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Abstract Depression is a severe mental health disorder

with high societal costs. Current clinical practice depends

almost exclusively on self-report and clinical opinion, risk-

ing a range of subjective biases. The long-term goal of our

research is to develop assistive technologies to support clin-

icians and sufferers in the diagnosis and monitoring of treat-

ment progress in a timely and easily accessible format. In the

first phase, we aim to develop a diagnostic aid using affec-

tive sensing approaches. This paper describes the progress to
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date and proposes a novel multimodal framework comprising

of audio-video fusion for depression diagnosis. We exploit

the proposition that the auditory and visual human com-

munication complement each other, which is well-known

in auditory-visual speech processing; we investigate this

hypothesis for depression analysis. For the video data analy-

sis, intra-facial muscle movements and the movements of

the head and shoulders are analysed by computing spatio-

temporal interest points. In addition, various audio features

(fundamental frequency f0, loudness, intensity and mel-

frequency cepstral coefficients) are computed. Next, a bag

of visual features and a bag of audio features are generated

separately. In this study, we compare fusion methods at fea-

ture level, score level and decision level. Experiments are

performed on an age and gender matched clinical dataset of

30 patients and 30 healthy controls. The results from the mul-

timodal experiments show the proposed framework’s effec-

tiveness in depression analysis.

Keywords Depression analysis · Multimodal · LBP-TOP ·

Bag of words

1 Introduction

Affect, meaning emotions and mood, is an essential, integral

part of human perception and communication. As research

in the last two decades has shown, emotions and the display

of affect play an essential role not only in cognitive func-

tions such as rational decision making, perception and learn-

ing, but also in interpersonal communication [33]. Affective

sensing—the sensing of affective states—plays a key role

in emerging transformational uses of IT, such as healthcare,

security and next generation user interfaces. Recent advances

in affective sensing, e.g. automatic face tracking in videos,
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measuring facial activity, recognition of facial expressions,

analysis of affective speech characteristics and physiologi-

cal effects that occur as a result of affective state changes,

paired with the decreasing cost and increasing power of

computing, have led to an arsenal of prototypical affective

sensing tools now at our finger tips. We can employ these

to tackle higher problems, e.g. supporting clinicians in the

diagnosis of mental health disorders.

Depression is one of the most common and disabling men-

tal disorders, and has a major impact on society. The land-

mark WHO 2004 Global Burden of Disease report by Math-

ers et al. [24] quantified depression as the leading cause of

disability worldwide (an estimated 154 million sufferers).

The lifetime risk for depression is reported to be at least

15 % [19]. People of all ages suffer from depression, which

is also a major risk factor for suicide. Fortunately, depression

can be ameliorated through the provision of suitable objec-

tive technology for diagnosing depression to health profes-

sionals and patients [34]. Disturbances in the expression of

affect reflect changes in mood and interpersonal style, and

are arguably a key index of a current depressive episode. This

leads directly to impaired interpersonal functioning, causing

a range of interpersonal disabilities, functioning in the work-

force, absenteeism and difficulties with a range of everyday

tasks (such as shopping). Whilst these are a constant source

of distress in affected subjects, the economic impact of men-

tal health disorders through direct and indirect costs has long

been underestimated. Despite its severity and high preva-

lence, there currently exist no laboratory-based measures of

illness expression, course and recovery. This compromises

optimal patient care, compounding the burden of disabil-

ity. As healthcare costs increase worldwide, the provision

of effective health monitoring systems and diagnostic aids

is highly important. Affective sensing technology can and

will play a major role in this. With the advancement of affec-

tive sensing and machine learning, computer aided diagno-

sis can and will play a major role in providing an objective

assessment.

In a close collaboration of computer scientists and psy-

chologists, we aim to develop multimodal assistive tech-

nologies that support clinicians during the diagnosis, and

both clinicians and sufferers in the monitoring of treatment

progress. The development of an objective diagnostic mea-

sure for a leading cause of disability worldwide would repre-

sent a major diagnostic breakthrough with significant future

medical possibilities. The proposed multimodal approach

will underpin a new generation of objective laboratory-style

markers of illness expression. In the first phase, we inves-

tigate multimodal affective sensing technologies, in partic-

ular face and voice analysis techniques, for a prototypical

system that is tested at the Black Dog Institute—a clinical

research institute focussing on depression and other mental

health disorders—in Sydney, Australia, and at the Queens-

land Institute of Medical Research, Australia. In the medium

term, we plan to translate the developed approaches into an

assistive laptop system, so that clinicians and patients can

assess response to treatment in a timely and easily acces-

sible format. In the long term, we hope to assist patients

with depression to monitor the progress of their illness in

a similar way that a patient with diabetes monitors their

blood sugar levels with a small portable device, e.g. a smart-

phone. In mental healthcare, our approach also lends itself

to expansion into other disorders (schizophrenia, autism,

bipolar disorder), where laboratory-style diagnoses are also

lacking.

