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Abstract

MULTIMLTON is an extension of the MLton compiler and runtime system that targets scalable,

multicore architectures. It provides specific support for ACML, a derivative of Concurrent ML that

allows for the construction of composable asynchronous events. To effectively manage asynchrony,

we require the runtime to efficiently handle potentially large numbers of lightweight, short-lived

threads, many of which are created specifically to deal with the implicit concurrency introduced by

asynchronous events. Scalability demands also dictate that the runtime minimize global coordination.

MULTIMLTON therefore implements a split-heap memory manager that allows mutators and collec-

tors running on different cores to operate mostly independently. More significantly, MULTIMLTON

exploits the premise that there is a surfeit of available concurrency in ACML programs to realize

a new collector design that completely eliminates the need for read barriers, a source of significant

overhead in other managed runtimes. These two symbiotic features - a thread design specifically

tailored to support asynchronous communication, and a memory manager that exploits lightweight

concurrency to greatly reduce barrier overheads - are MULTIMLTON’s key novelties. In this article,

we describe the rationale, design, and implementation of these features, and provide experimental

results over a range of parallel benchmarks and different multicore architectures including an 864

core Azul Vega 3, and a 48 core non-coherent Intel SCC (Single-Cloud Computer), that justify our

design decisions.

1 Introduction

Functional languages have long been viewed as particularly well-suited for expressing

concurrent computation, and there has been much work over the years on building par-

allel implementations (McKay & Shapiro, 1980; Goldman & Gabriel, 1988; Miller, 1988;

Feeley & Miller, 1990; Raymond, 2000) of these languages. This is because (a) first-

class procedures and expression-oriented syntax make it convenient to express concurrent

threads of control, (b) the availability of advanced control structures like continuations

make it straightforward to define and experiment with different kinds of user-level thread
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schedulers and concurrency structures, and (c) the lack of pervasive side-effects simplifies

reasoning, facilitates optimizations, and reduces synchronization costs. On the other hand,

because it is so easy to create and manipulate threads, the cost of concurrency management

is often obscured and hidden from programmers. Implementations are typically burdened

with having to deal with large numbers of dynamically created threads, with little guaran-

tees that the cost to create these threads is amortized by the computation they perform.

In this article, we consider two specific design strategies to enable more efficient and

scalable runtime systems for such languages. The first defines a thread management and

scheduling infrastructure geared towards the creation of new threads of control only when

the computation to be performed is sufficiently substantial to warrant it. The second con-

siders a new memory management design intended to reduce coordination costs between

mutators and collectors operating in a multicore environment. Our design exploits the

observation that functional programs often reveal a surfeit of concurrency, which can be

exploited to eliminate memory management overheads introduced by mechanisms such as

read barriers to track forwarding pointers.

The context of our investigation is MULTIMLTON, a multicore-aware extension of the

MLton (2012) whole-program optimizing compiler and runtime for Standard ML.

MULTIMLTON supports a programming model that exposes opportunities for fine-grained

concurrency in which threads primarily communicate via message-passing. This model

assumes an underlying logical shared heap that allows references (rather than deep copies)

of heap-allocated data to be directly communicated in messages. A functional program-

ming discipline, combined with explicit communication via messages (rather than implicit

communication via shared-memory) offers an enticingly attractive programming model,

but, as alluded to above, also introduces numerous challenges for realizing efficient imple-

mentations.

In the ML family of languages, Concurrent ML (CML) (Reppy, 2007), a synchronous

message-passing dialect of ML, is a well-studied instantiation that provides event combina-

tors, which can be used to construct sophisticated synchronous communication protocols.

MULTIMLTON additionally provides support for ACML (Ziarek et al., 2011), an exten-

sion of CML that supports asynchronous events and the construction of heterogeneous

protocols, which mix synchronous and asynchronous communication. Asynchrony can be

used to mask communication latency by splitting the creation of a communication action

from its consumption. An asynchronous action is created when a computation places a

message on a channel (e.g., in the case of a message send), and is consumed when it is

matched with its corresponding action (e.g., the send is paired with a receive); the creating

thread may perform arbitrarily many actions before the message is consumed. In contrast,

synchronous message-passing obligates the act of placing a message on a channel and

the act of consuming it to take place as a single atomic action. Supporting composable

asynchronous protocols in the spirit of CML’s synchronous event combinators necessarily

entails the involvement of two distinct, abstract threads of control – the thread that creates

the asynchronous action, and the thread that discharges it. The latter thread is implicit, and

requires careful treatment by the runtime to ensure that efficiency is not compromised.

Having to contend with a large number of threads also imposes additional strain on

memory management. The scalability demands on multicore processors suggest that the

task of memory management should be distributed across all of the available cores. One
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way to achieve this is to split the program heap among the different cores, allowing each

such heap to be managed independently. However, messages sent by threads from one core

to another may include references to heap-allocated data accessible to the sender, but not

the receiver. To retain SML semantics, such data must be copied to a global heap whose

objects are directly available to all threads. The cost of checking whether a reference is

local or global is non-trivial, requiring a barrier on every read.

To overcome these challenges, MULTIMLTON provides a number of new language and

runtime abstractions and mechanisms, whose design, rationale, and implementation are the

primary focus and contribution of this paper. Specifically,

1. We present ACML, an extension of CML that allows the definition of composable

asynchronous operators, which is the primary programming model supported by

MULTIMLTON.

2. We introduce the design and implementation of parasites, a runtime thread man-

agement mechanism intended to reduce the cost of supporting asynchrony. As the

name suggests, parasites live on host threads, and enable efficient sharing of thread

resources. In the fast path, when parasites do not block (i.e., when they perform

synchronous communication where a partner exists, perform asynchronous com-

munication, or purely functional computation), they only incur the overhead of a

non-tail function call, and do not entail the creation of a new thread object. In the

slow path, a parasite can be inflated to a full-blown thread if the computation or

communication actions it performs would merit their execution as a separate thread

of control.

3. A new garbage collector design tuned for ACML that obviates the need for read

barriers. Conceptually, a thread performing an operation that would trigger lifting

a local object to the shared heap is stalled, an operation we call procrastination,

with the garbage collector suitably informed. Existing references to this object are

properly repaired during the next local collection, thereby eliminating forwarding

pointers, and the read barriers that check for them. A new object property called

cleanliness enables a broad class of objects to be moved from a local to a shared

heap without requiring a full traversal of the local heap to fix existing references;

cleanliness serves as an important optimization that achieves the effect of procrasti-

nation without actually having to initiate a thread stall.

4. A detailed performance study is provided to quantify the impact of the

MULTIMLTON runtime, especially with respect to the use of parasites and procras-

tination. This study is undertaken across a number of widely different multicore

designs, including an 864 core Azul Vega 3, a 48 core Intel non-coherent Single-

chip Cloud Computer (SCC), and a 48 core AMD-based coherent NUMA system.

The paper is organized as follows. In the next section, we give an informal description

of ACML. Section 3 discusses the implementation of asynchrony in terms of parasites.

Section 4 describes MULTIMLTON’s GC design, providing details of procrastination and

cleanliness. Section 5 quantifies the effectiveness of the runtime over a range of parallel

benchmarks. Section 6 presents related work. Conclusions are given in Section 7.
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spawn : (unit -> ’a) -> threadID

sendEvt : ’a chan * ’a -> unit Event

recvEvt : ’a chan -> ’a Event

alwaysEvt : ’a -> ’a Event

never : ’a Event

sync : ’a Event -> ’a

wrap : ’a Event * (’a -> ’b) -> ’b Event

guard : (unit -> ’a Event) -> ’a Event

choose : ’a Event list -> ’a Event

Fig. 1. CML event operators.

2 ACML

In this section, we will provide an overview of the source language of MULTIMLTON,

ACML, which allows asynchronous computations to be managed composably. This section

motivates the need to effectively manage asynchrony in the runtime system on scalable

multicore architectures.

2.1 Background: concurrent ML

Context: The programming model supported by MULTIMLTON is based on message-

passing, and is heavily influenced by Concurrent ML (CML), a concurrent extension of

Standard ML that utilizes synchronous message passing to enable the construction of

synchronous communication protocols. Threads perform send and recv operations on

typed channels; these operations block until a matching action on the same channel is

performed by another thread.

CML also provides first-class synchronous events that abstract synchronous message-

passing operations. An event value of type ’a Event when synchronized on yields a value

of type ’a . An event value represents a potential computation, with latent effect until a

thread synchronizes upon it by calling sync . The following equivalences thus therefore

hold: send(c, v) ≡ sync(sendEvt(c,v)) and recv(c) ≡ sync(recvEvt(c)) .

Notably, thread creation is not encoded as an event – the thread spawn primitive simply

takes a thunk to evaluate as a separate thread, and returns a thread identifier that allows

access to the newly created thread’s state.

Besides sendEvt and recvEvt , there are other base events provided by CML. The

never event, as its name suggests, is never available for synchronization; in contrast,

alwaysEvt is always available for synchronization. These events are typically generated

based on the (un)satisfiability of conditions or invariants that can be subsequently used to

influence the behavior of more complex events built from the event combinators described

below. Much of CML’s expressive power derives from event combinators that construct

complex event values from other events. We list some of these combinators in Figure 1. The

expression wrap (ev, f) creates an event that, when synchronized, applies the result of

synchronizing on event ev to function f . Conversely, guard(f) creates an event that,

when synchronized, evaluates f() to yield event ev and then synchronizes on ev . The

choose event combinator takes a list of events and constructs an event value that represents

the non-deterministic choice of the events in the list; for example:
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sync(choose[recvEvt(a),sendEvt(b,v)])

will either receive a unit value from channel a , or send value v on channel b . Selec-

tive communication provided by choose motivates the need for first-class events. We

cannot, for example, simply build complex event combinators using function abstraction

and composition because function closures do not allow inspection of the encapsulated

computations, a necessary requirement for implementing combinators like choose .

2.2 Asynchronous events

While simple to reason about, synchronous events impose non-trivial performance penal-

ties, requiring that both parties in a communication action be available before allowing

either to proceed. To relax this condition, we wish to allow the expression of asynchronous

composable events.

An asynchronous operation initiates two temporally distinct sets of actions. The first

defines post-creation actions – these are actions that must be executed after an asyn-

chronous operation has been initiated, without taking into account whether the effects of

the operation have been witnessed by its recipients. For example, a post-creation action of

an asynchronous send on a channel might initiate another operation on that same channel;

the second action should take place with the guarantee that the first has already deposited

its data on the channel. The second are post-consumption actions – these define actions that

must be executed only after the effect of an asynchronous operation has been witnessed.

For example, a post-consumption action might be a callback that is triggered when the

client retrieves data from a channel sent asynchronously. These post-consumption actions

take place within an implicit thread of control responsible for completing the asynchronous

operation.

ACML introduces first-class asynchronous events with the following properties: (i) they

are extensible both with respect to pre- and post-creation as well as pre- and post-

consumption actions; (ii) they can operate over the same channels that synchronous events

operate over, allowing both kinds of events to seamlessly co-exist; and, (iii) their visi-

bility, ordering, and semantics is independent of the underlying runtime and scheduling

infrastructure.

2.2.1 Base events

In order to provide primitives that adhere to the desired properties outlined above, we

extend CML with a new asynchronous event type (’a,’b) AEvent and the following

two base events: aSendEvt and aRecvEvt , to create an asynchronous send event and

an asynchronous receive event, respectively. The differences in their type signature from

their synchronous counterparts reflect the split in the creation and consumption of the

communication action they define:

sendEvt : ’a chan * ’a -> unit Event

recvEvt : ’a chan -> ’a Event

aSendEvt : ’a chan * ’a -> (unit , unit) AEvent

aRecvEvt : ’a chan -> (unit , ’a) AEvent



6 K. C. Sivaramakrishnan et al.

An AEvent value is parameterized with respect to the type of the event’s post-creation

and post-consumption actions. In the case of aSendEvt , both actions yield unit : when

synchronized on, the event immediately returns a unit value and places its ’a argument

value on the supplied channel. The post-consumption action also yields unit . When

synchronized on, an aRecvEvt returns unit ; the type of its post-consumption action

is ’a reflecting the type of value read from the channel when it is paired with a send.

The semantics of both asynchronous send and receive guarantees that successive com-

munication operations performed by the same thread get witnessed in the order in which

they were issued. In this respect, an asynchronous send event shares functionality with a

typical non-blocking send of the kind found in languages like Erlang (Armstrong et al.,

1996; Svensson et al., 2010) or libraries like MPI (Li et al., 2008). However, an asyn-

chronous receive does not exhibit the same behavior as a typical non-blocking receive.

Indeed, CML already provides polling methods that can be used to implement polling loops

found in most non-blocking receive implementations. The primary difference between the

two is that an asynchronous receive places itself on the channel at the point where it is

synchronized (regardless of the availability of a matching send), while a non-blocking

receive typically only queries for the existence of a value to match against, but does

not alter the underlying channel structure. By actually depositing itself on the channel,

an asynchronous receive thus provides a convenient mechanism to implement ordered

asynchronous buffers or streams – successive asynchronous receives are guaranteed to

receive data from a matching send in the order in which they were synchronized.

2.2.2 Event combinators

Beyond these base events, ACML also provides a number of combinators that serve as

asynchronous versions of their CML counterparts. These combinators enable the extension

of post-creation and post-consumption action of asynchronous events to create more com-

plex events, and allow transformation between the synchronous and asynchronous events.

wrap : ’a Event * (’a -> ’b) -> ’b Event

sWrap : (’a, ’b) AEvent * (’a -> ’c) -> (’c, ’b) AEvent

aWrap : (’a, ’b) AEvent * (’b -> ’c) -> (’a, ’c) AEvent

guard : (unit -> ’a Event) -> ’a Event

aGuard : (unit -> (’a, ’b) AEvent) -> (’a, ’b) AEvent

choose : ’a Event list -> ’a Event

aChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent

sChoose : (’a, ’b) AEvent list -> (’a, ’b) AEvent

aTrans : (’a, ’b) AEvent -> ’a Event

sTrans : ’a Event -> (unit , ’a) AEvent

Similar to CML wrap combinator, sWrap and aWrap extend the post-consumption

and post-creation actions of an asynchronous event, respectively. aGuard allows cre-

ation of a guarded asynchronous event. sChoose is a blocking choice operator which

blocks until one of the asynchronous base events has been consumed. aChoose is a non-

blocking variant, which has the effect of non-deterministically choosing one of the base
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c
v

post creation

actions

aSync(ev)
ev

Thread 1 Thread 2

c

v recv(c)

Implicit Thread

post consumption

actions

(a) (b)

Fig. 2. The figure shows a complex asynchronous event ev , built from a base aSendEvt , being

executed by Thread 1. When the event is synchronized via aSync , the value v is placed on channel

c and post-creation actions are executed (see (a)). Afterwards, control returns to Thread 1. When

Thread 2 consumes the value v from channel c , an implicit thread of control is created to execute

any post-consumption actions (see (b)).

asynchronous events if none are available for immediate consumption. Finally, aTrans

and sTrans allow transformation between the synchronous and asynchronous variants.

