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Abstract— Despite the rich information provided by sensors
such as the Microsoft Kinect in the robotic perception setting,
the problem of detecting object instances remains unsolved,
even in the tabletop setting, where segmentation is greatly
simplified. Existing object detection systems often focus on
textured objects, for which local feature descriptors can be used
to reliably obtain correspondences between different views of
the same object.

We examine the benefits of dense feature extraction and
multimodal features for improving the accuracy and robustness
of an instance recognition system. By combining multiple
modalities and blending their scores through an ensemble-
based method in order to generate our final object hypotheses,
we obtain significant improvements over previously published
results on two RGB-D datasets. On the Challenge dataset, our
method results in only one missed detection (achieving 100%
precision and 99.77% recall). On the Willow dataset, we also
make significant gains on the prior state of the art (achieving
98.28% precision and 87.78% recall), resulting in an increase
in F-score from 0.8092 to 0.9273.

I. INTRODUCTION

Object recognition remains a challenging problem in

computer vision. Researchers often divide the recognition

task into (1) category-level recognition, where objects in a

particular category are given the same label (e.g. “bowl” or

“soda can”), and (2) instance recognition, where each specific

object is given its own label (e.g. “Coke can” or “Diet Coke

can”). Several differences distinguish the robotic setting from

the classic computer vision setting of detecting objects in 2D

images. First, since robots in fixed environments may only

have to interact with on the order of hundreds of objects,

instance recognition may be sufficient for a wide variety of

tasks. Second, in order for robots to be able to manipulate the

recognized objects, the object poses must also be determined.

Finally, given the relatively low cost of RGB-D sensors, such

as the Microsoft Kinect, in comparison to other components

of robotic platforms, both color images and point clouds

are becoming standard in the robotic perception setting [1].

Despite the additional information provided by the depth

channel, no instance recognition systems are robust enough

to detect all objects in the standard benchmark settings we

consider here, let alone in highly unstructured household and

office environments.

In this paper, we present a system which significantly

improves on the state of the art for the above task. While we
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Fig. 1: Example detection. Despite clutter and heavy occlu-

sions, our approach accurately captures object class and pose.

briefly describe our end-to-end pipeline, we emphasize that

our primary contributions are as follows:

1. We present experiments demonstrating that dense feature

extraction (with moderate downsampling) results in sig-

nificantly higher recall than feature extraction at keypoint-

based interest points. This holds at training time, when

building feature models, and at test time, when extracting

features from the test images.

2. We illustrate how a discriminative extension of feature

weighted linear stacking [2] can be used to generate object

hypotheses using a learned combination of scores derived

from texture, color, and shape-based features, leading to

another significant boost in performance.

3. Finally, we achieve state-of-the-art results on two in-

stance recognition datasets. On the Challenge dataset,

our method results in near perfect performance, (1.000

precision and 0.9977 recall). On the Willow dataset, we

present a significant leap over the previous state of the art,

with .9828 precision and 0.8778 recall, corresponding to

an increase in F-score from 0.8092 to 0.9273.

II. RELATED WORK

Many existing approaches toward instance recognition first

extract descriptors from a training set of objects, then match

them to corresponding descriptors in a given test scene,

using the correspondences to simultaneously determine the

correct object and pose. One such example is the MOPED

system of Collet et al. [3], which first constructs a sparse

descriptor database by extracting SIFT features [4] at training

time. At test time, MOPED uses the SIFT features to jointly

estimate object class and pose. Unlike our system, it does not



use depth information or perform multimodal verification.

Aldoma et al. [5] obtain good performance by combining

two pipelines, one using 2D and the other 3D features, via an

optimization-based hypothesis verification framework. They

too use features extracted at keypoints, and differ in their use

of a 3D histogram-based feature.

While methods using the depth modality typically extract

features from depth maps for use in recognition, such as

extensions of histograms of oriented gradients (HOG) [6],

[7], spin images [8], and point feature histograms [9], we

use depth primarily for segmentation and to determine the

3D correspondences of pixels in test images.