The aim of this study is to investigate the utility of affective

sensing methods for automated depression analysis, which

can assist clinicians in depression diagnosis and monitoring.

The proposed framework is based on extracting audio-video

features and comparing various fusion approaches at differ-

ent stages.

2 Related work

Inferring emotions from facial expression analysis is a well-

researched problem [31,41]. Over the past two decades, vari-

ous geometric, texture, static and temporal visual descriptors

have been proposed for various expression analysis related

problems (e.g. [3,23,41,42]). Emotion analysis methods can

be broadly divided into three categories based on the type of

feature descriptor used. Shape feature based methods such

as [3,9] are based on facial geometry only. The second class

are the appearance features based emotion analysis methods

[10,11,42], which are based on analysing the skin texture.

The third category are the hybrid methods [23], which used

both shape and appearance features. Zhao and Pietikainen

[42] show that appearance based features are more effective

in emotion analysis as they are able to capture subtle facial

movements, which are difficult to capture otherwise using

shape based features.

This knowledge can also be used for depression analysis

and it is, therefore, no surprise that computer-based depres-

sion analysis research to date has been drawing inspira-

tions from this mature research field [7]. Various audio and

video-based methods have been proposed in the past, of

which we can only list some here. In one of the first sem-

inal works for automatic depression analysis, Cohn et al. [7]

explored the relationship between facial action coding system

(FACS)-based facial and vocal features and clinical

depression detection. They learnt subject-dependent active

appearance models (AAM) [12,35] to automatically track

facial features. The shape and appearance features after AAM

fitting are further used to compute parameters such as the

occurrence of so called FACS action units (AU, associated

with depression), mean duration, ratio of onset to total dura-
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tion and ratio of offset to onset phase. However, the audio and

video features were not fused. To the best of our knowledge,

our proposed framework is the first multimodal attempt at

depression analysis.

According to Ellgring’s hypothesis [13], depression leads

to a remarkable drop in facial activity, while facial activity

increases with the improvement of subjective well-being.

Considering Ellgring’s hypothesis as a starting point, McIn-

tyre et al. [25] analysed the facial response of the subjects

when shown a short video clip. Like Cohn et al. [7], subject-

specific AAMs were learned and shape features were com-

puted from every fifth video frame. The shape features were

combined and classified at the frame level by the means of

support vector machine (SVM). However, facial activity is

dynamic in nature. It has been shown in the literature that tem-

poral facial dynamics provide more information than using

static information only [2].

A limitation of both [7] and [25] is their use of subject-

specific AAM models. For a new subject, a new AAM

model needs to be trained, which is both complex and time

consuming. In contrast, the video analysis in our proposed

framework is subject-independent. It has been shown in the

literature that temporal texture features perform better than

geometric features only for dynamic facial expression analy-

sis [42]. Simple temporal features, such as mean duration of

AUs [7], have been used. However, in this paper, sophisti-

cated spatio-temporal descriptors (local binary patterns on

three orthogonal planes (LBP-TOP) and space-time inter-

est points (STIP), see Sect. 4.1), which have been success-

fully used for incorporating temporal information in ear-

lier facial expression recognition approaches [42], have been

applied.

In our recent work for automatic depression recognition,

[17] a vision-based framework is proposed which is based on

analysing facial dynamics using LBP-TOP and body move-

ments using STIP in a bag-of-words (BoW) framework. Var-

ious classifiers were also compared on these features. In

this paper, a similar vision-based pipeline is used. In our

another work [18], a thorough comparison of the discrim-

inative power of facial dynamics and the remaining body

parts for depression detection is provided. Further, a his-

togram of head movements is proposed and results show that

head movements alone are a powerful cue for depression

detection.

In general emotion recognition from speech information,

Mel-scale frequency cepstral coefficients (MFCC) are con-

sidered one of the more relevant features [4]. For example,

MFCCs were investigated in [8], who found that the clas-

sification results were statistically significant for detecting

depression. The MFCCs are a compact representation of the

short-time power spectrum of speech after weighting the fre-

quency scale in accordance with the frequency sensitivity

of human hearing. Pitch features, which have been widely

investigated in the literature for prosody analysis, show a

lower range of fundamental frequency f0 in depressed sub-

jects [14,20,28,29], which increases after treatment [30].

The lower range of f0 indicates monotone speech [26] and

its low variance indicates a lack of normal expression in

depressed subjects [27]. f0 estimation, often also referred

to as pitch detection, has been a popular approach used in

speech processing in general and lately for speech-based

emotion recognition. f0 is the lowest frequency of a peri-

odic waveform. Several methods are used to estimate the f0

values, mostly based on the auto-correlation function (ACF).

