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Abstract Images are frequently used in articles to convey

essential information in context with correlated text. How-

ever, searching images in a task-specific way poses signifi-

cant challenges. To minimize limitations of low-level feature

representations in content-based image retrieval (CBIR), and

to complement text-based search, we propose a multi-modal

image search approach that exploits hierarchical organiza-

tion of modalities and employs both intra and inter-modality

fusion techniques. For the CBIR search, several visual fea-

tures were extracted to represent the images. Modality-

specific information was used for similarity fusion and selec-

tion of a relevant image subset. Intra-modality fusion of

retrieval results was performed by searching images for spe-

cific informational elements. Our methods use text extracted

from relevant components in a document to create struc-

tured representations as “enriched citations” for the text-

based search approach. Finally, the multi-modal search con-

sists of a weighted linear combination of similarity scores

of independent output results from textual and visual search

approaches (inter modality). Search results were evaluated

using a standard ImageCLEFmed 2012 evaluation dataset of

300,000 images with associated annotations. We achieved a

mean average precision (MAP) score of 0.2533, which is sta-

tistically significant, and better in performance (7 % improve-

ment) over comparable results in ImageCLEFmed 2012.
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1 Introduction

Medical researchers and clinicians routinely use online data-

bases such as MEDLINE®1 via PubMed to search for rel-

evant biomedical bibliographic citations. Scientific articles

convey information using multiple and distinct modalities,

including text and images. For example, authors of journal

articles frequently use graphical images (e.g., charts, graphs,

maps, diagrams) and natural images (e.g., color or grayscale

photographs) to elucidate the text, to illustrate the medical

concepts or to highlight special cases. These images often

convey essential information in context and can be valuable

for improved clinical decision support, research, and educa-

tion [1,2].

However, the images contained in biomedical articles are

seldom self-evident, and much of the information required

for their comprehension can be found in the text of the arti-

cles (such as, captions, article titles and abstracts) in which

they appear. While images may be separately ambiguous,

jointly with co-occurring text they enrich a search response.

For example, the authors of a biomedical article [3] report

on the size and shape of a nodule depicted in a patient’s lung

CT scan as shown in Fig. 1, using the visual characteristics

(size = 1 cm and shape = irregular margins) of the region

(right middle lobe) as a basis for a possible diagnosis. If an

image retrieval system separates this image from its associ-

ated caption, as is often done by content-based image retrieval

(CBIR) systems [4], it disregards the meaning attached to the

appearance of the nodule. In addition, manual annotations

are often incomplete and visual properties (such as, periph-

eral, patchy, ground glass nodular opacities) can often be best

described with low level (e.g., color, texture, shape) image

features instead of using textual description.

1 http://www.ncbi.nlm.nih.gov/pubmed.
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Fig. 1 Example image along with its caption in an article [3]

The above example draws the conclusion that single-

modality information retrieval, either using text as contex-

tual information or images as visual features, has limitations.

Therefore, integration of textual information in a CBIR sys-

tem or image content information in a text retrieval system

might improve retrieval performance [5]. Ingwersen’s cog-

nitive model of information retrieval (IR) [6], which predicts

that combining methods using different cognitive structures

is likely to be more effective for retrieval than any single

method, provides a theoretical basis for the combination of

text and images.

Given that images are such a crucial source of informa-

tion within the biomedical domain, combining textual and

visual image features based on multimodal sources has been

only recently gaining popularity due to the large amount of

information sources. Integration of complementary textual

and image information into a unified information retrieval

system appears to be promising and could improve retrieval

quality through greater utilization of all available (and rele-

vant) information. The results from medical retrieval tracks

of previous ImageCLEF2 campaigns also suggest that the

combination of CBIR and text-based image searches pro-

vides better results than using the two different approaches

individually [10–12]. While there is a substantial amount of

completed and ongoing research in text retrieval, as well as

in CBIR in the medical domain, it is not always evident how

to exploit the information contained in different sources in

an intelligent and task-specific way.

To also enable effective search of diverse images presented

in medical journal articles, it might be advantageous for a

retrieval system to be able to first recognize the image type

(e.g., X-ray, MRI, ultrasound, etc.). A successful categoriza-

tion of images would greatly enhance the performance of the

retrieval system by filtering out irrelevant images, thereby

reducing the search space [13]. For example, to search for

chest X-rays showing an enlarged heart in a radiographic

collection, the database images can first be pre-filtered using

2 http://www.imageclef.org/.

automatic categorization by imaging type (e.g., X-ray) and

body part (e.g., chest). In addition, the classification informa-

tion could be utilized to adjust the weights of different image

features (such as, color feature could receive more weight for

microscopic and photographic images, and edge- or texture-

related features for radiographs) in similarity matching for a

query and for database images.

Some medical image search engines, such as Goldminer3

developed by the American Roentgen Ray Society (ARRS)

and Yottalook4 allow users to limit the search results to

a particular modality. However, this modality is typically

extracted from the caption and is often not correct or present.

Studies have shown that the modality can be extracted from

the image itself using visual features, such as the automatic

categorization of 6,231 radiological images into 81 cate-

gories that is examined [14]; by utilizing a combination of

low-level global texture features and a K-nearest-neighbors

(KNN) classifier. Recently, a few multimodal classification-

based approaches were presented in the ImageCLEFmed

medical image classification task. Similar to retrieval, it has

shown that the classification results have better accuracy by

combining text and images, in most cases, than the results

using either text or image features alone [10–12]. However,

the various flat classification approaches as described do not

exploit the hierarchical structure of image organization at dif-

ferent levels. In addition to using multimodal features, it is

possible to exploit the hierarchical organization of the modal-

ity classes in order to decompose the task into several smaller

classification problems that can be sequentially applied.