In order to keep this paper focused on the runtime system aspects of MULTIMLTON, the

further details of these combinators have been elided. Full description of these combinators

along with their formal semantics is available in Ziarek et al. (2011).

2.2.3 Event synchronization

sync : ’a Event -> ’a

aSync : (’a, ’b) AEvent -> ’a

We also introduce a new synchronization primitive: aSync , to synchronize

asynchronous events. The aSync operation fires the computation encapsulated by the

asynchronous event of type (’a, ’b) AEvent , returns a value of type ’a , corresponding

to the return type of the event’s post-creation action. Unlike their synchronous variants,

asynchronous events do not block if no matching communication is present. For example,

executing an asynchronous send event on an empty channel places the value being sent

on the channel and then returns control to the executing thread (see Figure 2(a)). In order

to allow this non-blocking behavior, an implicit thread of control is created for the asyn-

chronous event when the event is paired, or consumed as shown in Figure 2(b). If a receiver

is present on the channel, the asynchronous send event behaves similarly to a synchronous

event; it passes the value to the receiver. However, a new implicit thread of control is still

created to execute any post-consumption actions.

Similarly, the synchronization of an asynchronous receive event does not yield the value

received (see Figure 3); instead, it simply enqueues the receiving action on the channel.
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c

post creation

actions

aSync(ev)
ev

Thread 1 Thread 2

c

v send(c, v)

Implicit Thread

post consumption

actions

(a) (b)

recv

v

v

Fig. 3. The figure shows a complex asynchronous event ev , built from a base aRecvEvt , being

executed by Thread 1. When the event is synchronized via aSync , the receive action is placed on

channel c and post-creation actions are executed (see (a)). Afterwards, control returns to Thread 1.

When Thread 2 sends the value v to channel c , an implicit thread of control is created to execute

any post-consumption actions passing v as the argument (see (b)).

Therefore, the thread that synchronizes on an asynchronous receive always gets the value

unit, even if a matching send exists. The actual value consumed by the asynchronous

receive can be passed back to the thread which synchronized on the event through the use

of combinators that process post-consumption actions. This is particularly well suited to

encode reactive programming idioms: the post-consumption actions encapsulate a reactive

computation.

To illustrate the differences between synchronous and asynchronous primitive events,

consider the two functions f and af shown below:

1 fun f () =

2 (spawn (fn () => sync (sendEvt(c, v)));

3 sync (sendEvt(c, v’));

4 sync (recvEvt(c)))

5 fun af () =

6 (spawn (fn () => sync (sendEvt(c, v)));

7 aSync (aSendEvt(c, v’));

8 sync (recvEvt(c)))

The function f will block if there is no recipient available for the send on line 3. Suppose

there was a receiver thread, say rt , available to receive on channel c . Let us also assume

that the program has no additional threads. Due to non-determinism, the sends on line 2

and 3 are both equally viable to match with the receive on rt . If the send on line 3 matched

with the receive on rt , then the send on line 2 can match with the receive on line 4, and

the control returns from the function f . On the other hand, if the receive on rt matches

with the send on line 2, the function f will block at line 3, waiting for a matching receive.

Unlike the function f , the function af will not block, even if a receiver thread rt is not

available. The receive on line 8 may see either the value v or v’ , since the asynchronous
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send event (line 7) only asserts that the value v’ has been placed on the channel and not

that it has been consumed. If we swapped lines 6 and 7, the receive operation on line 8 is

guaranteed to read v’ . While asynchronous events do not block, they still enforce ordering

constraints that reflect the order in which they were synchronized.

The definition of ACML’s base events involves the creation of an implicit thread of

control used to handle the completion of the asynchronous action, evaluating any post-

consumption actions associated with the asynchronous event. A scalable and efficient

runtime system for ACML must ensure that the cost to manage these implicit threads is not

prohibitive, especially given the likely possibility that there may be no post-consumption

actions to execute. In the following section, we describe parasites, a runtime-managed data

structure that can be used to implement extremely cheap threads, useful for precisely this

purpose.

3 Parasitic threads

In this section, we focus on the parasitic threading system of MULTIMLTON

(Sivaramakrishnan et al., 2010), which is specifically suited for implementing the implicit

thread creation involved in the synchronization of an asynchronous event. We first de-

scribe the baseline threading system of MULTIMLTON– an n over m threading system that

leverages potentially many lightweight (language level) threads multiplexed over a single

kernel thread – and illustrate why lightweight threads might not be best suited to implement

the implicit threads created by asynchronous events. We then describe parasitic threads

and their implementation in MULTIMLTON, focusing on their utility in the realization of

implicit thread creation and management.

3.1 Lightweight threads and scheduler

MULTIMLTON’s runtime system is built on top of lightweight, user-level threads. The user-

level thread scheduler is in turn implemented using the MLton.Thread (MLton, 2012) li-

brary, which provides one-shot continuations. MLton.Thread uses a variation of Brugge-

man et al.’s (1996) strategy for implementing one-shot continuations. A MLton.Thread

is a lightweight data structure that represents a paused computation, and encapsulates

the metadata associated with the thread as well as a stack. The stack associated with the

lightweight thread is allocated on the heap, and is garbage collected when the correspond-

ing thread object is no longer reachable.

Unlike Bruggeman et al.’s use of linked stack segments, the stack layout is contiguous in

MULTIMLTON. We utilize contiguous stack layout in order to avoid the hot-split problem,

where an out of stack function call may be invoked repeatedly in a tight-loop, forcing

allocation of a new segment, which is immediately freed upon return. Even if the stack

segments were cached, the performance tends to be unpredictable as seen in other concur-

rent, garbage collected language runtimes such as Go (Hot-Split, 2013) and Rust (Stack

Thrashing, 2013). On stack overflow, a larger stack segment is allocated on the heap, the

old stack frames are copied to this new segment, and the old stack segment is garbage

collected.
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As such, MLton.Thread does not include a default scheduling mechanism. Instead,

MULTIMLTON builds a preemptive, priority supported, run-queue based, multicore-

capable scheduler using MLton.Thread . Building multicore schedulers over continua-

tions in this way is not new, first described by Wand (1980), and successfully emulated by

a number of modern language implementations (Auhagen et al., 2011; GHC, 2014).

Implementing MULTIMLTON’s threading system over one-shot continuation as opposed

to full-fledged (multi-shot) continuations greatly reduces the cost of the thread and sched-

uler implementation. In particular, if full-fledged continuations were used to implement the

scheduler, then during every thread switch, a copy of the current thread would have to be

made to reify the continuation. This is, in our context, unnecessary since the current stack

of the running thread (as opposed to the saved stack in the continuation), will never be

accessed again. One-shot continuations avoid copying the stack altogether; during a thread

switch, a reference to the currently running thread is returned to the programmer. The result

is a very efficient baseline scheduler.

Lightweight threads are garbage collected when no longer reachable. MULTIMLTON’s

threading system multiplexes many lightweight thread on top of a few operating system

threads. Each kernel thread represents a virtual processor and one kernel thread is pinned

to each processor. The number of kernel threads is determined statically and is specified

by the user; they are not created during program execution.

3.2 Asynchrony through lightweight threads

Lightweight threads provide a conceptually simple language mechanism for achieving

asynchrony. Threads, unlike specialized asynchronous primitives, are general purpose: they

act as vessels for arbitrary computation. Unfortunately, harnessing threads for asynchrony

typically comes at a cost. Instead of utilizing threads where asynchrony could be concep-

tually leveraged, one must often reason about whether the runtime cost of managing the

thread may outweigh the benefit of performing the desired computation asynchronously.

We can loosely categorize the cost of running lightweight threads into three groups:

• Synchronization costs: The creation of a burst of lightweight threads within a short

period of time increases contention for shared resources such as channels and sched-

uler queues.

• Scheduling costs: Besides typical scheduling overheads, the lightweight threads that

are created internally by the asynchronous primitive might not be scheduled prior to

threads explicitly created by the programmer. In such a scenario, the completion of

a primitive, implicitly creating threads for asynchrony, is delayed. In the presence of

tight interaction between threads, such as synchronous communication, if one of the

threads is slow, progress is affected in all of the transitively dependent threads.

• Garbage collection costs: Creating a large number of threads, especially in bursts,

increases allocation burden and might subsequently trigger a collection. This prob-

lem becomes worse in a parallel setting, when multiple mutators might be allocating

in parallel.

It is precisely for this reason that specialized primitives for asynchrony are typically the

de facto standard for most programming languages.
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3.3 Characteristics of implicit threads

It is worthwhile to first consider the unique properties of implicit post-consumption ac-

tions in ACML, which are created as a result of synchronizing on an asynchronous event

(referred to as implicit threads in the sequel). These characteristics are the reason why

full-fledged lightweight threads are not the best vehicle for implementing implicit threads.

From these characteristics, we derive a set of requirements, which motivates our design.

Communication-intensive: Implicit threads arising out of asynchronous events are typ-

ically communication intensive i.e., the computations encapsulated in post-consumption

actions are small when compared to the communication actions performed by threads. The

typical case is synchronization on a base asynchronous event that is readily available to

match, without any post-consumption action wrapped to it. In such a scenario, it would be

completely unnecessary to create the implicit thread in the first place.

Requirement 1. The cost of creation of an implicit thread should be much

cheaper than explicit threads.

High probability of blocking: However, there is some chance that the implicit thread will

block on a communication. In general, it is difficult to assert if an asynchronous action

will block when synchronized. If we polled for satisfiability, the state of the system might

change between polling and actual synchronization. In addition, the asynchronous action

might be composed of multiple blocking sub-actions, not all of which might expose polling

mechanisms.

Requirement 2. Implicit threads should have the ability to be efficiently

blocked and resumed.

Might be long-lived: Post-consumption actions do not impose any restriction on the en-

capsulated computation, and might well be a very long-lived, computation-intensive activ-

ity. In this case, we need to be able to exploit the availability of multiple processing cores

at our disposal. Thus, the new threading mechanism must be able to adapt for long running

computations and multi-core exploitation.

Requirement 3. Implicit threads should have the ability to be reified into

full-fledged threads.

3.4 Parasitic threads

With the aim of satisfying these requirements, the MULTIMLTON runtime system supports

a new threading mechanism that is well suited to encapsulate the implicit threads created

by asynchronous actions. Our runtime supports two kinds of threads: hosts and parasites.

Host threads map directly to lightweight threads in the runtime. Parasitic threads can

encapsulate arbitrary computation, just like host threads. However, unlike a regular thread,
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Fig. 4. Blocking and unblocking of parasitic threads.

a parasitic thread executes using the execution context of the host that creates the parasite;

it is intended primarily to serve as the execution vehicle for asynchronous actions.

Parasitic threads are implemented as raw frames living within the stack space of a given

host thread. A host thread can hold an arbitrary number of parasitic threads. In this sense,

a parasitic thread views its host in much the same way as a user-level thread might view a

kernel-level thread that it executes on. A parasite is suspended when it performs a blocking

action (e.g., a synchronous communication operation, or I/O). Such a suspended parasite

is said to have been reified. Reified parasites are represented as stack objects on the heap.

Reified parasites can resume execution once the conditions that had caused it to block no

longer hold. Thus, parasitic threads are not scheduled using the language runtime; instead

they self-schedule in a demand-driven style based on flow properties dictated by the actions

they perform.

Figure 4 shows the steps involved in a parasitic communication, or blocking event, and

we illustrate the interaction between the parasitic threads and their hosts. The host threads

are depicted as rounded rectangles, parasitic threads are represented as blocks within their

hosts, and each processor as a queue of host threads. The parasite that is currently executing

on a given host and its stack is represented as a block with solid edges; other parasites are

represented as blocks with dotted edges. Reified parasites are represented as shaded blocks.

Host threads can be viewed as a collection of parasitic threads all executing within the

same stack space. When a host thread is initially created it contains one such computation,

namely the expression it was given to evaluate when it was spawned.

Initially, the parasite S1 performs a blocking action on a channel or event, abstractly de-

picted as a circle. Hence, S1 blocks and is reified. The thread T1 that hosted S1 continues

execution by switching to the next parasite S2 . S1 becomes runnable when it is unblocked.

Part 2 of the figure shows the parasite R1 on the thread T2 invoking an unblocking action.
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type ’a par

type ready_par

val spawnParasite : (unit -> unit) -> unit

val reify : (’a par -> unit) -> ’a

val prepare : (’a par * ’a) -> ready_par

val attach : ready_par -> unit

val inflate : unit -> unit

Fig. 5. (Colour online) Parasitic thread management API.
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Fig. 6. Behavior of the parasite API.

This unblocks S1 and schedules it on top of R1 . Thus, the parasitic threads implicitly

migrate to the point of synchronization.

3.5 An API for parasitic threads

Although parasites are a runtime mechanism, a parasite management API is exposed to the

programmer as a library (see Figure 5) that can be used to build higher-level asynchronous

abstractions. In Section 3.8, we will illustrate how ACML primitives are constructed using

this API. The primitives exposed by the parasite API are similar to continuations, but differ

primarily in the way they are scheduled and migrated. Figure 6 illustrates the behavior of

the primitives.

Unlike host threads, parasitic threads are implemented as raw stack frames. The ex-

pression spawnParasite(f) pushes a new frame to evaluate expression f , similar to

a function call. We record the stack top at the point of invocation. This corresponds to

the caller’s continuation and is a de facto boundary between the parasite and its host

(or potentially another parasite). If the parasite does not block, the computation runs to

completion and control returns to the caller, just as if the caller made a non-tail procedure

call.

A parasite can voluntarily block by invoking reify(f) . The function f is applied to

the current parasite, similar to the invocation of call-with-current-continuation.

Once the parasite has been reified, control immediately switches to the next parasite on the
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host stack. Reified parasites are represented as stack objects on the heap, reachable from

the resource (e.g. , a channel) the parasite is blocked on.

A reified parasitic computation is a value of type ’a par , which expects a value of type

’a for the parasitic computation to be resumed. Such a parasite typically is waiting for an

event, and the value associated with the result of the event. For example, a parasite might

be blocked on a channel receive action which, when resumed, is expected to continue with

the value received over the channel. For this purpose, a prepare primitive is provided. A

parasite prepared with a value v resumes supplying v as the return value of the reify

call that caused it to block.

Prepared parasites can be resumed with the attach primitive. A host invoking attach

on a prepared parasite, copies the parasitic stack on top of its current stack and switches to

the newly attached parasite. The newly attached parasite resumes execution with the value

it was prepared with. When a parasite runs to completion, control returns to the parasite

residing below it as if a non-tail call has returned.