In this paper, f0-raw is used as it results in better depression

recognition [1].

There is convincing evidence that sadness and depression

are associated with a decrease in loudness [37], showing

lower loudness values for depressed subjects. Since the loud-

ness is intimately related to sound intensity, both features are

investigated (see Sect. 4.2). Sound intensity I is measured as

the sum over a short time frame of the squared signal values.

Loudness L is directly related to sound intensity, describ-

ing the magnitude of the auditory sound intensity sensation.

A gain in performance is reported by [38] in speech-based

emotion recognition by fusing several acoustic features as

compared to single features only. Therefore, the effect of

fusing individual audio features is also investigated in this

paper. Pitch, intensity, loudness and MFCC are experimented

on as audio features (Sect. 4.2). The results discussed in the

experiment section confirm the finding of [38].

Researchers have also explored various multimodal

approaches for improved affect recognition. Zeng et al. [41]

presented a thorough survey on existing approaches and

outlined some of the challenges. In one of the works by

Busso el al. [5], they describe a multimodal framework

and show that the fusion of facial expression with speech

information performs better than unimodal systems for emo-

tion recognition. A comparison of various fusion methods

for multimodal emotion analysis is presented in [22]. They

also show that multimodal information provides more dis-

criminative information for various classification problems,

which serves as an inspiration for our study here. This paper

explores the fusion of audio and video features for depression

analysis.

The contributions of this paper are as follows:

– We propose a multimodal fusion framework for affective

sensing, which is evaluated on the real-world example of

developing assistive technologies for depression diagno-

sis and monitoring.

– We show the increase in performance for depression

detection when multiple signals are used as compared

to unimodal signals only.

– We compute STIP-based visual descriptors on upper

body videos and compare their performance with intra-
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face based visual descriptors (i.e. without the upper

body).

– In order to handle the large amount of interest points

generated from the upper body videos in the depression

dataset, a key interest point selection method is proposed

for learning a Bag-of-Words model.

– LBP-TOP is computed on subsequences in a piece-wise

manner so as to compute spatio-temporal words for learn-

ing the visual BoW model.

– An audio BoW model is learned form the audio features

(pitch, intensity, loudness and MFCCs).

– This paper explores various approaches (feature, score

and decision fusion) for the fusion of audio and video

features for depression analysis and compares the per-

formance with that of audio and video features alone.

– Finally, this study compares the performance of these

methods with that of a support vector machine (SVM)

added as second-stage classifier on the output of the indi-

vidual classifiers.

3 Data collection

The clinical database used in this study was collected at the

Black Dog Institute, a clinical research institute focussing on

mood disorders, including depression and bipolar disorder.1

60 subjects (30 males and 30 females) with an age range of

19–72 year participated. Subjects included 30 healthy con-

trols (mean age 33.9±13.6 year) as well as 30 patients (mean

age 44.3 ± 12.4 year) who had been diagnosed with severe

depression (but no other mental disorders or co-morbid con-

ditions).

Participants in the Black Dog research program first com-

plete a computerised mood assessment program (MAP),

which generates diagnostic decisions and a profile of person-

ality, co-morbid conditions such as anxiety disorders, current

functioning assessments, as well as current and past treat-

ments, and a section on the aetiology of their depressive

episode (e.g. family history; stressful life events). Follow-

ing the MAP, the participants undergo a structured interview

(MINI) that assesses current and past depression as well

as hypo(manic) episodes and psychosis (both current and

past) as per the Diagnostic and Statistical Manual of Men-

tal Disorders (DSM-IV). If they are currently depressed and

are deemed eligible for the ongoing study (unipolar depres-

sion and no history of psychosis), they will also be rated

on the CORE measure of psycho-motor disturbance [32]. In

the present study, only severely depressed patients (HAMD

> 15) were included. The recordings were made after their

initial diagnosis and before the start of any treatment. Control

subjects were carefully selected to have no history of mental

1 http://www.blackdoginstitute.org.au/.

illness and to broadly match the depressed subjects in age

and gender.

The experimental paradigm contains several parts similar

to [25]: (a) watching movie clips, (b) watching and rating

international affective picture system (IAPS) pictures, (c)

reading sentences containing affective content, and (d) an

interview between the participants and a research assistant.

In this study, we are interested in analysing the changes in

facial expressions, head and shoulder movements, and vari-

ations in speech pattern in response to the interview ques-

tions. There are a total of eight groups of questions asked in

the interview in order to induce emotions in the participants.