Finally, the optimal combination of textual and visual

searches should be treated as an information fusion problem.

In information retrieval (IR), data fusion is a widely used

technique to combine information from various sources to

improve the retrieval performance [15,16]. Many researchers

have argued that better retrieval effectiveness may be gained

by exploiting multiple query and document representations,

3 http://goldminer.arrs.org/.

4 http://www.yottalook.com.
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retrieval algorithms, or feedback techniques and combining

the results of a varied set of techniques or representations.

The majority of the fusion-based retrieval approaches

are mainly well studied in the context of the text retrieval

domain. Challenges exist in the combination of multimodal

information; where the data are often more heterogeneous

with multiple example query images with multiple visual

(e.g., color, texture, shape, etc.) and textual (e.g., title, cap-

tion, mentions, MeSH®5, etc.) representations, and collat-

eral text blocks (e.g., caption, mention) have correlations

with images. As user query may be formulated in different

ways in a multimodal system, we can get completely different

sets of retrieval results; hence needing the right combination

method. Issues that are worth considering: how to intelli-

gently combine the text and image queries to form hybrid

queries; how to optimally combine retrieval result lists for

multiple example query images; and how the text and image

modalities can be optimally combined for a task without

redundancy.

To address a few of the issues described above, and moti-

vated by the successful use of machine learning and fusion

techniques in IR, we propose a multimodal retrieval approach

of biomedical images from collections of full-text journal

articles. The proposed approach uses text and image fea-

tures extracted from relevant components in a document, and

exploits the hierarchical organization of the images based on

classification and employs both intra- (visual feature level)

and inter- (visual and textual result level) modality fusion

techniques. The major contributions described in this article

are:

– A novel multimodal hierarchical modality classification

approach for image filtering is proposed. The modality-

specific information available from the classifier predic-

tion on the query and database images is used to select

the relevancy image subset.

– A category-specific similarity fusion approach is used at

image feature level. Individual pre-computed weights of

different features are adjusted online based on the predic-

tion of a query image modality, for a linear combination

of similarity matching scheme.

– A proposed fusion technique that takes into consideration

multiple example query images to search for a particular

information need.

– A proposed inter-modality fusion of image and text-based

result lists that considers past individual retrieval perfor-

mance effectiveness.

– And finally, a performed systematic retrieval evaluation

in a standard benchmark ImageCLEFmed 2012 evalua-

tion [12] dataset of more than 300,000 images with asso-

5 MeSH is a controlled vocabulary created by the U.S. National Library

of Medicine to index biomedical articles.

ciated annotations that demonstrated significant improve-

ment in performance comparatively.

The block diagram of the proposed multi-modal retrieval

process is shown in Fig. 2. Here, the top portion of the figure

shows that a search is being initiated simultaneously based

on both text and multiple query image parts of a multi-modal

query/topic. In the middle portion of Fig. 2, it shows how dif-

ferent visual and textual features are extracted and presented

for image classification and similarity matching. Finally, the

bottom portion shows how individual image and text result

lists are fused to obtain a final ranked list of top-matched

images. Each of the sub-processes will be described more

elaborately in the following sections.

The rest of the paper is organized as follows: in Sect. 2

we briefly describe the related works and their shortcomings

in medical image retrieval. Textual and visual image fea-

ture extraction and representation is discussed in Sect. 3 and

our image classification (modality detection) approach is dis-

cussed in Sect. 4. The content and text-based image retrieval

approaches are described in Sects. 5 and 6, respectively. In

Sect. 7, we describe the multi-modal search approach based

on merging of visual and text result lists. The experiments

and analysis of the results are presented in Sect. 8 and finally

Sect. 9 provides the conclusions.

2 Related works

Conventional approaches to biomedical journal article

retrieval have been text-based with little research done using

images to improve text retrieval. For example, most retrieval

tasks in biomedical literature use abstracts from MEDLINE

[7]. On the other hand, retrieval systems searching for images

within a collection of biomedical articles commonly repre-

sent and retrieve them according to their collateral text, such

as captions [8,9]. For example, the BioText [8] search engine;

searches over 300 open access journals and retrieves figures

as well as text. BioText uses the Lucene6 text search engine

to search full-text or abstracts of journal articles, as well

as image and table captions. Yottalook7 allows multilingual

searching to retrieve information (text or medical images)

from the Web and journal articles. The goal of the search

engine is to provide information to clinicians at the point

of care. Other related work includes the Goldminer search

engine that retrieves images by searching figure captions in

peer-reviewed journal articles appearing in the Radiologi-

cal Society of North America (RSNA) journals Radiograph-

ics and Radiology. It maps keywords in figure captions to

6 http://lucene.apache.org/core/.

7 http://yottalook.com/index_web.php.
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Fig. 2 Process flow diagram

of the multimodal retrieval

approach

concepts from the Unified Medical Language System (UMLS)8

Metathesaurus. The Yale Image Finder (YIF) [9] searches

text within images, captions, abstracts, and titles to retrieve

images from biomedical journal papers. YIF uses optical

character recognition (OCR) to recognize text in images in

both landscape and portrait modes.

Most of the above systems do not use image features to

find similar images or combine visual and text features for

8 http://www.nlm.nih.gov/research/umls/.

biomedical information retrieval. The IRMA system,9 devel-

oped at Aachen University of Technology, Germany, aims to

integrate text and image-based features for medical image

retrieval. The system primarily uses visual features, but only

uses a limited number of text labels that describe the anatomy,

biosystem, image direction, and modality of the image. On

the other hand, CBIR, for biomedical uses, has been studied

extensively in academia and at research centers. The efforts

9 http://www.irma-project.org.
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focus on identifying subtle differences between images in

homogenous collections that are often acquired as a part of

health surveys or longitudinal clinical studies. For instance,

the ASSERT system [18] is designed for high-resolution

computed tomography (HRCT) images of the lung and the

SPIRS system [19] for digitized X-rays of the spine.