Although parasites are envisioned to be used as short-lived threads, they can encode

arbitrarily long computations since the programming model places no restrictions on the

computation they encapsulate. Executing multiple long running computations on the same

stack is unfavorable as it serializes executions. To address this concern, the API provides

an inflate primitive to convert a parasitic thread into a host thread, which can then be

scheduled by MULTIMLTON’s multicore scheduler.

Let the parasite invoking inflate primitive be pt . The inflate primitive works by

creating a new host thread ht , and copying the pt ’s stack frames to this ht ’s stack

segment. pt is killed by popping its frames off its host stack, which switches control to

the parasite residing below on this host. The new host thread ht is then added to the host

thread scheduler. The overall effect of these operations is such that the original parasite

pt ’s computation is now resumed in the host thread ht .

Finally, relating this API to the requirements listed in Section 3.3, spawnParasite

satisfies the first requirement, reify, prepare, and attach satisfies the second, and

inflate satisfies the third.

3.6 Formal semantics

We define an operational semantics that models host threads in terms of a stack of parasites,

and parasites as a stack of frames. Transitions in our formalism are defined through stack-

based operations. Our semantics is given in terms of a core call-by-value functional lan-

guage with threading and communication primitives. New threads of control (host threads)

are explicitly created through a spawnHost primitive. We can view a host thread as a

container for computations, which are represented by parasitic threads.

To model parasitic thread creation, we extend this language with two additional prim-

itives - spawnParasite to create a parasite, and inflate to inflate a parasite into a

host thread. Computation in our system is thus split between host threads, which behave

as typical threads in a language runtime, and parasitic threads, which behave as asyn-

chronous operations with regard to their host. In addition, we provide primitives to reify

and attach parasites, which behave similarly to callcc and throw, except that reify
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additionally removes the parasite from the execution stack, implicitly transferring control

to the next parasitic or host thread.

We formalize the behavior of parasitic threads in terms of an operational semantics ex-

pressed using a CEK machine (Felleisen & Friedman, 1986) formulation. A CEK machine

is small-step operational definition that operates over program states. A state is composed

of an expression being evaluated, an environment, and the continuation (the remainder of

the computation) of the expression. The continuation is modeled as a stack of frames.

3.6.1 Language

In the following, we write v to denote a sequence of zero or more elements. In our se-

mantics, we deal with two kinds of sequences – a sequence (stack) of parasites modeling a

host thread, and a sequence (stack) of frames modeling a parasite. For readability, we use

distinct notations for each sequence. For the sequence of frames, we write . for the empty

sequence, and : for sequence concatenation. For the sequence of parasites, we write /0 for

an empty sequence, and ⊳ for concatenation. We assume that : has higher precedence

than ⊳. Relevant domains and meta-variables used in the semantics are shown in Figure 7.

In our semantics, we use stack frames to capture intermediate computation state, to store

environment bindings, to block computations waiting for synchronization, and to define the

order of evaluation. We define ten unique types of frames: return frames, argument frames,

function frames, receive frames, send frames, send value frames, receive and send blocked

frames, and prepare and prepare value frames. The return frame pushes the resulting value

from evaluating an expression on to the top of the stack. The value pushed on top of

the stack gets propagated to the frame beneath the return frame (see Figure 9 RETURN

TRANSITIONS).

The receive and send blocked frames signify that a parasite is blocked on a send or re-

ceive on a global channel. They are pushed on top of the stack to prevent further evaluation

of the given parasitic computation. Only a communication across a global channel can pop

a blocked frame. Once this occurs, the parasite can resume its execution. Argument and

function frames enforce left-to-right order of evaluation. Similarly, the send and send value

frames define the left to right evaluation of the send primitive. The prepare and prepare

value frames are used for order of evaluation of the prepare primitive and to prepare a

reified parasite respectively.

Our semantics is defined with respect to a program state that is composed of two maps

– a thread map T that maps thread identifiers (t) to thread states (s) and a channel map

C. The channel map C maps channels (c) to a pair 〈ls,lr〉, where ls (lr) is the sequence

of parasites blocked on a channel send (receive) operation, with the top frame necessarily

being the send (receive) block frame.

A thread is a pair composed of a thread identifier and a thread state. A (host) thread state

(s) is a CEK machine state extended with support for parasitic threads. Therefore, a host

thread is a collection of stacks, one for each parasitic thread. A concrete thread state can

be in one of three configurations: a control state, a return state, or a halt state. A control

state is composed of an expression (e), the current environment (r) — a mapping between

variables and values, the current stack (k), as well as a stack of parasitic computations (k).

A return state is simply a stack of parasitic computations (k). The halt state is reached
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Fig. 7. Domains for the CEK machines extended with host threads and parasites.

when all parasitic threads in a given host thread have completed. A host thread, therefore,

is composed of a stack of parasitic threads executing within its stack space.

Evaluation proceeds by non-deterministically choosing one of the host threads in the

thread map T . When a thread transitions to a control state, the parasite on top of the stack

is evaluated. Once the parasite transitions to a return state, evaluation is free to choose the

next host thread in the thread map T to evaluate subsequently.

3.6.2 CEK machine semantics

The rules given in Figures 8 and 9 define the transitions of the CEK machine. There

are three types of transitions: control transitions, return transitions, and global transitions.

Control and return transitions are thread local actions, while global transitions affect global

state. We utilize the two types of local transitions to distinguish between states in which an
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Fig. 8. Global evaluation rules defined in terms of thread states (T ).

expression is being evaluated from those in which an expression has already been evaluated

to a value. In the latter case, the value is propagated to its continuation. Global transitions

are transitions that require global coordination, such as the creation of a new channel or

thread, or a communication action.

Global Transitions. There are eight rules that define global transitions given in Figure 8.

Rule LocalEvaluation states that a thread with thread state s can transition to a new state

s′ if it can take a local transition from s to s′. This rule subsumes non-deterministic thread

scheduling, and defines global state change in terms of operations performed by individual

threads. The second rule, Channel, defines the creation of a new global channel. The

channel map is extended with a new binding corresponding to the new channel, with empty

sequences for the list of blocked parasites. The SpawnHost rule governs the creation of a

new host thread; this rule generates a unique thread identifier and begins the evaluation
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of the spawned expression (e) in the parent thread’s (t) environment (r). Inflation (rule

Inflate) is similar to the rule for spawning a thread, except the stack associated with the

parasite that calls inflate is removed from its current host thread and added to the newly

created thread.

The last four rules are concerned with channel communication. Rule SendReify han-

dles the case when a parasite performing a send on a channel does not find a matching

receive. In this case, the parasite is reified and appended to the back of the list of blocked

sender parasites. Control switches to the parasite residing below the reified parasite. The

rule RecvReify is the dual of the SendReify rule and handles a parasite blocking on a

receive operation.

The rule SendMatch handles the case when a parasite performing a send finds a waiting

receiver on the channel. In this case, the receiver parasite on the front of the sequence is

removed, and its stack is prepared so that the receiver parasite resumes with the value from

the sender. The receiver parasite is attached to the top of the host thread that performed the

send. Thus, the blocked receiver parasite migrates to the same host as the sender parasite.

Rule RecvMatch is the dual of SendMatch.

Notice that the communication rules preserve the property that parasites continue to

evaluate until they are blocked on a channel communication. As a consequence, if two

parasitic computations are spawned one after the other, each performing a single send

operation on the same channel, the order in which the sends deposit values on the channel

is the same as the order in which the parasites were spawned. We utilize this property of

parasites to ensure the ordering invariants required by ACML (Section 2.2.3).

Control Transitions. There are ten rules that define local control transitions. Because the

definition of these rules are standard, we omit their explanation here, with the exception of

the rules that explicitly deal with parasites (Reify, Prepare, Attach, SpawnParasite).

The Reify rule depicts the execution of the reify primitive, which, like callcc takes a

function as an argument. This rule rewrites the expression into a function call, passing the

continuation of parasite as the argument, and discards the parasite’s continuation on the

current host. As a result, once the function call returns, the control implicitly switches to

the next parasite on the stack.

The Prepare rules evaluates the first argument, which should evaluate to a parasite,

and pushed the second expression onto the stack. The Attach rule installs a parasite into

the current host thread and switches execution to this parasite. The SpawnParasite rule

models the creation of a new parasitic thread within the current thread. The currently

evaluating parasitic thread is added back to the set of parasites with a unit return value

pushed on its stack. The expression is evaluated in a new parasitic thread constructed with

the environment of the parent and an empty stack. Thread execution undertakes evaluation

of the expression associated with this new parasite.

Return Transitions. There are nine rules that define local return transitions. These rules,

like local control transitions, are mostly standard. We comment on the rules that involve

thread and parasite management. Rule ThreadHalt defines thread termination via a tran-

sition to a halt state. A thread transitions to a halt state if it has no active parasites and

its stack is empty except for a return frame. Parasites themselves are removed by the

ParasiteHalt rule. The return value of a thread is thus defined as the last value produced
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Fig. 9. Local evaluation defining both control and return transitions.

by its last parasite. The lifetime of a thread is bounded by the parasites that inhabit it. The

PrepareFinalize rule, prepares a reified parasite by pushing a return frame on the stack

of the reified parasite. This prepared and reified parasite is then returned to the currently

executing parasite.

3.7 Unifying the host and parasitic APIs

As mentioned before, host threads in MULTIMLTON are built on top of the MLton.Thread

library, which is agnostic to scheduling policy, while the parasitic thread API implicitly

encodes the thread management API with scheduling and migration services. With two

underlying threading systems, we need to abstract away differences in thread creation and

scheduling, so as to ease the development of higher-level libraries such as ACML.

With this in mind, we have implemented a scheduler that exposes both one-shot continu-

ations and parasites, and unifies other scheduler idioms such as suspending the execution of

current thread, preparing a suspended thread with a value to make it runnable, scheduling

a runnable thread, etc. The core primitives in the unified scheduler interface are shown

below.
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1 signature UNIFIED_SCHEDULER =

2 sig

3

4 type ’a host (* A host (one -shot) continuation *)

5 type ready_host (* A runnable host *)

6 type ’a par (* A parasitic thread *)

7 type ready_par (* A runnable parasite *)

8

9 datatype ’a thrd = H_THRD of ’a host

10 | P_THRD of ’a par

11

12 (* parasite management *)

13 val spawnParasite : (unit -> unit) -> unit

14 val reifyPar : (’a par -> unit) -> ’a

15 val preparePar : (’a par * ’a) -> ready_par

16 val attachPar : ready_par -> unit

17 val inflatePar : unit -> unit

18

19 (* host management *)

20 val spawnHost : (unit -> unit) -> unit

21 val newHost : (unit -> unit) -> unit host

22 val prepareHost : ’a host * ’a -> ready_host

23

24 (* host + parasites *)

25 val attachParToHost : ’a par * ready_host -> ’a host

26 val reifyParFromHost : ’a host -> ’a par * ready_host

27 val inflateParToHost : ’a par -> ’a host

28

29 (* switch *)

30 val switch: (’a host -> ready_host) * (’a par -> unit) -> ’a

31

32 (* scheduler queue operations *)

33 val enqueue : ready_host -> unit

34 val dequeue : unit -> ready_host option

35

36 end

The UNIFIED SCHEDULER is built using the MLton.Thread library and the parasitic

primitives presented in Section 3.5. The parasite management primitives are the same as

the ones described in Section 3.5, with the names of the primitives suitably aliased so as

to avoid conflict with host thread management primitives. The scheduler provides a way to

instantiate parallel execution of a host thread using the spawnHost primitive. A suspended

host thread (a one-shot host continuation) can be created using the newHost primitive. The

primitive prepareHost takes a suspended host thread, along with a value and produces a

ready host thread, which can then be scheduled. The readied host thread resumes execution

with the prepared value (return value of the switch primitive).

The most interesting primitives are the ones that combine parasites with host threads.

Primitive attachParToHost attaches the given parasite to a runnable host thread, and

produces a new host continuation. When this host continuation is prepared with a value
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and scheduled, the attached parasite is first evaluated, followed by the original host com-

putation.

The parasite attached to a host continuation can be separated using the

reifyParFromHost primitive. The behavior of the primitive is the dual of

attachParToHost . The function inflateParToHost converts a parasite into a host

continuation. Such a host continuation can be scheduled in parallel, after suitably preparing

it with a value.

The inflatePar and inflateParToHost functions are implemented with the help

of other library primitives as follows:

fun inflatePar () : unit =

reifyPar (fn p : ’a par =>

let

val readyPar : ready_par = preparePar (p, ())

val h : unit host = newHost (fn () => attachPar

readyPar)

val rh : ready_host = prepareHost (h,())

in

enqueue rh

end)

fun inflateParToHost (p : ’a par) : ’a host =

let

val h : unit host = newHost (fn () => ())

val rh : ready_host = prepareHost (h, ())

val rh ’ : ’a host = attachParToHost (p, rh)

in

rh ’

end

The switch primitives enables the control to switch away from the currently running

thread. Since the currently running thread can either be a host or a parasite, the target is

either some host thread (if the currently running thread is a host) or the next parasite on the

current stack (if the currently running thread is a parasite). To this end, the switch primi-

tive takes two arguments: one to handle the case when the currently running computation

is a host thread, and another to handle parasitic switching. If the thread being switched is a

host, then the programmer is expected to return a runnable host thread, to which the control

returns. If the thread being switched is a parasite, then we know that there is a host or more

parasitic threads residing on the current stack. Hence, control simply switches to the next

parasite or the host computation on this stack.

Finally, the scheduler queue operations enqueue and dequeue add and remove a ready

host thread from the scheduler queue.

3.8 Implementing ACML primitives

In this section, we illustrate how ACML primitives can be encoded using parasitic threads.

For clarity, we elide the definition of simple helper functions. However, when not obvious,

we explain in prose how they are implemented. ACML exposes to the programmer a single

spawn primitive. We implement this spawn primitive by instantiating a new host thread on
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the scheduler. In particular, we do not expose the spawnParasite primitive to the ACML

programmer. All parasitic threads are instantiated internally by the ACML library.

3.8.1 Implementing asynchronous send

The basic asynchronous primitive in ACML is an asynchronous send - aSend (c,v) that

sends the value v on channel c. An asynchronous send has the ordering guarantee that the

continuation of the asynchronous send is evaluated only after discharging the send. In other

words, either the send completes (matches with a receiver) or deposits the value on the

channel, before evaluating the continuation. Most importantly, there is equal opportunity

for the asynchronous send to successfully match with a receive immediately, or wait until

a value is picked up by a receiver thread. It would be unwise to create a full-fledged thread

to capture the asynchronous behavior for a send that will immediately complete.

Locking and polling the channel to check whether the send can be completed imme-

diately may work in the case of an isolated send. But such a solution is not directly

applicable to synchronization over choices, where multiple channels may need to be polled

atomically. It is this very fact that motivated Reppy et al. (2009) to build a completely new

synchronization protocol for parallel CML.