Several works on category recognition suggest that dense

sampling tends to yield higher performance [10], [11]. For

example, Tuytelaars et al. [10] attribute part of the suc-

cess of their Naive Bayes Nearest Neighbor classifier to

dense descriptor computation. In the unsupervised feature

learning context, Coates et al. [11] demonstrate that dense

convolution in convolutional neural networks leads to higher

performance. Nowak et al. also illustrate the importance of

dense sampling for bag-of-features image classification [12].

To the best of our knowledge, however, this paper is the

first to demonstrate that dense features play a crucial role

in attaining strong performance on the instance recognition

problem.

In addition to improving performance using dense features,

we consider using an ensemble of models over several

modalities to aid in recognition. Ensemble learning, also

referred to as blending, has been explored thoroughly in

the machine learning community [13], [14]. One simple

method is to learn an affine combination of the scores

obtained through each modality. Another method that extends

this idea is feature weighted linear stacking [15], [16].

We evaluate both methods for the purpose of generating

hypothesis detections.

Thorough experimentation illustrates that our approach

obtains significantly better results than previous state of the

art. Before presenting our approach, we first give an overview

of the test datasets, which we use as the primary evaluation

metrics.

III. PROBLEM SETTING

We evaluate our approach on two datasets, Challenge and

Willow, which were collected for the 2011 ICRA Solutions in

Perception Challenge. Both datasets share a set of 35 training

objects, which must be detected in a variety of tabletop

scenes.

The training data consists of 37 views of each training

object, with each view containing a registered point cloud

C, a 1024×1280 image I , the training object’s image mask,

and the associated camera matrix K for that view. At a high

level, we build models of each object by merging information

from each view. We present details of this training procedure

in Section V.

The test data consists of a series of test scenes. Each test

scene provides at most 20 scene views, each accompanied

by a color image I and an associated point cloud C from a

Kinect sensor. We also assume a gravity vector, which we

compute using a single scene from both the Challenge and

Willow test sets, since the sensor remains fixed throughout.

Test scenes can be highly cluttered, potentially containing

any subset of the 35 objects in any pose, as well as imposter

objects not among the training objects. At test time, given

a view with C, I , we are asked to jointly recognize each

training object and its pose in each view independently,

while ignoring imposter objects. The datasets differ greatly

in difficulty; the Challenge dataset consists of 39 test scenes

which may each contain multiple objects with low occlusions

and no imposter objects, while the Willow dataset consists

of 24 test scenes with heavy (possibly even full) occlusions

as well as imposter objects. We present sample training and

testing data from each dataset in Section 5.

Our current solution operates under the following assump-

tions, satisfied by both the Willow and Challenge datasets:

1. Training objects have relatively non-specular and non-

transparent surfaces; RGB-D sensors using structured-

light approaches (e.g. the Kinect) can, at best, generate

noisy, incomplete point clouds of highly-specular or trans-

parent objects.

2. Training objects contain texture: we use gradient-based

descriptors to estimate training object poses.

3. Objects in test scenes are supported by a tabletop plane:

this allows for simple test scene segmentation (Section V).

From here, we organize the paper as follows: we first

present a brief overview of our system, which builds on Tang

et al. [17]. We then present our main contributions, namely

an examination of dense feature extraction, multimodal fea-

ture models and pose-based verification, and multimodal

blending. Finally, we conclude with a series of experiments

detailing the performance of our pipeline on the Challenge

and Willow datasets.

IV. SYSTEM OVERVIEW

At training time, we first merge point clouds from multiple

views of each training object, then construct a mesh using

Poisson reconstruction. After extracting features from images

of each view of the object, we then project the features onto

the mesh. The resulting descriptor list with associated 3D

model coordinates constitutes a feature model. Section V-A

details our feature computation approach, and Section V-B

details the types of feature we use.

At test time, we first detect table planes in the scene using

a RANSAC plane fitting approach, eliminating hypotheses

using the gravity vector for the dataset and selecting the high-

est supporting plane. We then apply agglomerative clustering

to points lying above this supporting plane. Next, we project

each test cluster onto the images to form image masks and

extract features from unmasked portions of the image. To

obtain the 3D coordinates associated with each feature, we

project features extracted from the masked image back onto

the 3D point cloud.

Algorithm 1 describes the procedure we run on each test

cluster to compute a RANSAC score and pose estimate for

each candidate object. We then use Algorithm 2 to compute
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Fig. 2: An overview of our pipeline. The top row shows the training pipeline, and the bottom row shows the test pipeline.