The importance of medical illustrations in clinical

decision-making has motivated the development of large

databases of medical images, such as the Public Health Image

Library (PHIL) and GoldMiner, as well as active research in

image retrieval within the yearly ImageCLEF medical image

retrieval tasks [10–12] and by individual researchers. There

is also increasing commercial interest in multimodal infor-

mation retrieval of biomedical articles as evidenced from the

teams participating in the ImageCLEFmed contests. During

the past several years, we witnessed several approaches for

information fusion, especially text and visual search integra-

tion that have been used in ImageCLEF [10–12]. Progress in

CBIR and retrieval based on text in image captions has moti-

vated our research into integration of image data for semantic

image retrieval.

3 Image representation

The performance of a classification and/or retrieval system

depends on the underlying image representation, usually in

the form of a feature vector. We represent each image as

a combination of the textual and visual features described

below:

3.1 Textual feature extraction and representation

We represent each image in the collection as a structured doc-

ument of image-related text called an enriched citation. To

generate structured documents required by our text search

engine Essie [20], we augment MEDLINE citations with

image-related information extracted from the full text, cre-

ating the enriched citations. Figure 3 depicts the enriched

MEDLINE citation (PMID 18487544) of a short paper that

contains no abstract and only one image (as shown in the

left portion of the figure and referred in the <image>

tag).

Our representation includes the title, abstract, and MeSH

terms of the article in which the image appears as well as

the image’s caption and mentions (snippets of text within the

body of an article that discuss an image). Caption, abstract,

and title extraction use document structure; rule-based meth-

ods are used for caption segmentation and mention extrac-

tion. The above-mentioned structured documents may be

indexed and searched with a traditional search engine, or

the underlying term vectors may be exposed and added to

a mixed image representation for classification that includes

the visual features as described in next section.

3.2 Visual feature extraction and representation

For content-based feature extraction, 14 different features

were extracted to represent the images as shown in Table 1.

To represent the spatial structure of images, we utilized the

Color Layout Descriptor (CLD) of MPEG-7 [22]. To repre-

sent the global shape/edge feature, the spatial distribution of

edges were determined using the Edge Histogram Descrip-

tor (EHD) [22]. The first (mean), second (standard deviation)

and third (skewness) central moments of pixel intensities of

gray-level images were calculated as color moments. Gabor

descriptor is based on a multi-resolution decomposition using

Gabor wavelets [24]. Tamura feature describes the coarse-

ness, contrast, and directionality of an image and higher

order moment-based texture feature was also extracted from

the gray-level co-occurrence matrix (GLCM). A descriptor

based on Scale-Invariant Feature Transform (SIFT) was com-

puted from the intensity pattern within the affine covariant

region [23]. Autocorrelation measures the coarseness of an

image by evaluating the linear spatial relationships between

texture primitives. The Lucene image retrieval (LIRE) library

[26] is utilized to extract the Gabor, Tamura, Color edge

directional descriptor (CEDD), and Fuzzy Color Texture His-

togram (FCTH) features. In addition, two versions of Local

Binary Pattern (LBP)-based feature are extracted [25]. The

original LBP operator labels the pixels of an image by thresh-

olding the 3-by-3 neighborhood of each pixel with the center

pixel value and considers the result as a binary number. The

256-bin histogram of the labels computed over an image can

be used as a texture descriptor. Each bin of histogram (LBP

code) can be regarded as a micro-texton.

4 Image classification and modality detection

Image modality classification (detection) is an important task

toward achieving high performance in biomedical image and

article retrieval. Successful detection could play an important

role in achieving better retrieval performance by reducing

the search space to the set of relevant modalities. It can also

enable the system to apply modality-specific algorithms to

extract more useful and accurate information from the images

for indexing and retrieval.

We implemented both flat and hierarchical classification,

each of which uses textural, visual, or multimodal features.

In the following, we describe our flat classification strategy,

an extension of this approach that exploits the hierarchical

structure of the classes, and a post-processing method for

improving the classification accuracy of illustrations [29].

123



164 Int J Multimed Info Retr (2013) 2:159–173

Fig. 3 An example angiogram image (239029.jpg) with enriched MEDLINE citation (PMID 18487544)

Table 1 Visual features and their dimensions

Feature Dimensionality

Color layout descriptor (CLD) 16

Edge histogram descriptor (EHD) 80

Color moments 3

GLCM moments 10

SIFT 256

Autocorrelation coefficients 25

Edge frequency 25

Primitive length 20

Gabor moments 60

Tamura moments 18

Color edge directional descriptor (CEDD) 144

Fuzzy color texture histogram (FCTH) 192

Local binary pattern (LBP) 256

Local binary pattern1 (LBP) 256

Combined feature 1,361

4.1 Flat classification

Owing to their empirical success, we utilized multi-class

SVMs [30] for classifying images into 31 medical image

modalities based on their textual and visual features. We

composed multi-class SVMs using a one-against-one strat-

egy. Among the many classification algorithms provided in

WEKA, we found that Support Vector Machine (SVM)-

based classification outperformed other classification algo-

rithms for our classification purposes. For our SVM training,

the input was a feature vector set of training images in which

each image was manually annotated with a single modality

label selected out of the M modalities. So, a set of M labels

were defined as {ω1, . . . , ωi , . . . , ωM }, where each ωi char-

acterized the representative image modality.