Luckily, parasitic threads can be used to preserve desired ordering guarantees without

compromising efficiency. We implement asynchronous send by evaluating a synchronous

send primitive in a new parasitic thread. Since the spawnParasite primitive is guar-

anteed to evaluate before the continuation, we capture the desired ordering guarantee. In

addition, if the asynchronous send immediately matches with a receive, then the cost of the

whole operation is on the order of a non-tail function call.

The implementation of the synchronous send primitive is shown below:

val send : ’a chan * ’a -> unit

fun send (c, v) =

case dequeuePendingReceivers c of

SOME (H_THRD ht) =>

enqueue (prepareHost (ht , v))

| SOME (P_THRD pt) =>

attachPar (preparePar (pt , v))

| NONE =>

let

fun handleHost t =

(enqueuePendingSenders (c, H_THRD t);

dequeue ())

fun handlePar t =

enqueuePendingSenders (c, P_THRD t)

in

switch (handleHost , handlePar)

end

Each ACML channel is represented by a pair of queues, one for the list of pending senders

and another for the list of pending receivers. At any point in time, one of these queues

is empty. In the above code snippet, the functions dequeuePendingReceivers : ’a

chan -> ’a thrd option and enqueuePendingSenders : ’a chan * ’a
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thrd -> unit are internal functions utilized in the channel implementation, and are used

to manipulate the channel queues.

During a synchronous send on a channel c , if there are pending receiver threads on the

channel, then the first one is dequeued. Notice that this receiver thread can either be a host

or a parasitic thread, and each case must be handled separately. If the receiver is a host

thread, then we prepare the receiver host thread with the value being sent, and add it to the

scheduler. However, if the receiver is a parasite, we prepare the parasite with a value, and

attach it to the current thread. In this case, the parasitic computation pt is first evaluated,

followed by the current continuation.

If there are no pending receiver threads blocked on the channel, then the current thread

has to be enqueued on the channel. We use the switch primitive to perform the necessary

blocking. If the current thread is a host, we resume the next thread from the scheduler,

after enqueueing the current thread to the channel. If the current thread is a parasite, then

we simply enqueue the parasite to the channel. The next parasite on this stack, or the

underlying host computation is scheduled next.

Now, the aSend primitive can simply be implemented as:

fun aSend (c,v) = spawnParasite (fn () => send (c,v))

The asynchronous receive primitive aRecv is implemented in a similar fashion, by

spawning a parasitic thread, which performs the synchronous recv . Thus, parasites allow

asynchronous computations to be encoded efficiently in a straight forward manner.

3.8.2 Implementing base asynchronous events

Recall that in ACML, every synchronization of an asynchronous event creates an implicit

thread to evaluate a post-consumption action. Most of these post-consumption actions

typically involve only a few communication actions, and do not perform any computation

intensive tasks. Parasitic threads are an ideal vehicle for realizing these implicit threads.

MULTIMLTON represents asynchronous events simply as a tuple with two synchronous

events or a guarded asynchronous event as follows:

datatype (’a,’b) AEvent =

PAIR of (’a Event (* post -creation *) *

’b Event (* post -consumption *))

| AGUARD of unit -> (’a, ’b) AEvent

The first and second components of the pair represent post-creation and post-

consumption actions. Since the post-creation action of an asynchronous send event prim-

itive aSendEvt is empty, aSendEvt is represented by pairing together an always event

alwaysEvt , and the synchronous send event sendEvt as follows:

val aSendEvt : ’a chan -> (unit , unit) AEvent

fun aSendEvt c = PAIR (alwaysEvt (), sendEvt c)



24 K. C. Sivaramakrishnan et al.

3.8.3 Implementing asynchronous event synchronization

An ACML event is synchronized through aSync : (’a,’b) AEvent -> ’a primitive,

which is analogous to the sync : ’a Event -> ’a primitive for synchronizing on a

synchronous event. The code for aSync is shown below:

val aSync : (’a,’b) AEvent -> ’a

fun aSync aevt

let

fun force (PAIR p) = PAIR p

| force (GUARD g) = force (g ())

val PAIR (postCreation , postConsumption) = force aevt

val _ = spawnParasite (fn _ => ignore (sync

postConsumption))

in

sync postCreation

end

We first force execution of the guard to get the pair consisting of post-creation and

post-consumption synchronous events. ACML semantics dictates that post-consumption

actions should only be evaluated after successful match of the base asynchronous event.

In addition, a post-consumption action has to be run on an implicit thread. Our implemen-

tation achieves this by spawning a parasite that synchronizes on the synchronous event

corresponding to a post-consumption action.

Since implicit thread computation is expected to be short-lived, parasitic threads alle-

viate the cost to create such threads. Most importantly, the fact that parasitic threads are

evaluated immediately after spawning, and before the continuation of the spawnParasite

primitive, ensures that the ordering guarantees of ACML event synchronization is pre-

served. Finally, the post-creation event is synchronized in the thread performing the syn-

chronization. This captures the intended behavior of a post-creation action.

3.9 Runtime issues

While we have so far focused on the implementation and utility of parasitic threads, in

this section, we focus on the interaction of parasitic threads with other components of the

runtime system. In particular, we discuss issues related to long-running parasites, exception

safety, and interaction with the garbage collector.

3.9.1 Long running parasites

Similar to asserting the blocking behavior of asynchronous computations, it is difficult to

estimate the running time of an arbitrary asynchronous computation. If a long lived parasite

continues to run on a host thread without ever being blocked, then we lose the opportunity

for parallel execution of parasite and its host. In MULTIMLTON, long running host threads

are preempted on a timer interrupt, so that other host threads have a chance to run. We

extend this scheme to handle long running parasites.

By default, the implicit parasitic threads created during synchronization of an asyn-

chronous event have preemption disabled. Preemption is enabled as a part of the aWrap
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primitive, which is the only way to extend parasitic computation after the base asyn-

chronous action. It is important to enable preemption only after the base asynchronous

event in order to preserve the ordering property of the asynchronous events.

On a timer interrupt, if the current host thread has a parasite attached to it, on which pre-

emption is enabled, we inflate this parasite into a new host thread, which is then enqueued

to the scheduler. Control returns to the host or parasitic thread below the inflated parasite.

On the other hand, if the interrupted thread was a host thread, this thread is enqueued, and

control switches to the next available thread returned by the scheduler.

3.9.2 Exception safety in parasites

Exceptions in MLton are intertwined with the structure of the stack. In Concurrent ML, ex-

ceptions are stack local, and are not allowed to escape out of the host thread. Since parasitic

operations copy frames across hosts stacks, there is a potential for parasitic exceptions to

be raised in a context that is not aware of it. Therefore, it is important to ensure exception

safety in the presence of parasites.

Exception handling in host threads. In MULTIMLTON, every host thread has a pointer

to the handler frame on top of the current host stack. Every handler frame has a link to the

next handler frame underneath it on the stack, represented as an offset. With this formula-

tion, when exceptions are thrown, control can switch to the top handler in constant time,

with subsequent handlers reached through the links. During program execution, whenever

handler frames are popped, the thread’s top-handler pointer is updated appropriately.

Exception handling in parasitic threads. How do we ensure that this structure is main-

tained for parasitic operations? Just like host threads, exceptions are not allowed to escape

out of parasitic threads, and are handled by the default exception handler (Biagioni et al.,

1998), which typically logs an error to the standard output. As such, from an exception

handling point of view, parasites are treated similar to host threads.

In MULTIMLTON, exceptions are implemented using exception frames, which are part

of the thread’s stack. When an exception is raised, the current stack is unwound till the

first exception frame (top-handler), and control is transferred to the exception handler. The

address of top-handler frame of the currently running stack is stored in a register for fast

access. During a host thread switch, the offset of the top-handler from the bottom of the

stack is saved to the suspending host thread’s metadata, and restored during resumption.

Similar to host threads, every reified parasite stores the offset of the top handler frame

from the bottom of the parasitic stack as part of its metadata. Since exception frames are a

part of the parasite stack, all exception handlers installed by the parasite are also captured

as a part of the reified parasitic stack. Recall that when a parasite is reified, control returns

to the parasite residing below the reified parasite as if a non-tail call has returned. As a part

of the return procedure, MULTIMLTON updates the top-handler address register to point

to the top handler frame in the current host stack. When the reified parasite is attached

to another host stack, the handler offset stored in the parasite metadata is used to set the

attached thread’s top-handler pointer to the top-most handler in the attached parasite. In

this way, we ensure that parasites maintain expected exception semantics.
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3.9.3 Interaction with the garbage collector

Just like host threads in the runtime system, the garbage collector (GC) must be aware

of parasitic threads and the objects they reference. Parasites either exist as a part of a

host stack or are reified as a separate heap object. If the parasites are a part of the host, the

garbage collector treats the parasites as regular stack frames while tracing. Reified parasites

are represented in the GC as stack objects, and the GC treats them as regular host stacks.

4 Garbage collection

In this section, we will consider the impacts of ACML and the MULTIMLTON threading

system with both, lightweight and parasitic threads, on GC. MULTIMLTON’s primary

goal is scalability and multi-core performance. From a GC perspective, this obligates our

primary design to focus on optimizing for throughput instead of reducing pause times and

the memory footprint.

We will first describe the baseline MLton collector. We will then introduce a split-heap

memory manager that allows mutators and collectors running on different cores to operate

mostly independently. We then refine this collector based on the properties of ACML

programs and functional programs in general with throughput in mind. Specifically we

will focus on the premise that there is an abundance of available concurrency in ACML

programs, introduced through both lightweight and parasitic threads, to realize a new

collector that eliminates the need for read barriers and forwarding pointers. This naturally

leads to a GC design that focuses on procrastination (Sivaramakrishnan et al., 2012),

delaying writes that would necessitate establishing forwarding pointers until a GC, where

there is no longer a need for such pointers. The GC leverages the mostly functional nature

of ACML programs and a new object property called cleanliness, which enables a broad

class of objects to be moved from a local to a shared heap without requiring a full traversal

of the local heap to fix existing references; cleanliness enables an important optimization

that achieves the effect of procrastination without actually having to initiate a thread stall.

4.1 MLton’s GC (Stop-the-world)

The base MULTIMLTON GC design uses a single, contiguous heap, shared among all

cores. In order to allow local allocation, each core requests a page-sized chunk from the

heap. While a single lock protects the chunk allocation, objects are allocated within chunks

by bumping a core-local heap frontier.

In order to perform garbage collection, all the cores synchronize on a barrier, with one

core responsible for collecting the entire heap. The garbage collection algorithm is inspired

from Sansom’s (1991) collector, which combines Cheney’s two-space copying collector

and Jonker’s single-space sliding compaction collector. Cheney’s copying collector walks

the live objects in the heap just once per collection, while Jonker’s mark-compact collector

performs two walks. But Cheney’s collector can only utilize half of memory allocated

for the heap. Sansom’s collector combines the best of both worlds. Copying collection is

performed when heap requirements are less than half of the available memory. The runtime

system dynamically switches to mark-compact collection if the heap utilization increases

beyond half of the available space.
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Since ML programs tend to have a high rate of allocation, and most objects are short-

lived temporaries, it is beneficial to perform generational collection. The garbage collector

supports Appel-style generational collection (Appel, 1989) for collecting temporaries. The

generational collector has two generations, and all objects that survive a generational

collection are copied to the older generation. Generational collection can work with both

copying and mark-compact major collection schemes.

MULTIMLTON enables its generational collector only when it is profitable, which is

determined by the following heuristic. At the end of a major collection, the runtime system

calculates the ratio of live bytes to the total heap size. If this ratio falls below a certain

(tunable) threshold, then generational collection is enabled for subsequent collections. By

default, this ratio is 0.25.

4.2 Design rationale for a procrastinating GC

Splitting a program heap among a set of cores is a useful technique to exploit available

parallelism on scalable multicore platforms: each core can allocate, collect, and access data

locally, moving objects to a global, shared heap only when they are accessed by threads

executing on different cores. This design allows local heaps to be collected independently,

with coordination required only for global heap collection. In contrast, stop-the-world

collectors need a global synchronization for every collection. As such, we begin our design

exploration with a split-heap GC.

In order to ensure that cores cannot directly or indirectly access objects on other local

heaps, which would complicate the ability to perform independent local heap collection,

the following invariants need to be preserved:

• No pointers are allowed from one core’s local heap to another.

• No pointers are permitted from the shared heap to the local heap.

Both invariants are necessary to perform independent local collections. The reason for the

first is obvious. The second invariant prohibits a local heap from transitively accessing

another local heap object via the shared heap. In order to preserve these invariants, the mu-

tator typically executes a write barrier on every store operation. The write barrier ensures

that before assigning a local object reference (source) to a shared heap object (target), the

local object along with its transitive object closure is lifted to the shared heap. We call such

writes exporting writes as they export information out of local heaps. The execution of

the write barrier creates forwarding pointers in the original location of the lifted objects in

the local heap. These point to the new locations of the lifted objects in the shared heap.

Since objects can be lifted to the shared heap on potentially any write, the mutator needs to

execute a read barrier on potentially every read. The read barrier checks whether the object

being read is the actual object or a forwarding pointer, and in the latter case, indirects to

the object found on the shared heap. Forwarding pointers are eventually eliminated during

local collection.

Because the number of reads are likely to far outweigh the number of writes, the aggre-

gate cost of read barriers can be both substantial and vary dramatically based on underlying

architecture characteristics (Blackburn & Hosking, 2004). Eliminating read barriers, how-

ever, is non-trivial. Abstractly, one can avoid read barriers by eagerly fixing all references
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that point to forwarded objects at the time the object is lifted to the shared heap, ensuring

the mutator will never encounter a forwarded object. Unfortunately, this requires being

able to enumerate all the references that point to the lifted object; in general, gathering

this information is very expensive as the references to an object might originate from any

object in the local heap.

We consider an alternative design that completely eliminates the need for read barriers

without requiring a full scan of the local heap whenever an object is lifted to the shared

heap. The design is based on the observation that read barriers can be clearly eliminated

if forwarding pointers are never introduced. One way to avoid introducing forwarding

pointers is to delay operations that create them until a local garbage collection is triggered.

In other words, rather than executing a store operation that would trigger lifting a thread

local object to the shared heap, we can simply procrastinate, thereby stalling the thread

that needs to perform the store. The garbage collector must simply be informed of the need

to lift the object’s closure during its next local collection. After collection is complete, the

store can take place with the source object lifted, and all extant heap references properly

adjusted. As long as there is sufficient concurrency to utilize existing computational re-

sources, in the form of available runnable threads to run other computations, the cost of

procrastination is just proportional to the cost of a context switch.

