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Pre-reading language skills develop rapidly in early childhood and are related

to brain structure and functional architecture in young children prior to

formal education. However, the early neurobiological development that

supports these skills is not well understood. Here we acquired anatomical,

diffusion tensor imaging (DTI) and resting state functional MRI (rs-fMRI)

from 35 children at 3.5 years of age. Children were assessed for pre-

reading abilities using the NEPSY-II subtests 1 year later (4.5 years). We

applied a data-driven linked independent component analysis (ICA) to explore

the shared co-variation of gray and white matter measures. Two sources

of structural variation at 3.5 years of age demonstrated relationships with

Speeded Naming scores at 4.5 years of age. The first imaging component

involved volumetric variability in reading-related cortical regions alongside

microstructural features of the superior longitudinal fasciculus (SLF). The

second component was dominated by cortical volumetric variations within

the cerebellum and visual association area. In a subset of children with rs-

fMRI data, we evaluated the inter-network functional connectivity of the

left-lateralized fronto-parietal language network (FPL) and its relationship with

pre-reading measures. Higher functional connectivity between the FPL and

the default mode and visual networks at 3.5 years significantly predicted better

Phonological Processing scores at 4.5 years. Together, these results suggest

that the integration of functional networks, as well as the co-development

of white and gray matter brain structures in early childhood, support the

emergence of pre-reading measures in preschool children.
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Introduction

Reading is an essential skill that plays a fundamental
role in academic achievement, social engagement with the
world and peers, and mental health (Dehaene-Lambertz et al.,
2006a; Torppa et al., 2006; May et al., 2011; Lonigan et al.,
2013). Language skills develop dramatically throughout early
childhood and lay the foundation for later reading skills.
Phonological awareness and speeded naming in particular are
strong predictors of future reading success (Lonigan et al.,
2009; Snowling and Hulme, 2011). These skills are supported
by neurobiological processes that are primed in utero (May
et al., 2011) and develop rapidly during early life. A thorough
understanding of the early regionally specific structural and
functional brain features associated with later reading abilities
is essential to determine how reading difficulties emerge,
and to help appropriately target early language and reading
interventions (Zijlstra et al., 2020).

Reading involves a left lateralized network of white matter
connections that support communication between cortical
regions (Torppa et al., 2006; Schlaggar and McCandliss, 2007;
Zijlstra et al., 2020). Frontal and temporal-parietal cortical
regions are connected via dorsal white matter pathways
including the arcuate fasciculus and superior longitudinal
fasciculus (SLF). Frontal, temporal, and occipital regions
are connected by ventral white matter pathways [inferior
longitudinal (ILF), inferior fronto-occipital (IFO), and uncinate
fasciculi (UF)] (Klingberg et al., 2000; Brown et al., 2001;
Hickok and Poeppel, 2004; Welcome et al., 2011). Throughout
childhood, both cortical structure (Szaflarski et al., 2006;
Holland et al., 2007) and brain functional patterns (Dehaene-
Lambertz et al., 2002, 2006b; Peña et al., 2003) become
more left-lateralized. White matter structures, such as the
arcuate fasciculus, also demonstrate left lateralization in early
life (O’Muircheartaigh et al., 2013; Dubois et al., 2016), and
are linked to language skill development in young children
(Reynolds et al., 2019b).

Relationships between reading performance and cortical
brain structure and development have been observed in adults
(Klingberg et al., 2000; Brown et al., 2001; Welcome et al.,
2011), adolescents (Kronbichler et al., 2008; Lebel et al., 2013),
and school-aged children (Beaulieu et al., 2005; Deutsch et al.,
2005; Eckert et al., 2005; Niogi and McCandliss, 2006; Lebel and
Beaulieu, 2009). Cortical structure in children and adolescents
is associated with phonological processing skills (Lu et al.,
2007), with higher baseline reading skills associated with faster
changes in gray matter volume in typically developing children
aged 5–15 years (Houston et al., 2014; Linkersdörfer et al.,
2014). Furthermore, children aged 6–7 years who subsequently
received a diagnosis of dyslexia had reduced cortical thickness
in left hemisphere reading-related regions compared to children
who did not eventually receive a diagnosis (Clark et al., 2014).
There is evidence that these alternate development patterns

emerge even earlier, with slower proportional growth of left
cortical regions was observed in preschool aged children with
a family history of reading disorders (Ostertag et al., 2021).