First, we extracted our visual and textual image features

from the training images (representing the textual features

as term vectors). Then, we performed attribute selection to

reduce the dimensionality of the features. We constructed the

lower- dimensional vectors independently for each feature

type (textual or visual) and combined the resulting attributes

into a single, compound vector. The dimensions (number

of attributes) of visual and textual features before attribute

selection were 1,361 and 2,703, respectively. Finally, we

used the lower-dimensional feature vectors to train multi-

class SVMs for producing textual, visual, or mixed modality

predictions.

4.2 Hierarchical classification

Unlike the flat classification strategy described above, it

is possible to exploit the hierarchical organization of the

modality classes in order to decompose the task into sev-

eral smaller classification problems that can be sequentially

applied. Based on our visual observation of the training sam-

ples and on our initial experiments, we modified the original

modality hierarchy (as shown in Fig. 4 and as reported in

Müller et al. [27]) for ImageCLEFmed 2012 classification

task [12] to a new hierarchy with the same acronyms for

classes as shown in Fig. 5.

We implemented a classifier that classifies images into

one of the 30 modality classes (excluding COMP). This flat

30-class classifier was sufficient to identify modality classes

that were frequently misclassified by our visual features.

For example, samples in “Non-clinical photos” (GNCP)

under the “Generic biomedical illustrations” in Fig. 4 were
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Fig. 4 Modality classes in the biomedical literature [27]

Fig. 5 Our proposed hierarchy

for hierarchical classification

(acronyms defined in Fig. 4)

basically photos and they were frequently misclassified into

one of the three modality classes in “Visible light photogra-

phy” under “Diagnostic images”. We moved GNCP to the

“Photo” category in our hierarchy to prevent classification

errors at the upper level. For the same reason, three modal-

ity classes under “Printed signals, waves” were moved to
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“Illustration”, and “3D reconstructions” was merged into the

Radiology category.

In our proposed hierarchy, we first separated illustration

modality classes from others. Compound images (COMP)

were then considered separately within the two categories,

“Illustration” and “General”; however, they needed to be

merged into one list, i.e., COMP modality class. Under “Illus-

tration/Single” all 14 modality classes were classified by

one flat classifier and no more lower levels existed. “Gen-

eral/Single” category has three sub-categories, viz., “Radi-

ology_3D”, “Photo”, and “Microscopic”, where samples in

each category were acquired by identical or similar imag-

ing technology or had similar visual features. Each category

under the “General/Single” was then expanded into their leaf

modality classes which were the final modality classes in the

task.

Six classifiers were implemented for the classification task

in each level. We trained flat multi-class SVMs for each meta-

class. We combined all 15 visual features and then selected

the most relevant attributes for each classification task by

an attribute selection function in WEKA [31]. Hence, every

classifier used a different set of attributes. A tenfold cross-

validation (CV) was selected for evaluation since several

modality classes in the training set had insufficient samples

(number of samples in each class ranged from 5 to 49).

For recognizing compound images (e.g., “COMP” class),

we utilized the algorithm proposed in [28], which detects

sub-figure labels (e.g., ‘A’, ‘B’, ‘C’, etc.), if present, and the

border of each sub-figure within a compound image. To arrive

at a final class label, an image was sequentially classified

beginning at the root of the hierarchy until a leaf class was

determined. An advantage of performing hierarchical clas-

sification was that we could filter the retrieved results using

the meta-classes within the hierarchy (e.g., “Radiology”).

4.2.1 Illustration post-processing

Because our initial classification experiments resulted in only

modest accuracy for the 14 “Illustration” classes shown in

Fig. 5, we concluded that our textual and visual features may

not have been sufficient for representing these figures. There-

fore, in addition to the aforementioned machine learning

modality classification methods, we also developed several

complimentary rule-based strategies for increasing the classi-

fication accuracy of “Illustration” classes. The majority of the

training samples contained in the “Illustration” meta-class,

unlike other images in the collection, consisted of line draw-

ings or text superimposed on a white background. For exam-

ple, program listings mostly consisted of text; thus, we antic-

ipated that the use of text and line detection methods could

increase the classification accuracy of Class “GPLI”. Simi-

larly, polygons (e.g., rectangles, hexagons, etc.) contained

in flowcharts (GFLO), tables (GTAB), system overviews

(GSYS), and chemical structures (GCHE) were a distinctive

feature of these modalities. We utilized the methods of Jung

et al. [32] and OpenCV10 functions to assess the presence of

text and polygons, respectively.

5 Content-based image retrieval (CBIR) approach

Our content-based approach to image retrieval was based on

retrieving images that appeared visually similar to the given

topic images. In CBIR, access to information was performed

at a perceptual level based on automatically extracted low-

level features (e.g., color, texture, shape, etc.). The retrieval

performance of CBIR mainly depended on the underlying

image representation, usually in the form of a feature vector

described in Sect. 3.2. It was challenging to find a unique

feature representation to compare images accurately for all

types of queries. Feature descriptors at different levels of

image representation were in diverse forms and usually com-

plementary in nature.

5.1 Category-specific fusion

The CBIR community adopts some of the ideas of the data

fusion research in document retrieval. The most commonly

used approach is the linear combination of similarity match-

ing of different features with pre-determined weights. In this

framework, the similarity between a query image Iq and tar-

get image I j is described as

Sim(Iq , I j ) =
∑

F

αF SF (Iq , I j ) (1)

where F ∈ {CLD, EHD, CEDD, etc.} and SF (Iq , I j ) are the

similarity-matching function in individual feature spaces and

αF are weights (generally decided by users or hard coded

in the systems) within the different image representation

schemes (e.g., intra-modality weights). However, there is a

limitation with the above hard-coded or fixed-weight-based

similarity matching approach. In this approach, for exam-

ple, a color feature has the same weight for a search of the

microscopic pathology or X-ray images. Although color is an

important feature for microscopic and photographic images,

it is not a reliable feature for X-ray images.

