simulation.

We simulate the simple scenario which involves one

server, one gateway, and multiple clients. We assume that

all clients’ service requests are configured using the same

configuration, which includes service components ✑ ✥ on the

server, ✑ ✧ on the gateway, and ✑ ✩ on each client. The QoS-

resource graph for this configuration is shown in Figure 7.

For simplicity, we assume that each service component on-

ly requires one single resource. Each value in brackets by

the edge is the required amount of resource for the corre-

sponding ✣✤�✂✁☎✄ ✔ �✂✆✕✞✡✠ ✥ pair. The total amount of resource on

the server is 800 units, with an � value of 2 and an ini-

tial utilization of 75 � ; the total amount of resource on the

gateway is 300 units, with an � value of 1 and an initial

utilization of 50 � ; and the total amount of resource on each

client is 1 unit, with an � value of 0.1 and an initial uti-

lization of 0 � . Each client makes one service request to the

server. The request time is uniformly distributed within an

one minute period starting from time 0. We also assume that

for each client, right before it makes the service request, a

background task will begin to run with a 0.5 probability, and

the amount of resource it occupies is uniformly distributed

between 0.25 and 0.75 unit. We assume the worst case that

during the one-minute period, no resource is released on the

server, gateway, or client.

Qin

Qout/Qin Qout/Qin

c
1

at the server c
2
at the gateway c

3
at each client

Q a

Q
b

Q c

Q d

Q e

Q
f[0.5]

[1.2]

[0.4]

[0.8]

[1.0]

QoutQ g

[0.5]

[0.3]

[2.5]

[1.5]

[x]: Amount of Resource Required

Figure 7. QoS­resource Graph of the Simulat­

ed Configuration

Figure 8 shows the success rate of service reservations

with increasing number of clients. We compare our service

reservation algorithm based on the contention-aware reser-

vation policy, and a ’random’ algorithm which randomly s-

elects a reservation plan among all the paths in Figure 7.

The results show that by using the contention-aware policy,

our service reservation algorithm constantly achieves higher

success rate than the random algorithm.

5 Related Work

There have been research works on the issue of support-

ing multimedia services in heterogeneous environments.

Most of the proposed solutions fall into one of the follow-

ing categories: (1) performing quality adaptation within the

same service configuration, by providing service compo-

nents with adaptive techniques (such as layered media [7],

or feedback-based control [2]); and (2) employing differen-

20

30

40

50

60

70

80

90

100

110

0 50 100 150 200 250 300

S
uc

ce
ss

 R
at

e
of

 S
er

vi
ce

 R
es

er
va

tio
ns

 (
%

)

Number of Service Requests

Service Reservation Algorithm
Random Algorithm

Figure 8. Service Reservation Success Rate

t service components (for example, media transcoders [1])

to adapt to network and client variability. Solutions in the

first category primarily deal with quantitative heterogene-

ity, while solutions in the second category are more con-

cerned about qualitative heterogeneity. In this paper, we

introduce a general framework integrating the solutions in

both categories, instead of proposing another specific solu-

tion. Furthermore, our framework does not assume a spe-

cific resource as the bottleneck resource.

Our framework takes one step up from resource manage-

ment to end-to-end service management. Like a resource, a

multimedia service can be configured and reserved as a w-

hole. In the Darwin project [3], the concept of value-added

service is suggested, and an application-oriented and hierar-

chical service brokerage architecture is introduced. Howev-

er, it focuses more on composing sophisticated value-added

service, rather than dealing with heterogeneity in multime-

dia service provision. In addition, unlike our service reser-

vation algorithm, the Beagle signaling protocol in Darwin is

not contention-aware. In [5], the concept of open binding is

introduced for the implementation of resource and service

management mechanisms for adaptive multimedia applica-

tions. However, as a meta-framework, open binding itself

does not provide any multimedia service management pro-

tocol or algorithm, contrary to our framework.

In this paper, we have focused on a reservation-based

environment, where each type of resource can be reserved.

Such an environment has become more available, with the

development of resource management and resource broker-

age techniques (for example, the real-time extension to gen-

eral OS, and the differentiated service on the Internet). On

the other hand, in [12], we also study multimedia service

configuration without assuming a reservation-based envi-

ronment.

6 Conclusion

We have presented an integrated framework for end-

to-end multimedia service configuration and reservation in

a heterogeneous environment. QoSProxy, the key entity

in the framework, interacts with both the application lev-

el multimedia service components and the underlying re-

source brokers, in order to provide heterogeneous clients

with the best possible end-to-end QoS. We have described

the executions of (1) the service configuration protocol,

which selects the best suited service configuration for each

individual client; and (2) the service reservation algorithm,

which reserves end-to-end resources in a coordinated and

contention-aware manner for a chosen service configura-

tion. We have also presented experimental results obtained

from our implementation of the framework’s prototype, as

well as a proof-of-concept video streaming service built on

top of it. The results show that our framework is able to

provide heterogeneous clients with a wide range of service

quality choices under different resources availability condi-

tions. Furthermore, service reservations enjoy high success

rate.

References

[1] E. Amir, S. McCanne, and H. Zhang. An application lev-

el video gateway. Proceedings of ACM Multimedia’95,

November 1995.

[2] S. Cen, C. Pu, and J. Walpole. Flow and congestion con-

trol for Internet streaming applications. Proceedings of

SPIE/ACM MMCN’98, January 1998.

[3] P. Chandra, A. Fisher, C. Kosak, T. Ng, P. Steenkiste,

E. Takahashi, and H. Zhang. Darwin: Resource manage-

ment for value-added customizable network service. Pro-

ceedings of IEEE ICNP’98, October 1998.

[4] W. Feng and J. Rexford. Performance evaluation of smooth-

ing algorithms for transmitting prerecorded VBR video.

IEEE Trans. on Multimedia, September 1999.

[5] T. Fitzpatrick, G. Blair, G. Coulson, N. Davis, and P. Robin.

Supporting adaptive multimedia applications through open

bindings. Proceedings of International Conference on Con-

fi gurable Distributed Systems, May 1998.

[6] C. Hess, D. Raila, R. Campbell, and D. Mickunas. Design

and performance of MPEG video streaming to palmtop com-

puters. Proceedings of SPIE/ACM MMCN 2000, January

2000.

[7] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven

layered multicast. Proceedings of ACM SIGCOMM’96, Au-

gust 1996.

[8] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware resource

management for distributed multimedia applications. Jour-

nal of High Speed Networks, 7(3), 1998.

[9] P. Shenoy and H. Vin. A disk scheduling framework for nex-

t generation operating systems. Proceedings of ACM SIG-

METRICS’98, June 1998.

[10] The 2K Team. The 2k project. http://choices.cs.uiuc.edu/2K.

[11] D. Xu, K. Nahrstedt, and D. Wichadakul. MeGaDiP: a

wide-area media gateway discovery protocol. Proceedings

of IEEE IPCCC 2000, February 2000.

[12] D. Xu, D. Wichadakul, and K. Nahrstedt. Resource-aware

confi guration of ubiquitous multimedia services. In submis-

sion.