Questions are designed to arouse both positive and negative

emotions, for instance ideographic questions such as, “Can

you recall some recent good news you had and how did that

make you feel?” and “Can you recall news of bad or neg-

ative nature and how did you feel about it?”. The length of

the video recordings of the interviews lies in the range of

208−1672s. In an ideal situation, one would wish to have

a larger dataset. However, this project is part of an ongoing

study and more data is being collected. Similar limitations

with the sample size have been reported by Moore et al. [27]

and Ozdas et al. [30].

4 Method

Given an input audio-video clip AV containing N video

frames {V1,V2...VN } and M audio frames {A1,A2...AM },

STIPs are computed on the video frames. Due to the relatively

large number of video frames, the number of interest points

generated is very high. Therefore, key interest point selec-

tion is applied in a two-level clustering phase for computing

the bag of video features. LBP-TOP features are computed

piece-wise temporally to capture intra-face movements. A

visual dictionary is learnt from these spatio-temporal LBP-

TOP based words. For the audio frames, multiple features

(f0-raw, intensity, loudness, MFCC) are computed. Further

clustering is applied on the combined audio features to cre-

ate bag of audio features. Three different types of fusion

approaches are then experimented on (see Fig. 1).

4.1 Video features

Two descriptors are computed for capturing the visual spatial

and temporal information. The framework starts by comput-

ing the Viola-Jones object detector [40] for detecting a face

blob F , which is used as a seed for facial feature extraction.

Chew et al. argue that subject-specific AAM perform better

than subject independent constrained local models (CLM)

[36], however the use of an efficient feature descriptor can

compensate for the error induced by subject-independent

methods. Taking a similar approach, a pictorial structure
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Fig. 1 Flow of the proposed system: audio and video data are

processed individually and respective features are computed. All audio

features are combined in a bag of audio features (BoA), while video fea-

tures are combined in a bag of visual features (BoV ). Different fusion

methods are then experimented on

based approach [15] is used to extract nine facial points,

which describe the location of the left and right corners

of both eyes, the nose tip, the left and right corners of the

nostrils, and the left and right corners of the mouth. This

approach is based on part-based models and has been applied

successfully to facial feature localisation [15]. Part-specific

detectors are applied to the facial blob and the facial parts

are localised using dynamic programming on the response

of the part specific detectors. The power of pictorial struc-

tures stem from its representation of an object (face in this

case) as an undirected graph, which has recently been shown

performing better than AAM and CLM [43] in both sub-

ject dependent and independent settings. For aligning the

faces, an affine transform based on these points is computed.

Figure 2 describes the visual processing pipeline.

4.1.1 Space-time interest points

In recent years, the STIP concept [21] has found much atten-

tion in computer vision and video analysis research. It suc-

cessfully detects useful and meaningful interest points in

videos by extending the idea of the Harris spatial inter-

est point detector to local structures in the spatio-temporal

domain. Salient points are detected where image values have

sufficient local variation in both the space and time dimen-

sions. Two histograms, the histogram of gradients (HOG)

and the histogram of flow (HOF), are calculated around an

interest point in a fixed sized spatial and temporal window.

These volumes around the interest point are used to learn

visual dictionaries and have shown robust performance for

computer vision and video analysis problems such as human

action recognition [21]. The video frames in our dataset typ-

ically contain the upper body of the subjects as well as the

head. Therefore, it is worthwhile to investigate the movement

patterns of all upper body parts. The STIPs reflect the spatio-

temporal changes, which account for movements inside the

facial area and elsewhere (e.g. hands, shoulders and head

movements).

Key-interest point selection: to reduce the complexity

due to the large number of frames, a keyframe selection

method was used for emotion analysis by [10]. The authors

apply clustering over aligned facial landmark points com-

puted using the Constrained Local Model approach [36]. The

cluster centres’ nearest neigbour frames are chosen as the

keyframes. The video clips in the depression dataset are rel-

atively long and there is a large amount of motion due to the

presence of the upper body in the frame, so that a key-interest

point selection scheme is advisable.

A videoV gives K interest points. A total of 4.8×107 inter-

est points are computed from the 60 video clips. This is both

computationally and memory wise non-trivial, as a leave-

one-subject-out protocol is followed in the experiments. To

reduce the feature set size, inspired by [10], the K-Means

algorithm is employed to each V . K interest points give Kc

cluster centres. These K key-interest points are then the rep-

resentative interest points of a video sample. The value Kc

is chosen empirically.