To overcome this limitation, we explored a query-specific

adaptive linear combination of similarity fusion approach by

relying on the image classification information [13]. In this

approach, for a query image, its category at a global level

(e.g., modality) was predicted by using the classifiers dis-

cussed in Sect. 4. Based on the online category prediction

of a query image, pre-computed category-specific feature

weights (e.g., αF ) were utilized in the linear combination

10 http://opencv.willowgarage.com/wiki/.
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of the similarity-matching function. Based on this scheme,

for example, a color feature had more weight for micro-

scopic pathology and photographic images, whereas edge

and texture-related features had more weight for radiographs

and illustrations.

5.2 Image filtering

It is computationally expensive to perform a linear image

search in a large collection. To overcome this, we utilized the

modality information of query and database images for image

filtering to reduce the search space. The similarity-matching

approach described above was only performed if the modal-

ity of a query image matched with an image in the collection.

During the feature extraction process of images in the col-

lection, the image categories were determined by applying

the SVM classification scheme based on the individual image

feature input (described in Sect. 4) and the information stored

along with the feature indices in a logical database. Similar

feature extraction and category prediction stages were per-

formed online when the search is performed with an unknown

query image. The modality of the query image and the data-

base images from the category index are quickly evaluated

to identify candidate target images in the collection, thereby

filtering out irrelevant images from further consideration.

For image filtering and fusion, the first two levels in Fig. 5

were considered as a trade-off between time and accuracy.

The cross-validation accuracies were above or around 95 %

for Classifier 1 and Classifier 2 as shown in Table 3 (and

discussed in the Results section). If we had considered more

deeper levels for modality categorization, then search might

have been faster, but at the expense of lower classification

accuracies at leaf levels and as a consequence of retrieval

accuracies.

The steps involved in the above fusion and filtering

processes are depicted in Algorithm 1.

From the I F step of the Algorithm 1, we observed that

only pre-computed category-specific feature weights (e.g.,

αF ) were utilized for similarity matching with filtered data-

base images when their modality matched to the modality of

the query image.

6 Text-based image search approach

For the text-based image search, we indexed our enriched

citations described in Sect. 3.1 with the Essie search engine

[20] developed by the National Library of Medicine (NLM).

It is particularly well-suited for the medical retrieval task due

to its ability to automatically expand query terms using the

UMLS synonymy and its ability to weight term occurrences

according to the location in the document in which they occur.

For example, term occurrences in an image caption can be

Algorithm 1 Category-specific similarity matching

and filtering

(Off-line): 1) Select a set of training images of M categories and

perform SVM learning based on feature input. 2) Store manually-

defined category specific feature-weights for similarity matching. 3)

Based on the classifier prediction, store the modality information of

N database images as a category index.

(On-line): For a query image Iq , predict the modality from the SVM

classifier.

for j = 1 to N do

Get the modality information of I j from the category index.

if (modali t y(Iq ) == modali t y(I j )) then

Consider the individual feature weights αF for the modali t y(Iq ),

where F ∈ {CLD, EHD, CEDD, FCTH, etc.}

Consider I j for similarity matching and combine the similarity

scores with the weights based on similarity fusion in (1).

end if

end for

Finally, return the images based on the similarity matching values in

descending order to obtain a final ranked list of images.

given a higher weight than occurrences in the abstract of

the article in which the image appears. Essie also expands

query terms to include morphological variants derived from

the UMLS SPECIALIST Lexicon instead of stemming.

Essie’s algorithm for scoring the similarity between a doc-

ument and a query can be summed up as preferring “all the

right pieces in all the right places”. The “right pieces” are

phrases from the query, and the “right places” are the fields

of a document most valuable for a retrieval task, such as

image captions for image retrieval, or MeSH for literature

retrieval.

To construct a query for each topic, we created and com-

bined several Boolean expressions derived from the extracted

concepts. First, we created an expression by combining the

concepts using the logical AN D operator (i.e., all concepts

were required to occur in an image’s textual representation),

and then we produced additional expressions by allowing an

increasing number of the extracted concepts to be optional.

Finally, we combined these expressions using the logical O R

operator giving significantly more weight to expressions con-

taining a fewer number of optional concepts. Additionally,

we included a verbatim topic description as a component of

a query, when needed, but we gave minimal weight to this

expression compared to those containing the extracted con-

cepts. The resulting queries were then used to search the Essie

indices.

7 Multimodal search based on merging

For the multimodal search, we directly combined the inde-

pendent outputs of our textual and content-based search

results. The “Dark Horse Effect” in data fusion [21] assumes

that a good fusion algorithm should treat the systems which
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retrieve a larger number of relevant images differently than

other systems which do not retrieve a large number of rel-

evant images. This means that we should give more impor-

tance (or weight) to a retrieval system based on the number

of relevant images it has retrieved. By observing the retrieval

results of the ImageCLEF track during the past several years

[10,11], we concluded that the text-based retrieval systems

overwhelmingly outperformed visual systems in terms of

precision and other measures. It was therefore important to

determine optimal fusion strategies, allowing overall perfor-

mance improvement over the constituent system as in the past

some groups had combinations leading to poorer results than

using textual retrieval alone. The weights might have been

set manually, adjusted on-line, or learned off-line accord-

ing to this prior knowledge, which was clearly evident from

many fusion methods that were presented in ImageCLEF

track sessions.