Moreover, it is not necessary to always stall an operation that involves lifting an object

to the shared heap. We consider a new property for objects (and their transitive object

closures) called cleanliness. A clean object is one that can be safely lifted to the shared

heap without introducing forwarding pointers that might be subsequently encountered by

the mutator: objects that are immutable, objects only referenced from the stack, or objects

whose set of incoming heap references is known, are obvious examples. The runtime anal-

ysis for cleanliness is combined with a specialized write barrier to amortize its cost. Thus,

procrastination provides a general technique to eliminate read barriers, while cleanliness

serves as an important optimization that avoids stalling threads unnecessarily.

The effectiveness of our approach depends on a programming model in which (a) most

objects are clean, (b) the transitive closure of the object being lifted rarely has pointers to

it from other heap allocated objects, and (c) there is a sufficient degree of concurrency in

the form of runnable threads; this avoids idling available cores whenever a thread is stalled

performing an exporting write that involves an unclean object. We observe that conditions

(a) and (b) are common to functional programming languages and condition (c) follows

from the ACML runtime model. Our technique does not rely on programmer annotations,

static analysis or compiler optimizations to eliminate read barriers, and can be completely

implemented as a lightweight runtime technique.

4.3 Local collector (Split-heap)

As mentioned earlier, the local collector1 operates over a single shared (global) heap and a

local heap for each core. The allocations in the shared heap is performed similar to alloca-

tions in the stop-the-world collector, where each core allocates a page-sized chunk in the

1 Other terms have been used in the literature to indicate similar heap designs, notably private nursery, local

heap collector, thread-local or thread-specific heap, and on-the-fly collection.
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shared heap and performs object allocation by bumping its core-local shared heap frontier.

Allocations in the local heaps do not require any synchronization. Garbage collection in

the local heaps is similar to the baseline collector, except that it crucially does not require

global synchronization.

Objects are allocated in the shared heap only if they are to be shared between two or

more cores. Objects are allocated in the shared heap because of exporting writes and remote

spawns (Section 4.6.3). Apart from these, all globals are allocated in the shared heap, since

globals are visible to all cores by definition. For a shared heap collection, all of the cores

synchronize on a barrier and then a single core collects the heap. Along with globals, all the

live references from local heaps to the shared heap are considered to be roots for a shared

heap collection. In order to eliminate roots from dead local heap objects, before a shared

heap collection, local collections are performed on each core to eliminate such references.

The shared heap is also collected using Sansom’s dual-mode garbage collector. However,

we do not perform generational collection on the shared heap. This is because shared heap

collection is expected to be relatively infrequent when compared to the frequency of local

heap collections, and objects that are shared between cores, in general, live longer than a

typical object collected during a generational collection.

4.4 Remembered stacks

In MULTIMLTON threads can synchronously or asynchronously communicate with each

other over first-class message-passing communication channels. If a receiver is not avail-

able, a sender thread, or in the case of asynchronous communication the implicitly created

thread, can block on a channel. If the channel resides in the shared heap, the thread object,

its associated stack and the transitive closure of all objects reachable from it on the heap

would be lifted to the shared heap as part of the blocking action. Since channel commu-

nication is the primary mode of thread interaction in our system, we would quickly find

that most local heap objects end up being lifted to the shared heap. This would be highly

undesirable.

Hence, we choose never to move stacks to the shared heap. We add an exception to our

heap invariants to allow thread → stack pointers, where the thread resides on the shared

heap, and references a stack object found on the local heap. Whenever a thread object is

lifted to the shared heap, a reference to the corresponding stack object is added to the set

of remembered stacks. This remembered set is considered as a root for a local collection

to enable tracing of remembered stacks.

Before a shared heap collection, the remembered set is cleared; only those stacks that

are reachable from other GC roots survive the shared heap collection. After a shared heap

collection, the remembered set of each core is recalculated such that it contains only those

stacks, whose corresponding thread objects reside in the shared heap, and have survived

the shared heap collection.

Remembered stacks prevent thread local objects from being lifted to the shared heap,

but require breaking the heap invariant to allow a thread object in the shared heap to refer

to a stack object on the local heap. This relaxation of heap invariant is safe. The only object

that can refer to thread-local stacks is the corresponding thread object. The thread objects

are completely managed by the scheduler, and are not exposed to the programmer. As a
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result, while the local heap objects can point to a shared-heap thread object, whose stack

might be located on a different local heap, the only core that can modify such a stack (by

running the thread) is the core that owns the heap in which the stack is located. Thus, there

is no possibility of direct references between local heaps. Hence, the remembered stack

strategy is safe with respect to garbage collection.

4.5 Cleanliness analysis

Although ACML provides an abundance of concurrency, with the procrastination mecha-

nism, many of the threads in a program may end up blocked on exporting writes, waiting

for a local garbage collection to unblock them. If all of the threads on a particular core

have procrastinated, then a local garbage collection is needed in order to make progress.

Such forced local garbage collections make the program run longer, and hence subdue the

benefit of eliminating read barriers. Hence, it is desirable to avoid procrastination whenever

possible.

In this section, we describe our cleanliness analysis, which identifies objects on which

exporting writes do not need to be stalled. We first present auxiliary definitions that will be

utilized by cleanliness checks, and then describe the analysis.

4.5.1 Heap session

Objects are allocated in the local heap by bumping the local heap frontier. In addition,

associated with each local heap is a pointer called sessionStart that always points to

a location between the start of the heap and the frontier. This pointer introduces the idea

of a heap session, to capture the notion of recently allocated objects. Every local heap has

exactly two sessions: a current session between the sessionStart and the heap frontier

and a previous session between the start of the heap and sessionStart . Heap sessions

are used by the cleanliness analysis to limit the range of heap locations that need to be

scanned to test an object closure2 for cleanliness. Assigning the current local heap frontier

to the sessionStart pointer starts a new session. We start a new session on a context

switch, a local garbage collection and after an object has been lifted to the shared heap.

4.5.2 Reference count

We introduce a limited reference counting mechanism for local heap objects that counts

the number of references from other local heap objects. Importantly, we do not consider

references from ML thread stacks. The reference count is meaningful only for objects

reachable in the current session. For such objects, the number of references to an object

can be one of four values: ZERO , ONE , LOCAL MANY , and GLOBAL . We steal 2 bits from

the object header to record this information. A reference count of ZERO indicates that the

object only has references from registers or stacks, while an object with a count of ONE

2 In the following, we write object closure to mean the set of objects reachable from some root on the heap; to
avoid confusion, we write function closure to mean the representation of an SML function as a pair of function
code pointer and static environment.
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Fig. 10. State transition diagram detailing the behavior of the reference counting mechanism with

respect to object x involved in an assignment, r := x , where P r = isInCurrentSession(r) .

has exactly one pointer from the current session. A count of LOCAL MANY indicates that

this object has more than one reference, but that all of these references originate from the

current session. GLOBAL indicates that the object has at least one reference that originates

from outside the current session.

The reference counting mechanism is implemented as a part of the write barrier (Lines

13–22 in Figure 13). Figure 10 illustrates the state transition diagram for the reference

counting mechanism. Observe that reference counts are non-decreasing. Hence, the refer-

ence count of any object represents the maximum number of references that pointed to the

object at any point in its lifetime.

4.5.3 Cleanliness

An object closure is said to be clean, if for each object reachable from the root of the object

closure,

• the object is immutable or in the shared heap. Or,

• the object is the root, and has ZERO references. Or,

• the object is not the root, and has ONE reference. Or,

• the object is not the root, has LOCAL MANY references, and is in the current session.

Otherwise, the object closure is not clean.

Figure 11 shows an implementation of an object closure cleanliness check. Since the

cleanliness check, memory barriers, and the garbage collector are implemented in low-

level code (C, assembly and low-level intermediate language in the compiler), this code

snippet, and others that follow in this section are in pseudo-C language, to better represent

their implementation. If the source of an exporting assignment is immutable, we can make

a copy of the immutable object in the shared heap, and avoid introducing references to for-

warded objects. Standard ML does not allow the programmer to test the referential equality

of immutable objects. Equality of immutable objects is always computed by structure.

Hence, it is safe to replicate immutable objects. If the object is already in the shared heap,

there is no need to move this object.
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1 bool isClean (pointer p, bool* isLocalMany) {

2 clean = true;

3 foreach o in reachable(p) {

4 if (! isMutable(o) || isInSharedHeap(o))

5 continue;

6 nv = getRefCount(o);

7 if (nv == ZERO)

8 clean &&= true;

9 else if (nv == ONE)

10 clean &&= (o != p);

11 else if (nv == LOCAL_MANY) {

12 clean &&= (isInCurrentSession(o));

13 *isLocalMany = true;

14 }

15 else

16 clean = false;

17 }

18 return clean;

19 }

Fig. 11. (Colour online) Cleanliness check.

If the object closure of the source of a exporting write is clean, we can move the object

closure to the shared heap and quickly fix all of the forwarding pointers that might be

generated. For example, consider an object that defines a tree structure; such an object is

clean if the root has ZERO references and all of its internal nodes have ONE reference

from their parent. A root having ZERO references means it is accessed only via the stack;

if it had a count of ONE , the outstanding reference may emanate from the heap. Internal

nodes having a reference count of ONE implies they are reachable only via other nodes

in the object being traced. Figure 12(a) shows such an object closure. In this example, we

assume that all objects in the object closure are mutable. The reference count of relevant

nodes is given in the brackets. Both the root and internal nodes can have pointers from

the current stack not tracked by the reference count. After lifting the object closure, the

references originating from the current stack are fixed by walking the stack.

Object closures need not just be trees and can be arbitrary graphs, with multiple incom-

ing edges to a particular object in the object closure. How do we determine if the incoming

edges to an object originate from the object closure or from outside the object closure (from

the local heap)? We cannot answer this question without walking the local heap. Hence,

we simplify the question to asking whether all the pointers to an object originate from the

current session. This question is answered in the affirmative if an object has a reference

count of LOCAL MANY (lines 11–13 in Figure 11).

Figure 12(b) shows an example of a object closure whose objects have at most

LOCAL MANY references. Again, we assume that all objects in the object closure are mu-

table. In the transitive object closure rooted at p , object q has locally many references.

These references might originate from the object closure itself (edges p → q and s →

q ) or from outside the object closure (edge a → q ). After lifting such object closures to

the shared heap, only the current session is walked to fix all of the references to forwarded
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Fig. 12. Utilizing object closure cleanliness information for exporting writes to avoid references to

forwarded objects.

objects created during the copy. In practice (Section 5.13), current session sizes are much

smaller than heap sizes, and hence exporting writes can be performed quickly.

Finally, in the case of LOCAL MANY references, the object closure is clean, but unlike

other cases, after lifting the object closure to the shared heap, the current session must

be walked to fix any references to forwarded objects. This is indicated to the caller of

isClean function by assigning true to *isLocalMany , and is used in the implementa-

tion of lifting an object closure to the shared heap (Figure 14).

4.6 Write barrier

In this section, we present the modifications to the write barrier to eliminate the possibility

of creating references from reachable objects in the local heap to a forwarded object. The
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Fig. 13. (Colour online) Write barrier implementation.

implementation of our write barrier is presented in Figure 13. A write barrier is invoked

prior to a write and returns a new value for the source of the write. The check isObjptr

at line 2 returns true only for heap allocated objects, and is a compile time check. Hence,

for primitive valued writes, there is no write barrier. Lines 4 and 5 check whether the write

is exporting. If the source of the object is clean, we lift the transitive object closure to the

shared heap and return the new location of the object in the shared heap.

4.6.1 Delaying writes

If the source of an exporting write is not clean, we suspend the current thread and switch

to another thread in our scheduler. The source of the write is added to a queue of objects

that are waiting to be lifted. Since the write is not performed, no forwarded pointers are

created. If programs have ample amounts of concurrency, there will be other threads that

are waiting to be run. However, if all threads on a given core are blocked on a write, we

move all of the object closures that are waiting to be lifted to the shared heap. We then force

a local garbage collection, which will, as a part of the collection, fix all of the references to

point to the new (lifted) location on the shared heap. Thus, the mutator never encounters a

reference to a forwarded object.

Parasitic threads and delayed writes. Recall that MULTIMLTON has two different threa-

ding systems – host and parasites. If the exporting write were performed in a parasitic

thread, should the parasite be reified and the host thread allowed to continue? The answer
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Fig. 14. (Colour online) Lifting an object closure to the shared heap.

turns out to be no. Recall that parasitic threads are scheduled cooperatively i.e., they run

until reified. In particular, ACML uses this property to preserve the order of asynchronous

actions performed on a channel. For example, if an aSend operations, which is simply

a synchronous send operation wrapped in a parasite, were to be reified before the aSend

was able to deposit a value on the channel, the subsequent aSend performed by the host

thread might be enqueued on the channel before the previous aSend . This violates the

ordering property of aSend . Hence, during an exporting write, the host thread and any

parasitic thread attached to it are suspended till the next local garbage collection.

4.6.2 Lifting objects to the shared heap

Figure 14 shows the pseudo-C code for lifting object closures to the shared heap. The

function lift takes as input the root of a clean object closure and a Boolean representing

whether the object closure has any object that has LOCAL MANY references. For simplicity
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Fig. 15. (Colour online) Spawning a thread.

of presentation, we assume that the shared heap has enough space reserved for the transitive

object closure of the object being lifted. In practice, the lifting process requests additional

shared heap chunks to be reserved for the current processor, or triggers a shared heap

collection if there is no additional space in the shared heap.

Objects are transitively lifted to the shared heap, starting from the root, in the obvious

way (Lines 22–23). As a part of lifting, mutable objects are lifted and a forwarding pointer

is created in their original location, while immutable objects are copied and their location

added to imSet (Lines 10–15). After lifting the transitive object closure to the shared

heap, the shared heap frontier is updated to the new location.

After object lifting, the current stack is walked to fix any references to forwarding

pointers (Line 27–28). Since we do not track references from the stack for reference

counting, there might be references to forwarded objects from stacks other than the current

stack. We fix such references lazily. Before a context switch, the target stack is walked to

fix any references to forwarded objects. Since immutable objects are copied and mutable

objects lifted, a copied immutable object might point to a forwarded object. We walk all

the shared heap copies of immutable objects lifted from the local heap to fix any references

to forwarded objects (Lines 27–28).

Recall that if the object closure was clean, but has LOCAL MANY references, then it has at

least one pointer from the current session. Hence, in this case, we walk the current session

to fix the references to any forwarded objects to point to their shared heap counterparts

(lines 30–32). Finally, session start is moved to the current frontier.

4.6.3 Remote spawns

Apart from exporting writes, function closures can also escape local heaps when threads

are spawned on other cores. For spawning on other cores, the environment of the function

closure is lifted to the shared heap and then, the function closure is added to the target

core’s scheduler. This might introduce references to forwarding pointers in the spawning

core’s heap. We utilize the techniques developed for exporting writes to handle remote

spawns in a similar fashion.