Symbol Description

I ∼ a color image

p ∼ a point (x, y, z)

P ∼ a point cloud of size |P |

f ∼ an image feature descriptor

F ∼ a set of descriptors of size |F |

M ∼ a feature model or (P, F ) pair with

each pi corresponding to fi

C ∼ a set of feature correspondences

p(f) ∼ point corresponding to descriptor f

NN(f,Md) ∼ nearest neighbor of feature f in model

Md, d ∈ {shape, color, SIFT}

ǫ ∼ distance threshold—either in feature

space (ǫd) or 3D space (ǫ3D)

s ∼ score—either RANSAC (sNN) or ver-

ification (sd)

T̂ ∼ an estimated 6DOF pose

Nobj ∼ number of training objects

NRANSAC ∼ number of RANSAC iterations

TABLE I: Summary of Notation

pose-based verification scores (one for each type of feature)

for each candidate object using their estimated poses.

Finally, we compute metafeatures on the test scenes

(see Table II), and, given the metafeatures as well as the

RANSAC and verification scores, we use a multimodal

blender to output our final object hypotheses (Section V-C).

V. METHODS

We now describe the key contributions of our approach,

namely dense feature extraction, pose-based verification us-

Algorithm 1: RANSAC Pose Estimation

Input: test cluster P test, corresponding test features

F test, feature models {Md
i }

Nobj

i=1 where d is the

model feature type, query-to-model NN

correspondences {Ci}
Nobj

i=1

Output: RANSAC scores {sNN
i }

Nobj

i=1 , estimated poses

{T̂i}
Nobj

i=1

Initialize {sNN
i = −∞}

Nobj

i=1

for i = 1 to Nobj do

for j = 1 to NRANSAC do
Cij ← sample 3 correspondences from Ci

T̂ij ← EstimateTransform(Cij)

Align P test to Md
i using T̂i

for j = 1 to |P test| do

if ‖pj − p(NN(fj ,M
d
i ))‖2 < ǫ3D then

sNN
ij = sNN

ij + 1 // Increment score

end

end

if sNN
ij > sNN

i then

sNN
i = sNN

ij // Update best score

T̂i = T̂ij // Update best pose

end

end

end

ing multiple feature models, and multimodal blending.

A. Dense Feature Extraction

We compute image features densely at both training and

test time. At training time, rather than keep descriptors com-

puted at every pixel, we employ voxel grid downsampling

(with a leaf size of 0.5cm) of the descriptors for each view

after projecting them onto the object mesh. At test time, we



Algorithm 2: Pose-based Verification

Input: test cluster P test, corresponding test features

F test, estimated poses {T̂i}
Nobj

i=1 , feature models

{Md
i }

Nobj

i=1 , where d is the feature model type

Output: verification scores {sdi }
Nobj

i=1

Initialize {sdi = 0}
Nobj

i=1

for i = 1 to Nobj do

Align P test to Md
i using T̂i

for j = 1 to |P test| do
// Radius search finds all model points

// within ǫ3D of ptestj in Md
i when aligned

F train
ij , P train

ij ← RadiusSearch(Md
i , ptestj , ǫ3D)

for k = 1 to |P train
ij | do

if ‖f test
j − f train

ijk ‖2 < ǫd then

sdi = sdi + 1 // Increment score

break
end

end

end

end

use a stride of 20px for the query image descriptors. Using

these two methods hardly impacts performance due to high

correlation between neighboring descriptors, and still yields

approximately 5 to 10 times as many descriptors as using

keypoints. See Section VI-D for a detailed analysis of the

results using keypoints versus our dense sampling approach.

As described in Algorithm 1, we attempt to align each

training object to a given test cluster using the SIFT feature

model. Empirically, we find that the training object yielding

the highest sNN usually matches the testing object, assuming

the test object is not an imposter.

In the presence of imposters and spurious segmentations,

the ratio between the first and second highest sNN is a

reliable indicator of whether the first ranked object should

be declared.1 This baseline approach alone yields 100%
precision and 99.31% recall on the Challenge dataset (which

contains no imposters), but far from perfect performance on

the Willow dataset (93.82% precision and 83.97% recall).