For our multi-modal fusion, we used a linear combina-

tion method, where weights of the individual retrieval sys-

tems are determined by a function of their performance mea-

sured by the Mean Average Precision (MAP) values. In this

regard, for off-line learning on training samples we used

our best image and text-based MAP scores from the pre-

vious year (e.g., CLEF’2011). The raw MAP scores were

normalized by the total score as ωI =
MAP(I )

MAP(I )+MAP(D)
and

ωD =
MAP(D)

MAP(I )+MAP(D)
to generate the image and text feature

weights, respectively.

For multi-modal retrieval purposes, we consider ed q as a

composite query which has an image part as Iq and a text part

Dq as enriched citation. In a linear combination scheme, the

similarity between q and a multi-modal item j , which also

has two parts (e.g., image I j and text D j ), was defined as

Sim(q, j) = ωI Sim(Iq , I j ) + ωDSim(Dq , D j ) (2)

whereωI andωD are inter-modality weights within the image

and text feature spaces as described above, which are subject

to 0 ≤ ωI , ωD ≤ 1 and ωI + ωD = 1. In this framework,

the image-based similarity Sim(Iq , I j ) was already defined

in (1) and the text-based similarity Sim(Dq , D j ) score was

based on the results returned by the Essie [20] search

engine.

In the context of ImageCLEF evaluation, each ad hoc topic

contained a short sentence or phrase describing the search

request in a few words with one to several relevant sample

images. For our multi-modal search approach, the descrip-

tion of the topics were used as the search terms to search

NLM’s Essie search engine [20] and sample images were

utilized as “Query By Example (QBE)” for the CBIR search.

For the CBIR search of several sample query images of a

topic, we obtained separate ranked result lists. In this sce-

nario, to obtain a final ranked list of images based on purely

visual search, we performed a CombMax fusion on similar-

ity scores on the individual result lists by considering only

the top 1,000 images. The reason for using CombMAX was

that images which matched closely with at least one query

image was ranked highly and was more effective when sam-

ple query images were diverse in modality in many semantic

topic categories. As already mentioned, CombMAX favors

images highly ranked in one system (e.g., the aforementioned

Dark Horse Effect).

Finally, the image and text-based result lists were merged

to produce a combined ranked result list by applying the

weighted linear combination scheme based on normalized

MAP scores. Since the content and text-based result lists

were created from two completely different independent sys-

tems, their similarity scores were normalized before per-

forming any fusion by applying a Min-Max normaliza-

tion [16]. To consider the above effect and explore further,

we also performed a rank to score based merging for our

multi-modal search approach. In this approach, the rank

of the first 1,000 images in the result lists were consid-

ered and converted to similarity score by using the formula

(1−(rank(image)/1,000)). Hence, an image with rank posi-

tion 1 (e.g., rank (image) = 1) had a score of 0.999 and for

the rank position 1,000, the score was 0.

The overall multimodal search approach from a topic

perspective of ImageCLEF’2012 is described in steps in

Algorithm 2.

Algorithm 2 Multimodal fusion approach

1: for q = 1 to N (No. of Topics) do

2: For topic description Dq , extract important search terms for Essie

search engine as well as represent as “Bag of Keywords” with

TF-IDF weighting scheme. Perform feature selection on the text

feature vector to combine with visual feature vector.

3: Perform text-based image retrieval in Essie search engine and

retrieve top most similar images (maximum 1000).

4: for m = 1 to M (No. of Sample Images) do

5: For query image Iqm extract 15 different visual features and

combine as single feature vector, perform feature selection and

feature normalization.

6: Combine with text feature vector to generate a reduced dimen-

sional multi-modal feature vector.

7: Determine imaging modality based multi-modal feature input to

the multi-class SVM classifier.

8: Perform category-specific CBIR similarity fusion in filtered

dataset based on image modality classification (Sect. 5) and

retrieve top most similar 1000 images.

9: end for

10: Merge individual image result lists (Rqm , m ∈ 1, · · · , M) to

a final ranked list by applying CombMAX fusion on similarity

scores.

11: Perform Min-Max normalization or rank-to-score conversion on

individual image and text result lists.

12: Finally, merge the normalized similarity scores of image and text

result lists based on using the weighted linear combination to pro-

duce a single result list of top 1000 images.

13: end for
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Fig. 6 An example of a topic (CLEF2012) with description (XML) and sample images

8 Experiments and results

This section presents the detailed empirical analysis of the

proposed classification and retrieval techniques described in

the above sections. Specially, we present the data sets used

for the experiments, experimental settings, accuracy com-

parisons of classification and retrieval, and analysis of the

results.

8.1 Image collections

For the purposes of this research, we used the Image-

CLEFmed 2012 dataset [12] which contains over 300,000

images from 75,000 biomedical journal articles in the open

access literature subset of the PubMed Central11 database.

The contents of this collection represent a broad and signif-

icant body of medical knowledge, which made the retrieval

more challenging. The collection contains a variety of imag-

ing modalities, image sizes, and resolutions and can be con-

sidered as a fairly realistic set for evaluating medical image

retrieval techniques. The experimental results were gener-

ated based on 22 ad hoc topics divided into visual, mixed

and semantic types. Each topic consisted of the query itself

in three languages (English, German, French) and one to few

sample images for the visual part of the topic. The topics

were based on a selection of queries from search logs of the

Goldminer radiology image search system [33].

Figure 6 shows an example of a topic description “renal

vein thrombosis” along with a few sample images from

ImageCLEFmed 2012 evaluation [12]. We could easily

observe the large variation in visual appearances of the

11 http://www.ncbi.nlm.nih.gov/pmc/.

images of different modality types, which made the content-

based visual search difficult.