Figure 15 shows the implementation of thread spawn. If the function closure is clean, we

lift the function closure to the shared heap, and enqueue the thread on the target scheduler.
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Otherwise, we add it to the list of threads that need to be lifted to the shared heap. Before

the next garbage collection, these function closures are lifted to the shared heap, enqueued

to target schedulers, and the references to forwarded objects are fixed as a part of the

collection. When the target scheduler finds this new thread (as opposed to other preempted

threads), it allocates a new stack in the local heap. Hence, except for the environment of

the remotely spawned thread, all data allocated by the thread is placed in the local heap.

4.6.4 Barrier implementation

In our local collector, the code for tracking cleanliness (Lines 13–24 in Figure 13) is

implemented as an RSSA pass, one of the backend intermediate passes in our compiler.

RSSA is similar to Static Single Assignment (SSA), but exposes data representations

decisions. In RSSA, we are able to distinguish heap allocated objects from non-heap values

such as constants, values on the stack and registers, globals, etc. This allows us to generate

barriers only when necessary.

The code for avoiding creation of references to forwarded objects (Lines 4–11 in Fig-

ure 13) is implemented in the primitive library, where we have access to the lightweight

thread scheduler. suspendTillGCAndLift (line 11 in Figure 13) is carefully imple-

mented to not contain an exporting write, which would cause non-terminating recursive

calls to the write barrier.

5 Experimental results

5.1 Target platforms

We quantify the benefits of parasitic threads and our runtime design by considering a set

of benchmarks executing on a 48 core AMD Opteron 6176 server (AMD). In addition to

the AMD machine, garbage collection results were obtained on a 48 core Intel Single-chip

Cloud Computer (SCC), and an 864 core Azul’s Vega 3 (AZUL) machine. Our choice of

architectures is primarily to study the robustness of our techniques across a diverse set of

platforms rather than exploiting specific architectural characteristics in our design.3

The AMD Opteron machine used in our experiments has 48 cores that share 256 GB

of main memory. The cores are arranged into 4 NUMA regions with 12 cores each with

64 GB of local memory per NUMA region. Access to non-local memory is mediated by a

hyper-transport layer that coordinates memory requests between processors.

The Azul machine used in our experiments has 16 Vega 3 processors, each with 54

cores per chip; each core exhibits roughly 1/3 the performance of an Intel Core2-Duo.

Out of the 864 cores, 846 are application usable while the rest of the cores are reserved

for the kernel. The machine has 384 GB of cache coherent memory split across 192

memory modules. Uniform memory access is provided through a passive, non-blocking

interconnect mesh. The machine has 205 GB/s aggregate memory bandwidth and 544 GB/s

3 The source code and benchmarks used in our evaluation are available at https://github.com/
kayceesrk/multiMLton. Each branch in the repository represents a variant of MultiMLton on a particular
architecture.
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aggregate interconnect bandwidth. Each core has a 16KB, 4-way L1 data and instruction

caches.

Intel’s Single-chip Cloud Computer (SCC) (Intel, 2012) is an experimental platform

from Intel labs with 48 P54C Pentium cores. The most interesting aspect of SCC is the

complete lack of cache coherence and a focus on inter-core interactions through a high

speed mesh interconnect. The cores are grouped into 24 tiles, connected via a fast on-

die mesh network. The tiles are split into 4 quadrants with each quadrant connected to

a memory module. Each core has 16KB L1 data and instruction caches and 256KB L2

cache. Each core also has a small message passing buffer (MPB) of 8KB used for message

passing between the cores.

Since the SCC does not provide cache coherence, coherence must be implemented in

software if required. From the programmer’s perspective, each core has a private memory

that is cached and not visible to other cores. The cores also have access to a shared memory,

which is by default not cached to avoid coherence issues. The cost of accessing data from

the cached local memory is substantially less when compared to accessing shared memory.

It takes 18 core cycles to read from the L2 cache; on the other hand, it takes 40 core

cycles to request data from the memory controller, 4 mesh cycles for the mesh to forward

the request and 46 memory cycles for the memory controller to complete the operation.

Hence, in total, the delay between a core requesting data from the memory controller is

40 kcore + 4∗2∗n kmesh + 46 kram cycles, where kcore, kmesh and kram are the cycles of core,

mesh network and memory respectively. In our experimental setup, where 6 tiles share a

memory controller, the number of hops n to the memory controller could be 0 < n < 5.

Hence, shared heap accesses are much more expensive than local heap accesses.

MULTIMLTON uses 64-bit pointer arithmetic, and was extended from the base MLton

version 20100608. By default, the MULTIMLTON backend uses C codegen, and the gen-

erated C files were compiled with GCC 4.8.2.

5.2 Establishing a performance baseline

Before we present an evaluation of the impact of parasitic threads and new garbage collec-

tor design on overall performance, we first establish a baseline for MULTIMLTON through

comparisons against well-known multicore language runtimes on well-studied programs.

For this purpose, we chose the k-nucleotide , spectral-norm , and mandelbrot

benchmarks from the Computer Language Benchmarks Game4. These particular bench-

marks were chosen since they were particularly amenable to parallel execution. We caution

that the chosen programs are small, and neither particularly highly concurrent nor memory

intensive. Our goal here is to provide anecdotal evidence that MULTIMLTON is competitive

in terms of performance with other mature optimized systems, and thus the evaluation

study presented later in this section are not simply reporting results from a straw man

implementation. The benchmarks themselves were chosen primarily because they have

implementations in several languages, and performance numbers were readily available.

We compare the performance of these benchmarks against implementations in C +

POSIX threads, Java, Haskell, and MLton. The C programs were compiled with GCC

4 http://benchmarksgame.alioth.debian.org/
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Fig. 16. (Colour online) Comparison of running times of MULTIMLTON programs against other

language implementations on benchmarks taken from the Computer Language Benchmarks.

4.8.2. Java version was 1.6.0 34 with the programs running on 64-bit HotSpot server whose

version was 20.9. Haskell programs were compiled with the Glasgow Haskell Compiler

(GHC) 7.6.3. For each benchmark, we choose two versions of the Haskell programs for

comparison; one that uses MVars, and another built using a Concurrent ML implementation

written in Concurrent Haskell (Chaudhuri, 2009)5.

MLton programs were compiled with version 20100608 of the compiler with the na-

tive backend. Though the MLton programs are not parallel, they have been included in

the comparison to illustrate the performance overhead of MULTIMLTON’s parallel run-

time over MLton’s sequential runtime, which has been extended to realize MULTIMLTON .

The version of MULTIMLTON used for the comparison utilized the stop-the-world garbage

collector 4.1 with support for parallel allocation. While the MLton programs use the native

backend, the MULTIMLTON programs use the C backend; currently, MULTIMLTON does

not compile directly to native code.

Except for the MLton and MULTIMLTON programs that were implemented by us, the

other programs were the fastest versions in their respective languages in the benchmarks

suite at the time this article was written. All the programs were compiled with their optimal

flags indicated in the corresponding benchmarks. The experiments were performed on

the AMD machine on 8 cores, and the results are shown in Figure 16. Haskell CML

programs are slower than the corresponding Haskell MVar programs since the Haskell

CML programs create implicit threads for each communication action to accommodate

CML style composable events. The results indicate that the performance of MULTIMLTON

is comparable to Haskell programs on GHC, which is the state-of-the-art parallel functional

language compiler and runtime.

5 Implementation available at http://hackage.haskell.org/package/cml-0.1.3
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Fig. 17. (Colour online) Performance results of various threading systems.

In addition, we compared the performance of the threading and communication infras-

tructure using following microbenchmarks:

• spawn-test: Spawning 10 million threads.

• prod-cons: A single producer, single consumer benchmark where the producer sends

10 million integer tokens to the consumer.

• thread-ring: Thread-ring benchmark from Computer Language Benchmarks Game,

where 503 threads are arranged in a ring, and an integer token is passed through the

ring for 10 million hops.

The threading microbenchmarks are designed to gauge the benefit of parasitic threads

in a highly concurrent setting. The results are presented in Figure 17. The results show

that parasitic threads are significantly faster than a host threads-based implementation. We

also see that MLton CML programs tend to be faster than the MultiMLton host thread

programs. This is because MLton does not support parallel execution, and hence does not

have the synchronization overheads associated with the scheduler and channel data struc-

tures. Haskell CML programs are significantly slower than the corresponding MVar based

Haskell programs due to the cost of implicit thread creation in the CML implementation of

Haskell.

5.3 Local collector with read barriers

In order to validate the effectiveness of our new GC design that eliminates read barriers

(RB-), we have implemented a baseline local collector that utilizes read barriers (RB+).

Unlike the RB- collector, the read barriers in the RB+ collector ensure that the necessary

indirection is performed when accessing objects that have been lifted to the shared heap.
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1 pointer readBarrier (pointer p) {

2 if (! isPointer(p)) return p;

3 if (getHeader(p) == FORWARDED)

4 return *( pointer *)p;

5 return p;

6 }

Fig. 18. (Colour online) Read barrier.

Hence, the RB+ collector allows us to precisely quantify the advantages of eliminating the

read barriers, which is the motivation for the RB- collector.

5.3.1 Read barrier

Figure 18 shows the pseudo-C code for our read barrier. Whenever an object is lifted to

the shared heap, the original object’s header is set to FORWARDED , and the first word of

the object is overwritten with the new location of the object in the shared heap. Before

an object is read, the mutator checks whether the object has been forwarded, and if it is,

returns the new location of the object. Hence, our read barriers are conditional (Blackburn

& Hosking, 2004; Baker, 1978).

MLton represents non-value carrying constructors of (sum) datatypes using non-pointer

values. If such a type additionally happens to have value-carrying constructors that ref-

erence heap-allocated objects, the non-pointer value representing the empty constructor

will be stored in the object pointer field. Hence, the read barrier must first check whether

the presumed pointer does in fact point to a heap object. Otherwise, the original value is

returned (line 2). If the given pointer points to a forwarded object, the current location of

the object in the shared heap is returned. Otherwise, the original value is returned.

5.3.2 Optimizations

MultiMLton performs a series of optimizations to minimize heap allocation, thus reducing

the set of read barriers actually generated. For example, references and arrays that do not

escape out of a function are flattened. Combined with aggressive inlining and simplification

optimizations enabled by whole-program compilation, object allocation on the heap can be

substantially reduced.

The compiler and runtime system ensure that entries on thread stacks never point to

a forwarded object. Whenever an object pointer is stored into a register or the stack, a

read barrier is executed on the object pointer to get the current location of the object.

Immediately after an exporting write or a context switch, the current stack is walked and

references to forwarded objects are updated to point to the new location of lifted objects in

the shared heap.

Additionally, before performing an exporting write, register values are saved on the

stack, and reloaded after exit. Thus, as a part of fixing references to forwarding pointers

from the stack, references from registers are also fixed. This ensures that the registers never

point to forwarded objects either. Hence, no read barriers are required for dereferencing

object pointers from the stack or registers. This optimization is analogous to “eager” read
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Table 1. Comparison of cost of aSendEvt implemented over hosts and parasites

Configuration Normalized runtime

sendEvt 1

aSendEvt on Host 4.96

aSendEvt on Parasite 1.05

barriers as described in (Bacon et al., 2003). Eager read barrier elimination has marked

performance benefits for repeated object accesses, such as array element traversals in a

loop, where the read barrier is executed once when the array location is loaded into a

register, but all further accesses can elide executing the barrier.

5.4 Microbenchmarks

In this section, we present micro-benchmark measurements for common patterns observed

in the use of parasites to implement ACML primitives.

5.4.1 Lazy thread creation

The most common use case of parasitic threads is to model asynchronous short-lived

computation, which might potentially block on a global resource, and be resumed at a later

time. In ACML, this is observed in the base asynchronous event constructs aSendEvt

and aRecvEvt , where the implicit thread created during event synchronization may block

on the channel, even though the thread synchronizing on the asynchronous event never

blocks. For a short-lived computation that does not block, the overhead of parasites is the

cost of a non-tail call and the overheads of mechanisms in place for parasitic reification and

inflation. On the other hand, spawning a host thread for a short-lived, non-blocking com-

putation is the cost of allocating and collecting the host thread object, typically enqueueing

and dequeueing from the scheduler, and finally switching to the thread.

To illustrate the differences in a potentially blocking computation, we implemented a

single producer, single consumer program, where the producer repeatedly sends messages

to the consumer. We compared the performance of sendEvt (synchronous) versus aSendEvt

(asynchronous) implemented over host and parasitic threads. The results, presented in

Table 1, show that aSendEvt encoded with parasites have a worst-case overhead of only

5% over their synchronous counterparts. Not surprisingly, in this micro-benchmark, there

was no profitable parallelism to extract.

5.4.2 Inflation

In this section, we study the impact of inflating long running parasites (Section 3.9.1). We

implemented a micro-benchmark that spawns a large number of long running computa-

tions. We compare the runtime performance of spawning the computation as a host thread

and parasite with and without inflation.
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Fig. 19. (Colour online) Speedup of parasitic threads with and without inflation compared to host

threads

Figure 19 shows the speedup of different configurations relative to the runtime of host

threads on a single core. We see that, without inflation, parasites offer no parallelism

and hence do not scale. With inflation, parasites perform identically to host threads, and

incur no perceptible additional overhead for inflation. This benchmark shows that for a

scalable implementation, it is necessary to inflate long running parasites to take advantage

of parallel execution.

5.4.3 Read barrier overhead

In this section, we quantify the cost/benefit of read barriers in our system, which primarily

motivates our new garbage collector design (RB-) that eliminates read barriers.

We evaluated a set of 8 benchmarks (described in Section 5.9) running on a 16 core

AMD64, a 48 core Intel SCC and an 864 core Azul Vega 3 machine to measure read

barrier overheads. Figure 20 shows these overheads as a percentage of mutator time. Our

experiments reveal that, on average, the mutator spends 20.1%, 15.3% and 21.3% of time

executing read barriers on the AMD64, SCC and Azul architectures, respectively, for our

benchmarks.

While our read barrier implementation (Figure 18) is conditional (Baker, 1978), there ex-

ist unconditional variants (Brooks, 1984), where all loads unconditionally forward a pointer

in the object header to get to the object. For objects that are not forwarded, this pointer

points to the object itself. Although an unconditional read barrier, would have avoided the
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Fig. 20. (Colour online) Read barrier overhead as a percentage of mutator time.

Fig. 21. Effectiveness of read barrier checks: Checks represents the number of read barrier

invocations and forwarded represents the number of instances when the read barrier encountered

a forwarded object.

cost of the second branch in our read barrier implementation, it would necessitate having

an additional address length field in the object header for an indirection pointer.

Most objects in our system tend to be small. In our benchmarks, we observed that 95%

of the objects allocated were less than 3 words in size, including a word-sized header. The

addition of an extra word in the object header for an indirection pointer would lead to

substantial memory overheads, which in turn leads to additional garbage collection costs.