4.1.2 Local binary patterns three orthogonal planes

Recently, local binary patterns (LBP) have become popu-

lar in computer vision. Their power stems from their simple

formulation and dense texture information. For computing

the intra-face muscle movements in subjects, we computed a

temporal variant of LBP, LBP-TOP [42]. It considers patterns

in three orthogonal planes: XY , XT and Y T , and concate-

nates the pattern co-occurrences in these three directions. The

local binary pattern part of the LBP-TOP descriptor assigns

binary labels to pixels by thresholding the neighborhood pix-

els with the central value. Therefore, for a centre pixel Op

of an orthogonal plane O and its neighbouring pixels Ni , a

decimal value d is assigned
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Fig. 2 Video processing pipeline: STIPs are computed over the

unaligned raw video frames. Key interest points are detected by video

level clustering. A BoW dictionary is learnt from the key interest points

of all the videos. Note that the STIPs capture head and shoulder move-

ments along with the facial dynamics, as they are applied to the entire

video frame. Faces are then detected and aligned. For capturing the

intra-face motion, the LBP-TOP descriptor is computed in a piece-wise

manner over sub clips and a BoW is learnt

d =

XY,XT,Y T
∑

O

∑

p

k
∑

i=1

2i−1 I (Op, Ni ). (1)

In dynamic facial expression analysis, the apex frame

shows the peak intensity of an expression. The XY plane

in LBP-TOP ideally should be the apex frame of the video.

However, given the complex nature of the videos in the

depression dataset, it is non-trivial to label the apex frames.

To overcome this limitation, rather than computing LBP-TOP

on the video in a temporally holistic manner, the descriptor is

computed temporally ‘piece-wise’. These piece-wise LBP-

TOP units form spatio-temporal words for the BoW dictio-

nary. Formally, for a video V of length l, uniformly timed

sub-clips are segmented of length t . The LBP-TOP descrip-

tor is computed on these sub-clips individually. Therefore,

there are l/t sub-clips and their corresponding LBP-TOP

based spatio-temporal descriptors dl/t .

4.2 Audio features

Investigation of depressed speech has found several distin-

guishable prosody features. Four different audio features

namely fundamental frequency (f0), loudness, intensity

and mel-frequency cepstral coefficients (MFCC) are com-

puted in this paper. Figure 3 explains audio processing

subsystem.

Each subject’s speech data is first segmented into frames.

The frame size is set to 25ms, with 10ms overlap between

two adjacent frames. As a result, there will be high frequency

noise at the beginning and the end of each frame. To reduce
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Fig. 3 Flow of the speech processing subsystem to extract audio features: intensity, loudness, f0 and MFCC

this boundary effect, a Hamming window is applied to each

frame

wHam[n] = 0.54 + 0.46cos
(2πn)

N − 1
(2)

where N is the number of samples per frame, and n =

1 . . . N . After applying a fast fourier transform (FFT) on each

frame, the magnitudes and phases are computed. Intensity is

calculated as the mean of the squared frame multiplied by a

Hamming window, while loudness is computed from inten-

sity as

L =

(

I

I0

)0.3

(3)

where I is the intensity and I0 = 0.000001. To extract f0,

the auto-correlation function (ACF) and the cepstrum are

computed. The ACF is calculated by squaring the magni-

tude spectrum and applying an inverse FFT. The cepstrum is

computed by applying a log function to the magnitude spec-

tra. The difference between f0 and f0-raw is that with f0-

raw, there is no thresholding, i.e. there is no forcing to 0 in

unvoiced frames. To generate the MFCC, the Mel-spectrum is

computed by applying overlapping triangular filters equidis-

tantly on the Mel-frequency scale

Mel( f ) = 1127ln

(

1 +
f

700

)

(4)

to the FFT magnitude spectrum.

4.3 Bag of words

The bag of words approach, originally developed in the

natural language processing domain, has been successfully

applied to image analysis [21] and depression analysis [17].

It represents documents based on the unordered word fre-

quency. The power of the BoW framework stems from its

tolerance to variation in the appearance of objects. Recently,

Sikka et al. [39] compared different BoW approaches for

facial expression recognition as compared to object recogni-

tion. The authors achieved state-of-the-art performance for

facial expression analysis.

In the problem described in this paper, a video clip (set

of video frames) and an audio clip (set of audio frames) are

documents in the BoW sense. The BoW computed from the

videos are termed bag of visual (BoV) features and the BoW

computed on the audio features are called bag of audio (BoA)

features. BoA are computed for f0-raw, intensity, loudness

and MFCC individually and also on selected combinations.

The performance of these are computed and the best perform-

ing is used further for fusion. BoV are computed separately

for LBP-TOP and STIP. For STIP, BoV are computed on the

cluster centres of interest points of each video. This two-level

clustering helps in dealing with the high number of interest

points generated by the STIP. The size of the codebooks is

decided empirically. The use of BoW gives two advantages

in the framework. The interviews are of different duration,

depending on how much the subject was saying. The use of

codebooks makes it simpler to deal with such samples of

different length. Secondly, BoW are computed for audio and

video independently, which overcomes the problem of dif-

ferent sampling rates in the two modalities. This simplifies

feature fusion.