White matter microstructural properties like myelin and
axonal packing (Geeraert et al., 2020) support pre-reading
skills in preschool children (Walton et al., 2018), and reading
skills in adolescents (Ben-Shachar et al., 2007) and adults
(Welcome and Joanisse, 2014). Longitudinal studies have also
demonstrated that white matter development supports reading
gains. Faster changes in white matter fractional anisotropy (FA)
and mean diffusivity (MD), that represent faster maturation,
are associated with larger gains in reading skills in children
with and without developmental disorders (Yeatman et al.,
2012a; Treit et al., 2013; Wang et al., 2017). Furthermore,
similar changes in white matter microstructure have been
demonstrated following intensive reading interventions (Keller
and Just, 2009; Huber et al., 2018). While these studies
suggest associations between early white matter maturation
and reading development in children, it is unclear what early
white matter characteristics support pre-reading skills later in
childhood. Emerging evidence suggests that arcuate fasciculus
and corticospinal tract microstructural properties even in
infancy can predict phonological processing and vocabulary
at 5 years of age (Zuk et al., 2021). However, the coinciding
cortical structures and white matter neurobiological properties
that support pre-reading skills in preschool aged children, before
formal reading education, are not well-understood.

Activation and functional connectivity with reading related
regions are related to language skill gains (Xiao et al., 2016), later
reading outcomes (Jasińska et al., 2020), and brain development
during childhood (Saygin et al., 2016). The process of learning
to read is supported by refined functional architecture (Dehaene
et al., 2010; Cross et al., 2021). In general, children with higher
reading proficiency show faster development of reading-related
brain regions than children with poor reading skills (Yeatman
et al., 2012b; Wang et al., 2017; Lebel et al., 2019; Reynolds et al.,
2019b). A recent cross-sectional study (Benischek et al., 2020)
identified higher functional connectivity within the reading
network (Wernicke’s and Broca’s temporal-parietal areas), but
more negative connectivity between reading areas and the
default mode network (DMN), in young children with better
pre-reading skills. The brain’s functional architecture during the
preschool period has also been shown to relate to pre-reading
skills (Raschle et al., 2012; Saygin et al., 2013; Walton et al.,
2018; Reynolds et al., 2019b). Furthermore, pre-readers with
a family history of dyslexia show reduced temporal-parietal
and temporal-occipital activation during sound matching
compared to pre-readers without a family history of dyslexia
(Raschle et al., 2012).

White matter structure, cortical volume, and functional
connectivity have all been studied separately with respect to
reading and pre-reading, but their development is inherently
linked. In this study, we aimed to determine how early
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childhood brain morphometry, white matter microstructure,
and functional brain network communication predict measures
of pre-reading skills later in childhood. Investigating all
measures simultaneously can be challenging, as it increases the
number of comparisons and typical univariate analyses do not
model the shared and spatially specific development between
features. Our data-driven linked independent component
analysis (ICA) technique (Llera et al., 2019) combined multiple
parameters simultaneously to measure co-variation of white
matter and cortical structures across participants as they relate
to pre-reading measures. This approach has been used to study
neurobiological development and aging as well as childhood
disorders like autism spectrum disorder and ADHD (Itahashi
et al., 2015; Wolfers et al., 2017). In a subset of participants
with high-quality functional MRI data, we quantified how the
fronto-parietal language network (FPL) communicates with
other networks in the brain that may play a role in pre-reading
ability. These included the cerebellar (Alvarez and Fiez, 2018),
visual, and DMNs which support memory, visual function, and
attention while reading (Smallwood et al., 2013), respectively.
We hypothesized that multimodal brain structural properties
and inter-network connectivity at 3 years of age would relate to
pre-reading measures assessed 1 year later.

Materials and methods

Participants

The University of Calgary Conjoint Health Research Ethics
Board (CHREB) approved this study (REB13-0020). Informed
written consent was obtained from each participant’s legal
guardian prior to the commencement of the study, and ongoing
verbal assent was obtained from the participants. Participants
were 35 children (19 boys/16 girls) selected from the ongoing
Calgary Preschool MRI Study (Reynolds et al., 2020) based on
the criteria of having high-quality T1-weighted and diffusion
weighted scans at 3.5 years (3.49 ± 0.14; range 3.25–3.75 years)
and a pre-reading assessment at age 4.5 years (4.50 ± 0.16;
range 4.25–4.75 years). The University of Calgary CHREB
approved this study (REB13-0020). Informed written consent
was obtained from each participant’s legal guardian prior to the
commencement of the study, and ongoing verbal assent was
obtained from the participants.

Language assessments

Children’s pre-reading skills were assessed using the NEPSY-
II Speeded Naming and Phonological Processing subtests (∼20
min) at 3.5 and 4.5 years of age. The Speeded Naming
subtest assesses rapid semantic access to and production of
names of colors and shapes, and the Phonological Processing

subtest assesses phonemic awareness (Korkman et al., 2007).
Age standardized Speeded Naming Combined Scaled Scores
(accounts for both speed and accuracy) and Phonological
Processing Scaled Scores were calculated and used in the
analysis. On these measures, higher scores are indicative of
better performance.