Moreover, trading branches with loads is not a clear optimization as modern processors

allow speculation through multiple branches, especially ones that are infrequent. Hence,

we choose to encode read barriers conditionally rather than unconditionally.

The next question to ask is whether the utility of the read barrier justifies its cost. To

answer this question, we measure the number of instances the read barrier is invoked

and the number of instances the barrier finds a forwarded object (see Figure 21). We see
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that read barriers find forwarded objects in less than one thousandth of a percent of the

number of instances they are invoked. Thus, in our system, the cost of read barriers is

substantial, but only rarely do they have to perform the task of forwarding references.

These results motivated our interest in a memory management design that eliminates read

barriers altogether.

5.5 Parasite benchmarks

Our benchmarks are parallel version of programs in MLton’s benchmark suite. The bench-

marks were made parallel with the help of ACML. The details of the benchmarks are

provided below:

• Mandelbrot: a Mandelbrot set generator.

• K-clustering: a k-means clustering algorithm, where each stage is spawned as a

server.

• Barnes-Hut: an n-body simulation using the Barnes-Hut algorithm.

• Count-graphs: computes all symmetries (automorphisms) within a set of graphs.

• Mergesort: merge-sort algorithm to sort one million numbers.

• TSP: a divide-and-conquer solution for the traveling salesman problem.

• Raytrace: a ray-tracing algorithm to render a scene.

• Mat-mult: a dense matrix multiplication of two 500 X 500 matrices.

• Sieve-primes: a streaming implementation of the sieve of Eratosthenes that gener-

ates first 3000 prime numbers. Each stage in the sieve is implemented as a

lightweight thread.

• Par-tak: The highly recursive function Tak function, where every recursive call is

implemented as a lightweight threads that communicates the result back to the caller

over a channel. This is designed as a stress test for the runtime system.

• Par-fib: Parallel Fibonacci function implemented with lightweight threads to stress

test the runtime system. Results are presented for calculating the 27th Fibonacci

number.

• Swerve: A highly parallel concurrent web-server entirely written in CML, fully

compliant with HTTP/1.1. Parts of Swerve were rewritten using ACML to allow

for greater concurrency between interacting sub-components. Workloads were gen-

erated using Httperf — a standard tool for profiling web-server performance. For our

results, 20,000 requests were issued at 2500 connections per second.

In order to capture the interaction of parasites and garbage collection, we evaluated the

benchmarks in three different GC configurations:

• STW: A single shared heap, stop-the-world garbage collector.

• RB+: A thread-local garbage collector with split heaps which uses read barriers to

preserve local heap invariants.

• RB-: A thread-local garbage collector with split heaps which uses procrastination

and cleanliness to preserve local heap invariants.

The parasitic versions of the benchmarks utilize asynchronous communication between

the threads, as well as parasites for implicit threads created by ACML. The non-parasitic
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Table 2. Thread and communication statistics for Stop-the-world GC running on 8 cores

Benchmark # Host # Host # Par. # Comm. Avg host Avg par. # Force Avg par.

(Par) (NPar) stack size stack size stack closure

(bytes) (bytes) growth (bytes)

Mandelbrot 4083 6161 3306 4083 3463 155 1 328

K-clustering 771 1098 51402 51402 1804 136 0 240

Barnes-hut 8327 8327 24981 8075 1782 140 1 288

Count-graphs 153 153 148 516 3982 148 0 278

Mergesort 300 200260 2894734 2698766 1520 184 0 290

TSP 2074 4122 6143 4095 1304 303 1 528

Raytrace 580 590 24 256 4997 NA 0 NA

Matrix-multiply 528 528 512017 251001 2082 120 0 238

Sieve-primes 10411 12487 4872669 4946374 1738 139 0 243

Par-tak 122960 297338 175423 297361 1120 178 0 371

Par-fib 1 NA 466253 635621 1402 302 45087 463

Swerve 83853 110534 195534 367529 2692 160 2 405

Mean 19503 58327 766886 772090 2324 179 3758 334

Median 1423 6161 113413 151202 1793 155 0 290

SD 40211 101780 1526043 1516267 1217 64 13015 97

versions use synchronous communication, since asynchronous communication over host

threads is expensive, as previously shown in Section. 5.4.1. The synchronous version of

these benchmarks were appropriately restructured to eliminate the possibility of deadlocks.

The benchmarks were run with same maximum heap size for each of the configurations.

5.6 Threads and communication

We have collected thread and communication statistics that provide insights into the be-

havior of our programs, and also illustrate the key to the benefits of parasites. Thread and

communication statistics for parasitic (Par) and non-parasitic (NPar) versions are tabulated

in Table. 2. These statistics were collected for stop-the-world GC version running on 48

cores. The statistics collected here were similar on the shared-heap parallel GC as well as

running on different number of cores.

The number of hosts (# Hosts) show that our benchmarks are highly concurrent and

amenable to parallel execution. The number of hosts created in parasitic versions is smaller

than the non-parasitic versions. This is due to the fact many of the original host threads are

created as parasites in the parasitic versions. On average, parasitic stacks are also much

smaller than the host stacks. Also, not all parasites are ever reified and simply run to

completion as a non-tail call. The cumulative effect of these on the parasitic version is

the decreased cost of scheduling and management (allocation and collection).

Parasitic stacks are almost always smaller than the reserved space available in the host

stacks. Hence, when parasites are attached to hosts, the hosts need not grow the stacks in

order to fit in the parasites. We measured the number of instances where parasite being

attached happened to be larger than the reserved space (# Force stack growth), and forces

stack growth on the host. Apart from Par-fib, none of the benchmarks need to force stack
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growths more than twice. In Par-fib, except the proto-thread, all of the threads created are

parasitic, a few of which get inflated during the execution. Since all computation is encap-

sulated in parasitic threads, we see an increased number of stack growths corresponding

to parasite migration. Parasitic stack measurements are unavailable for Raytrace since no

parasites were reified. Parasitic closure size is the size of the parasitic stack including

the transitive closure. This shows the average bytes copied for inter-processor parasitic

communication.

The number of communications performed (# Comm) shows that the benchmarks are

also communication intensive. For channel communication, a sender matching with a

receiver is considered as one communication action. The number of communications per-

formed is the same for the parasitic versions of the benchmarks, and only the nature of

the communication varies (Synchronous versus Asynchronous). Since the benchmarks are

communication intensive, asynchronous communication allows for greater concurrency

between the communicating threads, and hence, exhibits better parallel performance.

The number of hosts for the non-parasitic version of Par-fib could not be obtained, since

the program did not complete execution as it runs out of memory. The Par-fib program

creates a very large number of threads, most of which are alive throughout the lifetime

of the program. We observed that even for smaller Fibonacci numbers, the non-parasitic

version of Par-fib spent most of its time performing GC. Not only did the parasitic version

of Par-fib run, but also scaled as the number of cores were increased.

5.7 Scalability

Speedup results are presented in Figure 22. Baseline is a version of the programs optimized

for sequential execution, without the overhead of threading wherever possible. Each data

point represents the mean of the speedups of benchmarks presented in Section 5.5. In gen-

eral, we see that the parasitic version perform better than their corresponding non-parasitic

versions, and thread-local GCs (RB+ and RB- configurations) show better scalability and

graceful performance degradation with increasing number of cores.

At peak scalability, Par STW is 23% faster than Host STW , Par RB+ is 11% faster

than Host RB+ and Par RB- is 12% faster than Host RB- . In thread-local GCs, par-

asitic threads blocked on channels residing on shared heap must be lifted to the shared

heap. Subsequently, the parasite must be copied back to the target local heap before being

attached to or reified into a host thread. Hence, the improvement of parasitic versions over

the host versions under thread-local GC scheme is subdued when compared to the stop-

the-world version.

Parasitic threads also exhibited good scalability in the highly concurrent, communication

intensive Par-tak and Par-fib benchmarks. These benchmarks were specifically intended to

test the cost of thread creation and communication with very little computation. A large

number of threads are created in these benchmarks with almost all of them being alive

concurrently.

While the host version of Par-tak ran about between 1.1X to 1.4X faster than the baseline

on different GC configurations, the parasitic versions were 1.6X to 2.2X faster than the

baseline. Host version of Par-fib failed to run to completion due to the lack of space in

the heap to accommodate all of the live host threads. Parasitic thread creation being cheap
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Fig. 22. (Colour online) Mean speedup of host and parasitic version of MULTIMLTON benchmarks

under different GC configurations. Baseline is optimized sequential version.

allows the parasitic versions of Par-fib to run to completion. The parasitic versions of Par-

fib ran between 1.2X to 1.8X faster than the baseline on different GC configurations.

5.8 Swerve

Swerve is designed as a collection of sub-components such as file processor, network

processor, connection manager, etc. CML communication abstractions are utilized for

inter-component interaction. This construction easily lends itself for multi-core execution.

We evaluated the performance of Swerve on three configurations; a parallel CML imple-

mentation, an ACML implementation using host threads, and an ACML implementation

using parasites. The parallel CML version uses synchronous communication for interaction

between different sub-components. The experiments were performed in stop-the-world

GC configuration. By utilizing asynchronous communication, overall concurrency in the

system is increased.

The ACML version of Swerve improved upon the parallel CML implementation by

eliminating lock-step file and network I/O, parallely packetizing file chunks, implementing

non-blocking I/O, and rolling log. The details of the improvements along with the ACML

code snippets is available is available as a case study in our earlier work (Ziarek et al.,

2011).
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Fig. 23. Benchmark characteristics. %Sh represents the average fraction of bytes allocated in the

shared heap across all the architectures.

We utilized Httperf to measure the reply rate of different configurations by repeatedly

accessing a 10KB file. We issued connections at a rate of 2500 connections per second.

In each case, Swerve was run on 48 cores. The PCML implementation scaled up to 1610

replies per second. As expected, naively spawning lightweight threads for asynchrony in

the ACML version using host threads, suppressed the benefits of increased concurrency in

the program due to communication overheads. Swerve with ACML implemented on hosts

scaled up to 1890 replies per second. By mitigating the overheads of asynchrony, Swerve

with parasites was able to scale better, and offered up to 3230 replies per second.

5.9 GC Benchmarks

The benchmarks shown in Figure 23 were designed such that the input size and the num-

ber of threads are tunable; each of these benchmarks were derived from a sequential

Standard ML implementation, and parallelized using our lightweight thread system and

CML-style (Reppy, 2007) and ACML message-passing communication. More specifically

these benchmarks were chosen because they have interesting allocation and data sharing

patterns.

• AllPairs: an implementation of Floyd-Warshall algorithm for computing all pairs

shortest path.

• BarnesHut: an n-body simulation using Barnes-Hut algorithm.

• CountGraphs: computes all symmetries (automorphisms) within a set of graphs.

• GameOfLife: Conway’s Game of Life simulator

• Kclustering: a k-means clustering algorithm, where each stage is spawned as a

server.

• Mandelbrot: a Mandelbrot set generator.

• Nucleic: Pseudoknot (Hartel et al., 1996) benchmark applied on multiple inputs.

• Raytrace: a ray-tracing algorithm to render a scene.

Parameters are appropriately scaled for different architectures to ensure sufficient work

for each of the cores. The benchmarks running on AMD and SCC were given the same

input size. Hence, we see that the benchmarks allocate the same amount of memory during

their lifetime. But, we increase the number of threads on the SCC when compared to

AMD since there is more hardware parallelism available. For Azul, we scale both the
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input size and the number of threads, and as a result we see a large increase in bytes

allocated when compared to the other platforms. Out of the total bytes allocated during

the program execution, on average 5.4% is allocated in the shared heap. Thus, most of the

objects allocated are collected locally, without the need for stalling all of the mutators.

We observe that the allocation rate is highly architecture dependent, and is the slowest

on the SCC. Allocation rate is particularly dependent on memory bandwidth, processor

speed and cache behavior. On the SCC, not only is the processor slow (533MHz) but also

the serial memory bandwidth for our experimental setup is only around 70 MB/s.

5.10 Performance

Next, we analyze the performance of the new local collector design. In order to establish

a baseline for the results presented, we have ported our runtime system to utilize the

Boehm-Demers-Weiser (BDW) conservative garbage collector (Boehm, 2012). We briefly

describe the port of our runtime system utilizing BDW GC.

Although BDW GC is conservative, it can utilize tracing information when provided.

MULTIMLTON generates tracing information for all objects, including the stack. However,

in the case of BDW GC under MULTIMLTON, we utilize the tracing information for all

object allocations except the stack. This is because stack objects in our runtime system

represent all of the reserved space for a stack, while only a part of the stack is actually used

which can grow and shrink as frames are pushed and popped. Since the BDW GC does

not allow tracing information of objects to be changed after allocation, we only scan the

stack objects conservatively. BDW uses a mark-sweep algorithm, and we enable parallel

marking and thread-local allocations.

Figure 24(a) illustrates space-time trade-offs critical for any garbage collector evalua-

tion. STW GC is the baseline stop-the-world collector described in Section 4.1, while RB+

and RB- are local collectors. RB+ is a local collector with read barriers while RB- is our

new local collector design without read barriers, exploiting procrastination and cleanliness.

We compare the normalized running times of our benchmarks under different garbage

collection schemes as we decrease the heap size. For each run of the experiment, we

decrease the maximum heap size allowed and report the maximum size of the heap utilized.

Thus, we leave it to the collectors to figure out the optimal heap size, within the allowed

space. This is essential for the local collectors, since the allocation pattern of each core is

usually very different and depends on the structure of the program.

The results presented here were collected on 16 cores. As we decrease overall heap

sizes, we see programs under all of the different GC schemes taking longer to run. But

RB- exhibits better performance characteristics than its counterparts. We observe that the

minimum heap size under which the local collectors would run is greater than the STW and

BDW GCs. In the local collectors, since the heap is split across all of the cores, there is

more fragmentation. Also, under the current scheme, each local collector is greedy and will

try to utilize as much heap as it can in order to reduce the running time (by choosing semi-

space collection over mark-compact), without taking into account the heap requirements

of other local collectors. Currently, when one of the local cores runs out of memory, we

terminate the program. Since we are interested in throughput on scalable architectures

where memory is not a bottleneck, we have not optimized the collectors for memory
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Fig. 24. (Colour online) Performance comparison of Stop-the-world (STW), Boehm-Demers-Weiser

conservative garbage collector (BDW), local collector with read barriers (RB+), and local collector

without read barriers (RB-): Geometric mean for 8 benchmarks running on AMD64 with 16 cores.

utilization. We believe we can modify our collector for memory constrained environments

by allowing local heaps to shrink on demand and switch from semi-space to compacting

collection, if other local heaps run out of memory.

The STW and BDW GCs are much slower than the two local collectors. In order to

study the reason behind this slowdown, we separate the mutator time (Figure 24(b)) and

garbage collection time (Figure 24(c)). We see that STW GC is actually faster than the

local collectors in terms of mutator time, since it does not pay the overhead of executing

read or write barriers. But, since every collection requires stopping all the mutators and a

single collector performs the collection, it executes sequentially during a GC. Figure 24(d)

shows that roughly 70% of the execution total time for our benchmarks under STW is spent

performing GCs, negatively impacting scalability.