5 Fusion

As discussed in the introduction (Sect. 1), depression analy-

sis has been primarily limited to single channel/modal infor-
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Table 1 Performance of the system at various stages

(a) Individual feature f0-raw Loud. Inten. MFCC STIP1 STIP2 LBP1 LBP2

Accuracy 70.0 % 73.3 % 75.0 % 63.3 % 76.7 % 76.7 % 70.0 % 66.7

(b) Audio feature Audio only Video feature Video only

combined accuracy (%) combined accuracy (%)

A1; f0+I+L_200 83.3 V1; STIP1_200+LBP1_200 81.7

A2; f0+I+L_500 83.3 V2; STIP1_200+LBP2_750 78.8

A3; f0+I+L_750 83.3 V3; STIP1_750+LBP2_500 78.8

A4; f0+I+L+M_500 78.3 V4; STIP1_750+LBP2_750 80.0

(c) A-V combination Feature fusion Score fusion Decision fusion

Concat. (%) PCA (%) W. Sum (%) W. Prod. (%) SVM (%) AND (%) OR (%) SVM (%)

A1+V2 81.7 91.7 85.0 85.0 86.7 68.3 93.3 86.7

A2+V3 81.7 80.0 86.7 86.7 88.3 66.7 95.0 91.7

A3+V1 85.0 86.7 85.0 85.0 86.7 71.7 93.3 91.7

A1+V4 81.7 80.0 85.0 85.0 85.0 70.0 93.3 88.3

A2+V2 81.7 86.7 85.0 85.0 85.0 66.7 95.0 88.3

Bold values signify the best performances afforded by the system

(a) Comparison of classification accuracies for individual video and audio features. Here, STIP1—level one clusters C = 2500, STIP2—level one

clusters C = 5000, LBP1—LBP-TOP with clip length t = 6s, LBP2—LBP-TOP with clip length t = 1s

(b) Computed audio and video features were combined separately. Best audio and video only combinations are presented here. In the notation

Feature_N, N refers to the codebook size

(c) Audio-video fusion results: top five classification accuracy for different fusion methods for various parameters of the features. Here, W. Sum

weighted sum, W. Prod. weighted product, Concat. concatenated

mation. Multimodal analysis is a general extension. Three

standard fusion techniques are investigated.

5.1 Feature fusion

This is the simplest form of fusion. Raw features computed

from the different modalities are concatenated to form a

single feature vector. Despite the simplicity, feature fusion

results in a performance increase compared to the perfor-

mance of single modalities (see Sect. 6 for details). How-

ever, the downside of feature fusion is that it suffers from the

curse of dimensionality. As more modalities are joined, this

increases the dimension of the feature vectors. To overcome

this issue, principal component analysis (PCA) is applied

to the combined features and then the classification is per-

formed.

5.2 Score fusion

In score level fusion, different scores such as probability esti-

mates, likelihoods, etc. are combined, before making a clas-

sification decision. There are several popular methods for

score fusion. In this paper, two techniques—score fusion by

weighted sum and by learning a new SVM classifier on the

scores—are investigated. The distance from the SVM hyper-

plane is calculated and used as a score.

5.3 Decision fusion

In decision fusion, multiple classifiers are trained on differ-

ent feature sets. The output of these classifiers is used to infer

the final class result. Various techniques are used for deci-

sion fusion: weighted voting, algebraic combination rules

and operators [22]. In this paper, the AND and OR opera-

tors are used to fuse the decisions from the separate audio

and video SVM classifiers. Furthermore, we also experiment

with decision fusion by learning a new, second-stage SVM

classifier.

6 Experiments and results

The original spatial resolution of the video frames was

800×600 pixels. The videos were downsampled to 320×240

pixels for computational efficiency. For STIP, the Harris 3D

interest point detector was used. The spatial window size

for computing HOG was set to 3 and the temporal window

size for HOF to 9. Two values, K = 2500 and K = 5000,

were experimented on for the number of clusters. LBP-TOP

was computed for two different sub-clip sizes, t = 6s and

t = 1s. Moreover, the codebook Cs for BoV was computed

on clusters from each video clip. The codebook Cl for BoV

was computed on different LBP-TOP configurations. Various

codebook sizes in the range of 200−750 were experimented

with Cs and Cl of BoV. From here on, ST I P1 means STIP
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with level-one cluster size K = 2500 and ST I P2 refers to

STIP with level-one cluster size K = 5000. For LBP-TOP,

L B P1 is the configuration with clip length t = 6s and L B P2

with clip length t = 1s.