B. Multimodal Feature Models and Pose-Based Verification

Motivated by the remaining errors on the Willow dataset,

we also construct models to exploit local color and shape

information in addition to the models using gradient-based

image descriptors. Concretely, we construct color feature

models using L*a*b* values at each pixel, and shape feature

models using shape context features computed in a similar

fashion as described by Belongie et al. [18], using the

additional depth information to scale the downsampled edge

points before binning.

After detecting and estimating the pose of an object in a

scene, we then perform a verification of the detection using

each of the SIFT, shape, and color models (Algorithm 2).

1Specifically, we use rNN = 1.5; if the ratio is lower than this than
we do not declare a detection.

(a) Example of nontextured test
object view.

(b) Example test scene with
only two non-imposters.

Fig. 3: Cases where our multimodal approach improves

performance.

These scores ({scolor, sSIFT, sshape}
Nobj

i=1 ) provide additional

information for whether to declare or eliminate a detection.

Intuitively, the multimodal approach leverages the strength

of each feature type in different contexts. For example, few

texture cues in an object view (e.g. Figure 3a) typically yield

low RANSAC scores, rendering the ratio test unreliable.

In this case, shape cues can provide information regarding

correct object detection.

Color information also greatly helps in improving preci-

sion. Given that our procedure estimates an accurate pose,

the color ratio check

scolori

|F test|
> rcolor

then serves as a reliable indicator of whether object i is the

correct object. One case in particular this check works well

for is instances of different flavors, such as the Odwalla

bottles shown in Figure 3b, where the algorithm cannot

reliably distinguish objects using only gradient or local shape

information.

Given object hypotheses for a test cluster, we apply the

color ratio check described above as well as verify that the

object hypothesis ranks at the top in at least half of the model

scores before declaring a detection.

C. Multimodal Blending

There are many rules that could be used in addition to the

color ratio threshold described in the previous section. Rather

than relying on (typically tedious and labor-intensive) hand-

engineering to generate such rules for combining the multiple

modalities, we use a method inspired by the feature-weighted

linear stacking (FWLS) approach proposed by Sill et al. [2].

This method blends the scores obtained using each model

through a systematic, data-driven approach. Furthermore, this

method can leverage the intuition that certain models may

be more reliable in some settings than others.

The FWLS approach described by Sill et al. blends the

model outputs by using metafeatures, which provide infor-

mation about which models might be most reliable for a par-

ticular input scene. Rather than performing regression against

the outputs of several models, the FWLS approach performs

regression against all pairs of products of metafeatures and

model outputs, as illustrated in Figure 4. For example, the

median color saturation of the test image is one metafeature
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Fig. 4: Illustration of the computation of all pairs of products.

The sd values represent verification scores. The mi values

represent metafeatures. Note that for each test cluster, there

will be Nobj such feature vectors—one per training object.

we use; low median color saturation suggests that color

scores may be less reliable.

We extend the work of Sill et al. on FWLS in a regression

setting to a discriminative setting in a method we refer to as

multimodal blending. In short, we take pairwise products of

metafeatures with model scores and use them as features for

a classifier.

In particular, we use a standard ranking support vector

machine (SVM) formulation to declare which object, if any,

is present in each input cluster. Our formulation is given by

minimize
w, ξ

λ

2
‖w‖22 +

∑

i

∑

j 6=yi

ξij

subject to wTφyi
(xi) ≥ wTφj(xi) + 1− ξij ,

∀i, ∀j 6= yi

where w represents the weight parameters, the ξij are slack

variables, i ranges over all input clusters, j ranges over object

labels, yi is the correct label for input i, λ is a regularization

parameter, x represents the values of all metafeatures and

model scores for all objects for an input cluster, and φj

denotes a feature function that constructs the feature vector

(as illustrated in Figure 4) for object j.

During testing, the dot products between the weight vector

and each of the feature vectors (i.e. wTφj(xi)) yield a score

for each object class, where the system declares the object

with the highest score. In the presence of imposter objects,

a threshold may be used such that the system can eliminate

some spurious detections.