Interestingly, we see that programs running under the BDW GC are much slower when

compared to other GCs. This is mainly due to allocation costs. Although we enabled thread-

local allocations, on 16 cores, approximately 40% of the time was spent on object alloca-

tion. While the cost of object allocation for our other collectors only involves bumping the

frontier, allocation in BDW GC is significantly more costly, involving scanning through a
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Fig. 25. (Colour online) Performance comparison of local collector with read barriers (RB+) and

local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on Azul with

846 cores.

free list, incurring substantial overhead. Moreover, BDW GC is tuned for languages like

C/C++ and Java, where the object lifetimes are longer and allocation rate is lower when

compared to functional programming languages.

In Figure 24(a), at 3X the minimum heap size, RB+, STW and BDW GCs are 32%,

106% and 584% slower than the RB- GC. We observe that there is very little difference

between RB+ and RB- in terms of GC time but the mutator time for RB+ is consistently

higher than RB- due to read barrier costs. The difference in mutator times is consistent

since the increased number of GCs incurred as a result does not adversely affect it. This also

explains why the total running time of RB- approaches RB+ as the heap size is decreased

in Figure 24(a). With decreasing heap size, the programs spend a larger portion of the time

performing GCs, while the mutator time remains consistent. Hence, there is diminishing

returns from using RB- as heap size decreases.

Next, we analyze the performance on Azul (see Figure 25). We only consider perfor-

mance of our local collectors since our AMD results show that the other collectors (STW

and BDW) simply do not have favorable scalability characteristics. At 3X the minimum

heap size, RB- is 30% faster than RB+.
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Fig. 26. (Colour online) Performance comparison of local collector with read barriers (RB+) and

local collector without read barriers (RB-): Geometric mean for 8 benchmarks running on SCC with

48 cores.

SCC performance results are presented in Figure 26. At 3X the minimum heap size,

RB- is 20% faster than RB+. From the total time graphs, we can see that the programs

tend to run much slower as we decrease the heap sizes on SCC. Compared to the fastest

running times, the slowest running time for RB- is 2.01X, 2.05X, and 3.74X slower on

AMD, Azul, and SCC respectively. This is due to the increased number of shared heap

collections, which are more expensive than other architectures as a result of the absence

of caching. This is noticeable by a more rapid increase in garbage collection overhead

percentages (Figure 26(d)).

5.11 Impact of cleanliness

Cleanliness information allows the runtime system to avoid preempting threads on a write

barrier when the source of an exporting write is clean. In order to study the impact of

cleanliness, we removed the reference counting code and cleanliness check from the write

barrier; thus, every exporting write results in a thread preemption and stall. The results

presented here were taken on the AMD machine with programs running on 16 cores with

the benchmark configurations given in Figure 23. The results are similar on SCC and Azul.
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Fig. 27. Number of preemptions on write barrier.

Fig. 28. Forced GCs as a percentage of the total number of major GCs.

Figure 27 shows the number of preemptions on write barrier for different local collector

configurations. RB- row represents the local collector designs with all of the features

enabled; RB- MU- row shows a cleanliness optimization that does not take an object’s

mutability into consideration in determining cleanliness (using only recorded reference

counts instead), and row RB- CL- row represents preemptions incurred when the collec-

tor does not use any cleanliness information at all. Without cleanliness, on average, the

programs perform substantially more preemptions when encountering a write barrier.

Recall that if all of the threads belonging to a core get preempted on a write barrier,

a local major GC is forced, which lifts all of the sources of exporting writes, fixes the

references to forwarding pointers and unblocks the stalled threads. Hence, an increase in

the number of preemptions leads to an increase in the number of local collections.

Figure 28 shows the percentage of local major GCs that were forced compared to the

total number of local major GCs. Row RB- CL- shows the percentage of forced GCs if

cleanliness information is not used. On average, 49% of local major collection performed

is due to forced GCs if cleanliness information is not used, whereas it is less than 1%

otherwise. On benchmarks like BarnesHut, GameOfLife and Mandelbrot, where all of

the threads tend to operate on a shared global data structure, there are a large number of

exporting writes. On such benchmarks almost all local GCs are forced in the absence of

cleanliness. This adversely affects the running time of programs.

Figure 29 shows the running time of programs without using cleanliness. On average,

programs tend to run 28.2% slower if cleanliness information is ignored. The results show

that cleanliness analysis therefore plays a significant role in our GC design.

5.12 Impact of immutability

If the source of an exporting write is immutable, we can make a copy of the object in the

shared heap and assign a reference to the new shared heap object to the target. Hence, we
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Fig. 29. (Colour online) Impact of utilizing object mutability information and cleanliness analysis

on the performance of RB- GC.

can ignore the reference count of such objects. Not all languages may have the ability to

distinguish between mutable and immutable objects in the compiler or in the runtime sys-

tem. Hence, we study the impact of our local collector design with mutability information

in mind. To do this, we ignore the test for mutability in the cleanliness check (Line 4 in

Figure 11) and modify the object lifting code in Figure 14 to treat all objects as mutable.

RB- MU- row in Figures 27 and 28 show the number of write barrier preemptions and

the percentage of forced GCs, respectively, if all objects were treated as mutable. For some

programs such as AllPairs, CountGraphs, or Kclustering, object mutability does not

play a significant factor. For benchmarks where it does, distinguishing between mutable

and immutable objects helps avoid inducing preemptions on a write barrier since a copy of

the immutable object can be created in the shared heap without the need to repair existing

references to the local heap copy.

Figure 29 shows the performance impact of taking object mutability into account. While

ignoring object mutability information, BarnesHut, GameOfLife and Nucleic are slower

due to the increased number of forced GCs. Interestingly, AllPairs, CountGraphs, Kclu

stering and Raytrace are marginally faster if the mutability information is ignored.

This is due to not having to manipulate the imSet (Line 14 in Figure 14), and walking

immutable objects after the objects are lifted (Lines 25-27 in Figure 14). On average, we

see a 11.4% performance loss if mutability information is not utilized for cleanliness.
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Fig. 30. Impact of heap session: % LM clean represents the fraction of instances when a clean

object closure has at least one object with LOCAL MANY references.

5.13 Impact of heap session

In order to assess the effectiveness of using heap sessions, we measured the percentage of

instances where the source of an exporting write is clean with at least one of the objects in

the closure has a LOCAL MANY reference. During such instances, we walk the current heap

session to fix any references to forwarded objects. Without using heap sessions, we would

have preempted the thread in the write barrier, reducing available concurrency. The results

were obtained on the AMD with programs running on 16 cores with the configuration given

in Figure 23. The results are presented in Figure 30.

The first row shows the percentage of instances when an object closure is clean and

has at least one object with LOCAL MANY references. On average, we see that 12% of

clean closures have at least one object with LOCAL MANY references. We also measured

the average size of heap sessions when the session is traced as a part of lifting an object

closure to the shared heap (Lines 29-31 in Figure 14). The average size of a heap session

when it is traced is 2859 bytes, which is less than a page size. These results show that

utilizing heap sessions significantly contributes to objects being tagged as clean, and heap

sessions are small enough to not introduce significant overheads during tracing.

6 Related work

In this section we discuss related work, focusing on the most closely related systems to

MULTIMLTON. We split our discussion into threading mechanisms and garbage collection

strategies.

6.1 Lightweight threads

There are a number of languages and libraries that support varying kinds of message-

passing styles. Systems such as MPI (Li et al., 2008; Tang & Yang, 2001) support per-

processor static buffers, while CML (Reppy, 2007), Erlang (Armstrong et al., 1996),

F# (Syme et al., 2007), and MPJ (Baker & Carpenter, 2000) allow for dynamic channel

creation. Although MPI supports two distinct styles of communication, both asynchronous

and synchronous, not all languages provide primitive support for both. For instance, Er-

lang’s fundamental message passing primitives are asynchronous, while CML’s primitives

are synchronous. We described how parasites can be utilized to improve the performance

of ACML, which supports both synchronous and asynchronous communication.
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There has been much interest in lightweight threading models ranging from using run-

time managed thread pools such as those found in C# (C# Language Specification, 2014)

and the java.util.concurrent package (Lea, 1999), to continuation-based systems found in

functional languages such as Scheme (Mohr et al., 1990; Kranz et al., 1989), CML (Reppy,

2007), Haskell (Sivaramakrishnan et al., 2013; Harris et al., 2005), and Erlang (Armstrong

et al., 1996). Parasitic threads can be viewed as a form of lightweight threading, though

there are a number of key differences. In addition to describing a non-local control flow

abstraction, scheduling and migration are an integral part of parasitic threads. This makes

parasites ideal for short-lived computation, by avoiding the scheduler overheads and local-

izing the thread interactions.

Worker pool models for executing asynchronous tasks have been explored in languages

like F#, for latency masking in I/O operations. However, this model is not effective for

implementing tightly interacting asynchronous tasks. In the worker pool model, even a

short-lived asynchronous computation is not started immediately, but only when a worker

is free, and hence delaying transitively dependent tasks. This model also suffers from

contention on the task queues in a parallel setting.

Previous work on avoiding thread creation costs have focused on compiler and run-

time techniques for different object representations (Mohr et al., 1990; Frigo et al., 1998)

and limiting the computations performed in a thread (Kale & Krishnan, 1993; Kranz

et al., 1989). The most similar among the previous work to parasitic threads is Lazy

Threads (Goldstein et al., 1996), which allow encoding arbitrary computation in a po-

tentially parallel thread. A lazy thread starts off as regular function calls, just like parasites.

The key difference of this work to parasites is that when a lazy thread blocks, it is not

reified, and is left in the host stack, right on top of its parent. Any subsequent function calls

made by the parent are executed in a new stack, and the system thus has spaghetti stacks.

Lazy threads assume that blocking is rare, whereas the common case in a parasitic

thread is blocking on a synchronous communication. Leaving the parasites on the host

would be detrimental to the performance since even if one parasite blocks, all subsequent

sequential function calls and parasite creation on the host will have to be run on a separate

thread. Parasites also support implicit migration to the point of synchronization, and helps

to localize interactions, which is not possible if the parasites are pinned to the hosts.

Parasites also share some similarity to dataflow (Johnston et al., 2004; Nikhil & Arvind,

2001) languages, insofar as they represent asynchronous computations that block on

dataflow constraints; in our case, these constraints are manifest via synchronous message-

passing operations. Unlike classic dataflow systems, however, parasites are not structured

as nodes in a dependency graph, and a parasite maintains no implicit dependency relation-

ship with the thread that created it. CML (Reppy, 2007) supports buffered channels with

mailboxes. While parasites can be used to encode asynchronous sends, unlike buffered

channels, they provide a general solution to encode arbitrary asynchronous computation.

Work sharing and work stealing (Blumofe & Leiserson, 1999; Agrawal et al., 2007)

are well-known techniques for load balancing multi threaded tree-structured computations,

and have been used effectively in languages like Cilk (Frigo et al., 1998) to improve perfor-

mance. In our system, host threads are scheduled by work sharing, by eagerly spawning in

a round-robin fashion, while parasites are implicitly stolen during channel communication.
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6.2 Garbage Collection

Over the years, several local collector designs (Steele, 1975; Doligez & Leroy, 1993;

Steensgaard, 2000; Anderson, 2010) have been proposed for multithreaded programs. Re-

cently, variations of local collector design have been adopted for multithreaded, functional

language runtimes like GHC (Marlow & Peyton Jones, 2011) and Manticore (Auhagen

et al., 2011). Doligez et al. (Doligez & Leroy, 1993) proposed a local collector design

for ML with threads where all mutable objects are allocated directly on the shared heap,

and immutable objects are allocated in the local heap. Similar to our technique, whenever

local objects are shared between cores, a copy of the immutable object is made in the

shared heap. Although this design avoids the need for read and write barriers, allocating all

mutable objects, irrespective of their sharing characteristics can lead to poor performance

due to increased number of shared collections, and memory access overhead due to NUMA

effects and uncached shared memory as in the case of SCC. It is for this reason we do not

treat the shared memory as the oldest generation for our local generation collector unlike

other designs (Doligez & Leroy, 1993; Marlow & Peyton Jones, 2011).

Several designs utilize static analysis to determine objects that might potentially escape

to other threads (Jones & King, 2005; Steensgaard, 2000). Objects that do not escape are

allocated locally, while all others are allocated in the shared heap. The usefulness of such

techniques depends greatly on the precision of the analysis, as objects that might poten-

tially be shared are allocated on the shared heap. This is undesirable for architectures like

the SCC where shared memory accesses are very expensive compared to local accesses.

Compared to these techniques, our design only exports objects that are definitely shared

between two or more cores. Our technique is also agnostic to the source language, does not

require static analysis, and hence can be implemented as a lightweight runtime technique.

Anderson (Anderson, 2010) describes a local collector design (TGC) that triggers a local

garbage collection on every exporting write of a mutable object, while immutable objects,

that do not have any pointers, are copied to the shared heap. This scheme is a limited

form of our cleanliness analysis. In our system, object cleanliness neither solely relies on

mutability information, nor is it restricted to objects without pointer fields. Moreover, TGC

does not exploit delaying exporting writes to avoid local collections. However, the paper

proposes several interesting optimizations that are applicable to our system. In order to

avoid frequent mutator pauses on exporting writes, TGC’s local collection runs concur-

rently with the mutator. Though running compaction phase concurrently with the mutator

would require read barriers, we can enable concurrent marking to minimize pause times.

TGC also proposes watermarking scheme for minimizing stack scanning, which can be

utilized in our system to reduce the stack scanning overheads during context switches and

exporting writes of clean objects.

Marlow et al. (Marlow & Peyton Jones, 2011) propose exporting only part of the transi-

tive closure to the shared heap, with the idea of minimizing the objects that are globalized.

The rest of the closure is exported essentially on demand during the next access from

another core. This design mandates the need for a read barrier to test whether the object

being accessed resides in the local heap of another core. However, since the target language

is Haskell, there is an implicit read barrier on every load, to check whether the thunk has
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already been evaluated to a value. Since our goal is to eliminate read barriers, we choose

to export the transitive closure on an exporting write.

7 Conclusion

In this paper we introduced ACML, an extension of CML that allows for the creation

of composable asynchronous and heterogeneous events and protocols, in the context of

MULTIMLTON. To support efficient ACML programs we introduce the design and imple-

mentation of parasites, a runtime thread management mechanism intended to reduce the

cost of supporting asynchrony. Further, we describe a new garbage collector design tuned

for ACML that obviates the need for read barriers by stalling writes and a new cleanliness

property for identifying which objects can be moved from a local heap to the global heap

safely without establishing forwarding pointers.
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