Furthermore, experiments combining codebooks Cs and

Cl for all different codebook sizes, 200−750 were also per-

formed. The four possible descriptor combinations analysed

were ST I P1 + L B P1, ST I P1 + L B P2, ST I P2 + L B P1

and ST I P2 + L B P2. Some of the combinations such as

ST I P1+L B P1, where the Cs and Cl size was 200, result in

a good increase to the individual feature performance, result-

ing in an accuracy of 81.7 %, whereas the maximum accuracy

given by individual video features was 76.7 % from ST I P1

and ST I P2 as shown in Table 1(a).

For computing the audio descriptors, the publicly avail-

able open-source software openSMILE [16] was used to

extract low-level voice features from the subject speech

labelled intervals. The spontaneous speech from the dataset

interview was manually labelled to extract pure subject

speech, i.e. to remove voice inactive regions. The frame size

was set to 25ms at a shift of 10ms and using a Hamming win-

dow. The number of MFCC coefficients used for the exper-

iments was 13, where the deltas were not included. f0 was

calculated using ACF, where f0-raw was calculated without

threshold (i.e. without forcing to 0) in unvoiced segments.

BoA were learned for all the individual audio features

and various codebook sizes were experimented. As reported

in Table 1(a), the best detection accuracy obtained from the

individual audio features was 75 %. To further increase the

performance using audio features only, other configurations

for BoA were experimented, first by combining all the four

audio features together: f0+I+L+M and then in the second

case leaving out MFCC and combining the other three audio

features, f0+I+L. For both of these codebooks, again dif-

ferent cluster sizes were tried and chosen empirically. The

combined BoA, specifically f0+I+L, performed reasonably

better than the individual ones, giving an accuracy of 83.3 %.

Table 1(a) presents the classification performance of bag

of features computed on individual features. Out of all,

ST I P1 and ST I P2 performed the best, giving an accu-

racy of 76.8 %. Here, the values of level-one cluster centres

were K = 2500 and K = 5000 for ST I P1 and ST I P2,

respectively. The size of codebook Cs1 = 500 for ST I P1

and Cs2 = 200 for ST I P2. The increase in the size of K did

not increase the performance as expected. It can be argued

that the discriminating ability of the descriptor is well cov-

ered with K = 2500; anything more does not add to the

discriminability.

For classification, a non-linear SVM [6] was used.

The parameters were searched using an extensive grid

search. A leave-one-subject-out experiment methodology

was used for all of the classifications. From here on, indi-

vidual classifiers means the SVM model trained for BoA
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Fig. 4 The three graphs show the accuracy of the system and the effect

of choosing different codebook sizes of BoA while fusing it with a

selected BoV codebook combination STIP1_200+LBP1_200 for differ-

ent fusion methods: a feature fusion, b score fusion, c decision fusion
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Fig. 5 The three graphs show the accuracy of the system and the effect

of choosing different combinations of Cs and Cl , while fusing with

a selected audio feature f0+I+L_750 for different fusion methods: a)

Feature Fusion, b) Score Fusion, c) Decision Fusion

(f0/I/L/MFCC/f0+I+L/f0+I+L+M) or BoV (STIP1/STIP2

/LBP1/LBP2/STIP+LBP) individually.

Figure 4 shows the effect of changing codebook size of

BoA with different fusion methods. For a clear comparison,

the fusion of different configurations of BoA is shown for one

selected BoV combination, i.e. V1. The choice of this visual

configuration is based on the highest performance of this

STIP and LBP-TOP combination. Figure 4a clearly shows

the performance increase due to PCA-based dimensionality

reduction in feature fusion. Figure 4b shows the difference

in performance due to score fusion. In Fig. 4c, SVM and

OR based decision fusion clearly perform better than AND

based decision fusion. Figure 5 shows the fusion of an audio

codebook A3 with different combinations of various sizes of

Cs and Cl . The observations are consistent with the graphs

in Fig. 4.

Table 1(c) describes the top five results for fusion meth-

ods on various descriptor parameters and Table 2 describes

the confusion matrix for the best configuration of different

fusion methods. For feature fusion, different combinations

of BoA and BoV were created. As discussed earlier, the

high dimensionality of the feature vector is a drawback of

the feature fusion technique. Therefore, PCA was applied to

the combined features and 98 % of the variance was kept. A

further SVM was trained on the new reduced dimensional-

ity features. As expected, applying PCA post feature fusion

increased the performance of the system. Moreover, the per-

formance of the classifier trained on feature fused samples

was higher than the performance of classifiers trained on

individual feature based BoA or BoV. As shown in Table

1(b), the best accuracies for individual feature based BoA

and BoV are 83.3 % and 81.7 %, respectively, whereas com-

bining audio and video features via feature fusion boosts the

accuracy to 91.7 % (see Table 1(c)). To statistically validate

the difference between the fused and individual features, a

t-test was performed. Various individual features are com-

pared with one combination, i.e. V3+A2, for α = 0.01. The

average p-value for the cohort of STIP1_500 was 0.0006,

LBP_500 was 0.00007 and f0+I+L_500 was 0.00001.