In order to provide training data to the SVM, we generate

simulated occlusions on the Willow training data using our

# Description

1 median color saturation (HSV) of test image

2 fraction of pixels in test image where gradient

magnitude > 10

3 visible ratio: (test cluster size)/(size of each

MSIFT)

4 binary variable indicating whether object

ranked first in RANSAC score

5 binary variable indicating whether object

ranked first in color verification score

6 binary variable indicating whether object

ranked first in shape verification score

7 binary variable indicating whether object

ranked first in SIFT verification score

TABLE II: Metafeatures used for model score blending.

Challenge models as the occluding objects. We randomly

sample occluding objects and poses around the ground truth

pose provided for approximately ten views of each object in

the Willow training data, resulting in approximately 10,000

simulated occlusions across all training objects. We then run

our pipeline, treating the generated data as testing data, which

gives the RANSAC and pose-based verification scores as

well as the metafeatures for each view. We then use these

scores and metafeatures as input training data for the SVM.

VI. EXPERIMENTS AND ANALYSIS

A. Threshold Selection

As described in Section V, the pipeline contains two

thresholds in the verification step: (1) the color ratio thresh-

old and (2) the blending score threshold. Because the training

data does not contain imposter objects, even though the

Willow dataset does, we cannot reliably set these thresholds

using a subset of the training data as a validation set. In

previous work, this likely resulted in thresholds being tuned

directly on the test set, leading to overfitting.

In order to avoid overfitting to the test set, we ensure that

the thresholds for each scene are selected on data excluding

that scene. Specifically, we use a leave-one-out procedure

that chooses the best threshold from all scenes other than the

scene currently being evaluated. Note that the Willow dataset

consists of 24 scenes, with a varying number of objects and

frames per scene. We run the system on all 23 scenes not

under consideration, choose the threshold that results in the

highest F-score on those 23 scenes, and then use it to evaluate

the scene under consideration. Note that this procedure will

almost always result in lower scores than what would be

achieved by directly optimizing the F-score on all 24 scenes.

B. Single Instance Recognition

As a preliminary test, we evaluate our methods on rec-

ognizing individual objects. Following the setup used by

Tang et al. [17], we use the Willow training data to build

feature models and evaluate our system using the Challenge



Method Precision Recall F-score

Tang et al. [17] 0.9672 0.9744 0.9710

Bo et al. [19] 0.9744 1.000 0.9870

Ours [no blending] 0.9976 0.9976 0.9980

Ours [blending] 1.0000 1.0000 1.000

TABLE III: Single object instance recognition. “No blend-

ing” declares the object with the highest RANSAC inlier

count score, while “blending” uses the highest score (as

output by the ranking SVM) with no metafeatures.

training data as test data. For this experiment, we remove

any verification checks, simply choosing the highest scoring

object as the detection. We present results in Table III,

where we also compare our performance to the hierarchical

matching pursuit algorithm described by Bo et al. [19]. Our

method achieves perfect precision and recall on this task.

C. Multiple Instance Recognition

We now investigate our pipeline’s performance on the Wil-

low and Challenge testing data, which can contain multiple

objects in the same frame. Recall that the Willow dataset may

contain imposter objects not present in the training data (e.g.

in Figure 3b); the system should not declare any detection

on imposter objects.

We use both verification methods described in Section V-

B for all results for this experiment. When we use blending,

we also have a threshold for the blending score. We compare

our results to those of Tang et al. [17] and Aldoma et al. [5]

and surpass state-of-the-art performance on these datasets.

We provide results for our method (1) without blending, (2)

with blending but no metafeatures, and (3) with blending and

metafeatures.

We present results for the Challenge dataset in Table IV.

Note that Challenge is a small dataset, with only 434

objects to be detected. Without blending, our method already

achieves near-perfect performance (perfect precision, 0.9931

recall), only failing to declare 3 out of the 434 correct detec-

tions. Although blending without metafeatures improves this

further, adding metafeatures slightly descreases performance.

We attribute this primarily to noise due to the dataset’s small

size, as only a small number of detections are changed.

We present results for Willow in Table V. On Willow,

we present a significant leap over the previous state of the

art, which we primarily ascribe to dense feature extraction

and multimodal verification, yielding a recall of 0.8311

and a precision of .9976, corresponding to a significant

increase in F-score (from 0.8092 to 0.9062). Even given

this large performance increase, blending further increases

performance by trading a small sacrifice in precision for a

large improvement in recall. Incorporating all components

(including blending and metafeatures) yields a recall of

0.8778 and precision of 0.9828, which correspond to a fur-

ther increase in F-score to 0.9273. We analyze the remaining

failure cases in Section VII.