A training set of 1,000 images from 31 categories was pro-

vided by the ImageCLEFmed 2012 organizers for classifier

training. On average, there were over 30 images per cate-

gory, although a few categories (such as; “DSEC”, “DSEE”,

“DSEM”) had <10 images, which made the training set non-

uniform in nature and much harder for the learning algorithm.

8.2 Performance measures

The relevant sets of all topics were created by the CLEF

organizers by considering the top retrieval results of all sub-

mitted runs of the participating groups. Results for sub-

mitted runs were computed using the latest version of

TREC-EVAL12 software. Results were evaluated using un-

interpolated (arithmetic) mean average precisions (MAP) to

test effectiveness and precisions at different ranks (e.g., P5,

P10, P20, etc.). Further measures considered included geo-

metric mean average precision (GMAP) to test robustness,

and the Binary Preference (B-PREF) measure which is a

good indicator for the completeness of relevance judgments.

The performances were compared for different feature spaces

(e.g., textual and visual) and with and without using image

filtering.

8.3 Classification result

The results of the modality classification approaches were

compared using classification accuracy. Table 2 shows our

overall modality classification results based on 1,000 test

12 http://trec.nist.gov/trec_eval/.
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Table 2 Modality classification results

Classification

method

Feature Correctly

classified (%)

Hierarchical Multimodal 63.2

Visual 51.6

Textual 41.3

Flat Multimodal 61.7

Visual 50.3

Textual 39.4

images provided by the CLEF organizers. We submitted nine

different runs, out of which six representative runs are shown

here. Hierarchical classification showed slightly better per-

formance than flat classification and using multi-modal fea-

tures, achieved about 10–20 % higher accuracy than indi-

vidual features. We achieved the highest accuracy (63.2 %)

for our submitted runs by applying multi-modal, hierarchi-

cal, and post-processing methods as described in Sect. 4. Our

best run ranked within the submissions from the top three par-

ticipating groups. This result validates our post-processing

method used to improve the recognition of “Illustration”

classes, and provides, with our previous experience [17],

further evidence that hierarchical classification is a success-

ful strategy. Each of our hierarchical classification methods

outperformed the corresponding approach having the same

feature representation. The results also show that the visual

features outperform the textual features when they are used

individually.

While our submitted runs were only judged on their abil-

ity to identify each of the 31 modality classes [27], Table 3

presents the classification accuracy of the intermediate clas-

sifiers we used for our hierarchical approaches. Table 3 gives

the number of classes contained for each meta-class in the

hierarchy shown in Fig. 5 and the classification accuracy

associated with the textual, visual, and mixed feature repre-

sentations.

As shown in the Table 3, when multi-modal features were

used, Classifier 1 and 2 achieved over 90 % accuracy and

Classifier 3, 4, and 5 achieved more or <80 % accuracy. How-

ever, Classifier 6 (Illustration classifier) achieved the lowest

accuracy of 63.49 %. The post-processing method for “Illus-

tration” increased the accuracy for Classifier 6 and for the

entire classification at about 7 and 3 %, respectively. In each

classifier, classification errors from higher classifiers in the

hierarchy are accumulated.

These results also demonstrate that the accuracies of the

intermediate classifiers generally improved as the number of

class labels decreased. Given the limited amount of train-

ing data in relation to the number of total modalities, the

smaller number of labels per classifier likely is significant

for explaining why our hierarchical classification approaches

consistently outperformed their corresponding approaches.

8.4 Retrieval result

Table 4 shows the various performance measures of differ-

ent search schemes as proposed. It is clear from Table 4 that

the best MAP score (0.2533) was achieved when a multi-

modal search (weighted score-based) was performed in a fil-

tered image set. When the multi-modal search approach was

compared with individual text and visual-based approaches,

we observed that almost every score (e.g., MAP, GM-MAP,

Rprec, etc.) improved by considering the counterparts. Over-

all, the performance of the CBIR search approach was very

low compared to the text-based and multi-modal searches

as observed in Table 4. The main reason was the high-

level semantic contents of query topics. This result might

be an indication that the query topics are more semantic in

Table 3 Accuracy results

for intermediate modality

classifiers

ID Number of classes Mixed (%) Visual (%) Textual (%)

Classifier 1 2 (Illustration, General) 96.3 95.6 78.6

Classifier 2 3 (Radiology_3D, Microscopy, Photo) 93.5 87.4 83.8

Classifier 3 8 (DRUS, DRMR, …, D3DR) 75.9 64.4 71.3

Classifier 4 4 (DMLI, DMEL, …, DMFL) 85.0 83.6 69.4

Classifier 5 4 (DVDM, DVEN, …, GNCP) 77.6 62.3 89.1

Classifier 6 14 (GTAB, GPLI, …, DSEM) 63.5 53.0 41.2

Table 4 Retrieval results based

on the ImageCLEFmed’12

topics

Method Filter MAP GMAP Rprec Bpref P (5) P (20) P (100)

CBIR No 0.0052 0.0003 0.0166 0.0124 0.0273 0.0341 0.0173

CBIR Yes 0.0046 0.0003 0.0143 0.0107 0.0364 0.0341 0.0164

Text No 0.2375 0.0656 0.2707 0.2536 0.3818 0.2955 0.1164

Multimodal No 0.2458 0.0712 0.2752 0.2613 0.3909 0.3000 0.1255

Multimodal Yes 0.2533 0.0736 0.2752 0.2665 0.3909 0.3000 0.1255
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Fig. 7 Precision at P5, P10, and P20 for different search modalities

Fig. 8 MAP scores with and without filtering for different search

modalities

nature and this is always the case for the ImageCLEF eval-

uation campaign. However, it is evident from the results of

the Table 4 that combining both the visual and text-based

searches can improve retrieval performance.