For score fusion, the distances from the SVM hyperplane

were computed for all the individual BoA and BoV. To fuse

Table 2 Confusion matrix for the best results for different fusion meth-

ods shown in Table 1 (c)

Patients

(predicted)

Controls

(predicted)

(a) Feature fusion (PCA)

Patients (actual) 25 5

Controls (actual) 0 30

(b) Score fusion (SVM)

Patients (actual) 25 5

Controls (actual) 2 28

(c) Decision fusion (SVM)

Patients (actual) 26 4

Controls (actual) 1 29
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the scores, the weighted sum and weighted product was com-

puted. Acknowledging that better weights optimisation may

increase the recognition rate, our method is simply a linear

search for the best weights, which gave a maximum accu-

racy rate of 86.7 % in both cases. Also, a SVM classifier is

trained on the scores of individual BoA and BoV, which gave

a higher classification accuracy of 88.3 %.

For decision fusion, the classification outputs from classi-

fiers trained individually on BoA and BoV were combined via

the AND and OR operators. In the AND operation, the final

positive is based on the evidence of presence of positives from

the classification accuracies of all the individual classifiers.

The maximum classification achieved by using this fusion

technique was 71.7 %. This means that both the individual

classifiers have a consensus on at least 71.7 % of the samples.

For the OR operator, which shows a correct recognition if at

least one modality classifies a subject correctly, the maxi-

mum accuracy wss 95.0 %. However, a word of caution is in

order here. The OR fusion inherently runs the risk of creating

a larger number of false positives than the other fusion meth-

ods, as no consensus of the individual classifiers is required

and all classifiers are treated as having equal weight, with

the acceptance threshold being such that a positive recogni-

tion in one classifier leads to a positive recognition overall,

which is a comparatively low acceptance threshold. In other

words, OR fusion assumes equal confidence in both classi-

fiers, which may not be a true reflection of the real world.

Feedback from psychologists indicates that they would not

rely just on an OR fusion approach in the real world. Fur-

thermore, an SVM classifier on top of the decision of the

individual classifiers was learned. The maximum accuracy

achieved is 91.7 %, which shows that training classifiers via

decision fusion gives robust performance for depression clas-

sification.

The best performance from all three fusion methods was

91.7 %. There is an absolute increase of 8.4 % over audio-

only and 10–12.9 % over video-only classification. The

increase in system performance using different fusion meth-

ods is consistent with the results discussed by Lingenfelser

et al. [22] for fusion-based multimodal emotion analysis.

7 Conclusions and future work

Depression is a severe mental health disorder with a high

individual and societal cost. The study described in this paper

proposes a multimodal framework for automatic depression

analysis. The STIP detector is computed on the image frames

and HOG and HOF histograms are calculated around the

interest points in a spatio-temporal window. Further, in order

to decrease the number of interest points, clustering is applied

at the video level. The cluster centres from each video are

used to train a BoV feature codebook. LBP-TOP is com-

puted on sub-sequences in a piece-wise manner on aligned

faces to analyse facial dynamics. Moreover, a separate BoV

codebook is learned from it. For audio analysis, f0-raw, inten-

sity, loudness and MFCC are computed and BoA features are

derived from the fusion of these audio features. Audio-video

fusion at three levels has been investigated: feature level,

score level and decision level. The experimental results show

that fusing audio and video channels is effective for training

a depression classifier that can assist clinicians. As part of

future work, extracting subject speech will be made fully

automatic using the bag of words framework.

The study presented here forms part of the first phase of our

ongoing research to develop a robust and objective diagnostic

aid to support clinicians in their diagnosis of clinical depres-

sion, as current diagnosis suffers from a range of subjective

biases. In this ongoing work, we investigate different modal-

ities, features and classification approaches and experimen-

tally validate them with our clinical partners. In the second

phase, we will further clinically test the best performing diag-

nosis approaches in a prototypical assistive laptop system

equipped with a video camera and microphone. In the third

phase, we will explore how the affective sensing approaches

can be implemented on smartphones and other mobile tech-

nology platforms, such as tablet computers, to assist doctors

and patients in the monitoring of treatment progress, which

requires robustness to a large variety of environmental con-

ditions, such as different levels of illumination, occlusion

and acoustic noise. We firmly believe that only a multimodal

framework can truly deliver the robustness required for real-

world applications.
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