Method Precision Recall F-score

Tang et al. [17] 0.9873 0.9023 0.9429

Aldoma et al. [5] 0.9977 0.9977 0.9977

Ours [no blending] 1.0000 0.9931 0.9965

Ours [blending] 1.0000 0.9977 0.9988

Ours [blending+mf] 0.9954 0.9885 0.9919

TABLE IV: Results on Challenge dataset.

Method Precision Recall F-score

Tang et al. [17] 0.8875 0.6479 0.7490

Aldoma et al. [5] 0.9430 0.7086 0.8092

Ours [no blending] 0.9976 0.8311 0.9062

Ours [blending] 0.9683 0.8827 0.9235

Ours [blending+mf] 0.9828 0.8778 0.9273

TABLE V: Results on Willow dataset.

D. Comparison to Using Sparse Keypoints

Our experiments indicate that dense feature extraction

plays a major role in attaining high performance. We examine

the effects of using SIFT keypoints versus our current

approach. At training time, we extract features at each pixel,

then perform voxel grid downsampling of the features after

projecting them onto our mesh models. At test time, we

downsample by using a stride of 20 over the pixels at which

we extract descriptors.

In general, using keypoints results in good precision but

significantly reduced recall. Table VI illustrates the effects on

performance of using SIFT keypoints when training feature

models and when extracting test image descriptors.

E. Blending with Keypoints

Although multimodal blending boosts performance even

when applied on top of dense feature extraction, we observe

that it yields significantly better relative increases in perfor-

mance when using sparse keypoints at test time with query

images.

Table VII shows the large increases in performance when

applying blending to results obtained from RANSAC and

multimodal verification with keypoints.

These results are largely due to the fact that many of

the remaining errors when using dense feature extraction

stem from poor pose estimations from the RANSAC phase,

in which case the RANSAC and verification scores are

unreliable (we discuss such failure cases further in Sec-

tion VII). In contrast, when using keypoints, there are still

many cases where a good pose was estimated, but not enough

features were extracted to determine the object class using

the ratio test with SIFT scores alone. In these cases, blending

can combine scores across modalities, which significantly

improves keypoint-based performance.



Fig. 5: Example test scenes from the Challenge and Willow

datasets.

Fig. 6: Histograms of pose errors on Challenge dataset.

Ground truth poses are unavailable for the Willow dataset.

F. Timing Results

All timing experiments were done on a commodity desk-

top with a 4-core i7 processor and 32GB of RAM.

The entire training phase takes under 6 minutes for a single

object. By parallelizing across objects, we can complete the

training phase for all 35 objects in well under an hour.

Training the weight vector for multimodal blending on the

10,000 generated examples takes roughly 75s.

A timing breakdown for the testing phase (averaged over

scenes in the Challenge test set) is given in Table VIII.

Applying blending using a linear SVM simply consists of

a dot product and thus takes a negligible amount of time.

Note that all steps following segmentation (i.e. RANSAC

and pose-verification scores) can be run in parallel across

clusters.

It is possible to sacrifice some performance to speed up

the testing phase by excluding the pose-based verification

step, which yields the already state-of-the-art results given

in Table VI. Another alternative to greatly speed up the

testing phase is to combine keypoints with blending, which,

as described in Section VI-E, yields good performance as

well (the RANSAC and verification phases take < 2s total

when using keypoints).

G. Improving the Willow Dataset

A small number of failures on Willow are due to errors in

the ground truth, where labeled objects are actually fully

occluded. After fixing all such labeling errors, we report

performance on this dataset as “Willow-Vis.”

Additionally, we created another set of ground truth labels

for Willow, where only objects determined to be at least

Model Query Dataset Prec. Recall F-score

sparse sparse Challenge 0.9894 0.8614 0.9210

sparse sparse Willow 0.9453 0.5412 0.6883

sparse dense Challenge 0.9879 0.9401 0.9634

sparse dense Willow 0.9279 0.7199 0.8108

dense sparse Challenge 0.9975 0.9171 0.9556

dense sparse Willow 0.9432 0.5915 0.7271

dense dense Challenge 1.0000 0.9931 0.9965

dense dense Willow 0.9382 0.8397 0.8862

TABLE VI: Performance using sparse vs. densely computed

(then downsampled) SIFT models and query features. Only

RANSAC scores and the ratio test are used for these results.