To breakdown the results further, Fig. 7 shows the bar

graph (chart) of different search approaches based on pre-

cision over the top K (5, 10, and 20) images. We observed

significant improvement of precision at these early ranks for

the multi-modal search approach when compared to indi-

vidual visual and text-based search approaches. It strongly

validates the point that for semantic retrieval of images in the

medical domain, associated or contextual information largely

improves retrieval precision.

Figure 8 shows the bar graphs of MAP scores for CBIR and

multi-modal (weighted score and ran-score based) searches

with and without using image filtering. Although the MAP

score was slightly decreased for the CBIR search with fil-

tering, it was slightly increased for both the multi-modal

searches as shown in the figure. Finally, from the results, we

can also conjecture that the pre-filtering approach is indeed

an effective one for our multi-modal search approach when

compared to the search which was performed on the entire

collection.

Further, an important benefit of searching on a filtered

image set is gain in computation time. We tested the effi-

ciency of the multi-modal search scheme by comparing the

average retrieval time for 22 query topics with and with-

out applying the filtering scheme. The experiment was per-

formed in an Intel Pentium Dual-Core CPU at 3.40 GHz

with 12 GB of RAM running Microsoft Windows 7 oper-

ating system. The linear search time without filtering was

twice as much as search on the filtered image set, suggest-

ing that the proposed filtering scheme is both effective and

efficient. The average retrieval time for the topics is cur-

rently 1.3 s, which includes the computational cost for fea-

ture extraction, classification, similarity matching for CBIR

and text retrieval, and merging of the result lists. Without

filtering the computational cost can further increase as the

database grows due to our linear search scheme for content-

based similarity matching. However, by using some multi

dimensional indexing scheme and parallelizing the feature

extraction processes, we plan to reduce the search time in

future.

In some cases, combining image and text-based search

results might also have negative effects in the final retrieval

result. For example, the topic in Fig. 6 is a “semantic” type

with perceptually very different sample images based on

modality and appearances. This topic should be well suited

for textual retrieval approach only, and integrating or refin-

ing it with a content-based search would only decrease the

performance of a final retrieval result set. Our multi-modal

search approaches are more suited and tailored for mixed-

mode topics where both visual and text-based search can

contribute to the final result.

To prove this argument, our search results were also tested

and compared by considering only 14 mixed type topics

to the 22 topics for ImageCLEFmed 2012 evaluation. Fig-

ures 9 and 10 show the bar graphs of MAP and P5 scores

for searches in different feature spaces (e.g., visual, text, and

multimodal) for “Mixed” only and “All” query topics. We

observed a significant improvement in MAP and P5 scores for

Fig. 9 MAP scores of using All/Mixed topics for different search

modalities
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Fig. 10 P5 scores of using All/Mixed topics for different search modal-

ities

Table 5 Top five (group wise) multimodal retrieval results of

ImageCLEFmed’12

Group MAP GMAP Bpref P(10) P(30)

ITI 0.2377 0.0665 0.2542 0.3682 0.2712

DEMIR 0.2111 0.0645 0.2241 0.3636 0.2242

medGIFT 0.2005 0.0917 0.1947 0.3091 0.20

FINKI 0.1794 0.049 0.1851 0.3 0.1894

UNED 0.004 0.0001 0.0104 0.0409 0.0258

“Mixed” topics for both multi-modal and text-based search

approaches, and a decrease in P5 score for CBIR for “Mixed”

topics when compared to the search on “All” topics. Basically

it shows that “Mixed” type queries are more suitable for text

or multi-modal search approaches and CBIR is only good

when the topic is only “Visual” type.

Finally, a comparison of results from the top five multi-

modal approaches by other ImageCLEFmed’2012 partici-

pants is shown in Table 5. The best run here with a MAP

score of 0.2377 was submitted by our group [34]. This multi-

modal approach uses a textual representation of visual fea-

tures (image cluster words) described in Sect. 3.2 that was

easily integrated with our existing textual features. Com-

paring these top runs with our best proposed run with a

MAP score of 0.2533 as shown in Table 4, using Fisher’s

paired randomization test [35], a recommended statistical

test for evaluating information retrieval systems, it was found

that we achieved a statistically significant increase (6.5 %,

p = 0.024330) over the top-ranked performance in Image-

CLEFmed 2012.

9 Conclusions

Information extraction and retrieval are essential tasks

required for achieving many of the ultimate goals of bio-

medical informatics research and development. In this

paper, a novel multi-modal retrieval approach for biomed-

ical articles is proposed inspired by the ideas of IR, CBIR,

NLP, and Machine Learning paradigms. Unlike many other

approaches, where the search is performed with a single

modality and without any classification information, we pro-

pose to use the classification result directly in the retrieval

loop and fuse the results effectively obtained from both the

text and imaging modalities. In particular, we present ways

to improve retrieval performance by making use of textual as

well as visual information. A standard data set with a query

set and corresponding performance measure model, such as

the ImageCLEFmed 2012 collection has provided enough

reliability for objective performance evaluation. Our retrieval

results demonstrate the effectiveness and efficiency of the

proposed multi-modal framework compared to using only

a single modality or without using any classification infor-

mation. Due to the multi-disciplinary and multi-perspective

nature of this work, we have a good opportunity to expand our

work. In the future, we want to focus on constructing a model

or formalism to show how the inclusion of text can contribute

to the improvement of image retrieval or vice versa. A major

issue is scalability and efficiency. Since we use a large image

collection and several query and image representations for

different types of fusion, a large computational overhead cur-

rently persists. To overcome this, we will concentrate more

on a multi-dimensional and especially multi-feature index-

ing approach, which might provide a challenging topic for

our retrieval research.
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