Experiment Prec. Recall F-score

Challenge 0.9975 0.9171 0.9556

Challenge [blending] 0.9881 0.9585 0.9731

Challenge [blending+mf] 0.9905 0.9585 0.9742

Willow 0.9432 0.5915 0.7271

Willow [blending] 0.9508 0.7604 0.8451

Willow [blending+mf] 0.9475 0.7654 0.8468

TABLE VII: Results when using keypoints at test time with

blending.

20% visible are marked as present in the scene. We report

performance on this dataset as “Willow-20.”

Both of these modified datasets are available for download

at http://rll.berkeley.edu/2013_IROS_ODP. To give

an idea of how many errors are due to the object being either

fully or highly occluded, we report results for both datasets

in Table IX.

VII. DISCUSSION

We now discuss the two primary failure cases of our

system on the Willow dataset, namely detection errors due

to poor pose estimation and imposter objects being mistaken

for training objects.

A. Pose Estimation Failures

We attribute the majority of the remaining missed detec-

tions to RANSAC failing to discover the correct pose for the

correct object. When RANSAC fails, the verification scores

are usually unreliable, leading to the algorithm declaring

the incorrect object (or no object). Because RANSAC only

works with local SIFT features, this frequently happens with

highly occluded objects or when only a nontextured part of

the object is visible. Incorporating features that are computed

over larger windows or that are more robust for untextured

objects into the RANSAC computation may eliminate many

of these errors, although at present it is unclear how to best

incorporate these into our framework.



Testing Step Time Per Scene (s)

Segmentation 5.4

Feature extraction, SIFT/shape/color 5.1 / 5.4 / 0.3

RANSAC pose estimation 13.9

Verification, SIFT/shape/color 3.8 / 0.4 / 3.7

Total 38.1

TABLE VIII: Timing results, test phase.

Method Precision Recall F-score

Willow [no blending] 0.9976 0.8311 0.9062

Willow [blending] 0.9683 0.8827 0.9235

Willow [blending+mf] 0.9828 0.8778 0.9273

Willow-Vis [no blending] 0.9898 0.8504 0.9148

Willow-Vis [blending] 0.9683 0.9032 0.9346

Willow-Vis [blending+mf] 0.9882 0.8982 0.9386

Willow-20 [no blending] 0.9963 0.8780 0.9334

Willow-20 [blending] 0.9677 0.9319 0.9494

Willow-20 [blending+mf] 0.9690 0.9325 0.9504

TABLE IX: Results on modified Willow datasets. “Willow-

Vis” refers to a ground truth labeling in which objects that

are fully occluded are not counted as present in the scene.

“Willow-20” refers to a ground truth labeling in which

only objects that are hand-labeled as at least 20% visible

(by human inspection) are counted as present in the scene.

Results on Willow are repeated for ease of comparison.

B. Failures Due to Imposters

There are also a small number of errors due to imposter

objects being declared as one of the training objects. Because

the training data contains no imposter objects, the classifier

cannot differentiate between the training objects and an

imposter that has a high score for a single feature model, but

only moderate scores for the other feature models. Adding

imposter objects to the training data, which could be used

as negatives for the classifier, may help eliminate these

failure cases. Imposters would not require complete models;

a collection of views without pose information would suffice.

VIII. CONCLUSION

This paper presents several methods which together yield

significantly higher precision and recall on the Challenge

and Willow datasets compared to the prior state of the art.

The key contributing factors to our approach’s performance

are dense feature extraction, multimodal feature models, and

data-driven blending of the scores for each feature model

according to metafeatures of the current scene.

For visualizations of every detection (and mistake) made

by our algorithm, please refer to:

http://rll.berkeley.edu/2013_IROS_ODP

To allow for comparison on a version of the dataset with

completely occluded objects removed from the labeling (and

another with mostly occluded objects removed), we provide

supplementary ground truth labelings for Willow at the above

website. A significant number of errors are due to objects

being completely occluded in the supplied views.
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