Magnetic resonance imaging
acquisition

All imaging was conducted using the same General Electric
3T MR750w system and a 32-channel head coil (GE, Waukesha,
WI) at the Alberta Children’s Hospital in Calgary, Canada.
Children were scanned either while awake and watching a
movie of their choice, or while sleeping without sedation. fMRI
scans during which the child was asleep were excluded from
analyses. This approach has been used in our prior work and
is effective for scanning young children while awake (Long
et al., 2017). Prior to scanning, parents were provided with
detailed information on MRI procedures and given the option
to complete a practice MRI session in a training scanner to
familiarize the child with the scanning environment, or to make
use of a take home pack with this information (e.g., noise
recordings; Thieba et al., 2018). Families were also provided
with a book that incorporates our scanning procedures into
an engaging story (Frayne, 2015) and we encouraged the
parents/guardians to review the materials with the child.

T1-weighted images were acquired using a FSPGR BRAVO
sequence, 210 axial slices; 0.9 × 0.9 × 0.9 mm resolution,
TR = 8.23 ms, TE = 3.76 ms, flip angle = 12◦, matrix
size = 512 × 512, inversion time = 540 ms. Whole-brain
diffusion weighted images were acquired using single shot spin
echo echo-planar imaging sequence: 1.6 × 1.6 × 2.2 mm
resolution (resampled on scanner to 0.78 × 0.78 × 2.2 mm), full
brain coverage, TR = 6,750 ms; TE = 79 ms (set to minimum for
first year), 30 gradient encoding directions at b = 750 s/mm2,
and five interleaved images without gradient encoding at b = 0
s/mm2 for a total acquisition time of approximately 4 min.
Passive viewing fMRI data were acquired while children were
watching a movie of their choice, with a gradient-echo echo-
planar imaging (EPI) sequence: total sequence time = 8 min
and 10 s, 36 axial slices, 3.59 × 3.59 × 3.6 mm resolution,
TR = 2,000 ms, TE = 30 ms, flip angle = 60◦, matrix
size = 64 × 64, 250 volumes.

Anatomical imaging

Voxel-based morphometry (VBM) processing was
undertaken on the T1-weighted images using FSL [FMRIB
(Functional Magnetic Resonance Imaging of the Brain)
Software Library freely available at fsl.fmrib.ox.ac.uk] to
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create gray matter maps. N4-bias correction (Tustison et al.,
2010) was performed using ANTs (Avants et al., 2009), then
images were transformed to radiological orientation. Brain
extraction was undertaken using Brain Extraction Tool (BET)
via the standard FSL VBM protocol; when brain extraction
using the default settings was unsuccessful (n = 7), BET was
performed manually to achieve the best results. Next, images
were segmented into gray matter, white matter and CSF. The
gray matter images were then affine registered to the NIHPD
asymmetrical pediatric brain template (4.5–8.5 years template;
this template was used to be consistent with our prior work
in the larger Calgary Preschool MRI sample and to permit
future analysis spanning 2–8 years) in Montreal Neurological
Institute (MNI) standard space (Fonov et al., 2011), resampled
to 2 mm isotropic voxels, concatenated and averaged. Using
the standard FSL pipeline, these average gray matter images
were used to create a study-specific non-linear gray matter
template (2 mm isotropic voxels), following which gray matter
images were non-linearly registered to the study-specific
template, modulated, smoothed (2 mm), and concatenated
into one 4D file.

Diffusion imaging

Raw diffusion images were visually quality checked and
all motion-corrupted volumes, or volumes with artifacts were
removed prior to processing. Datasets passed final quality
assurance checks (n = 35) if they had at least 18 high quality
diffusion weighted volumes, and two high quality b0 volumes
remaining following volume removal. Data was then pipelined
through ExploreDTI V4.8.6 (Leemans et al., 2009) to correct
for signal drift, Gibbs ringing (non-DWIs), subject motion,
and eddy current distortions. FA, axial (AD), and radial
diffusivity (RD) image maps were extracted. All measures were
included to understand the specific white matter microstructural
properties that contribute to pre-reading development. For
images where brain extraction during diffusion tensor imaging
(DTI) preprocessing did not remove all non-brain material, FSL
BET was run on the extracted FA map, and the resulting binary
mask was used to mask the FA, AD, and RD images. These DTI
maps were then non-linearly warped using ANTs (Avants et al.,
2009) to the NIHPD asymmetrical pediatric brain template (ages
4.5–8.5 years) in MNI standard space (Fonov et al., 2011). All
of the registered diffusion data was then merged into one four-
dimensional image to create a mean FA mask and image for all
subjects. The mean FA image was skeletonized with a threshold
of FA > 0.2 to create a mean FA skeleton mask. All participants’
FA, AD, and RD images were non-linearly projected onto
that skeleton. Analysis was conducted on skeletonized maps of
diffusion measures within tracts that have been associated with
reading in children (Wandell and Yeatman, 2013): the bilateral
uncinate fasciculus (UF), inferior longitudinal fasciculus (ILF),

IFO, and SLF. Tracts were identified using the JHU white matter
tractography atlas.

Linked independent component
analysis

Gray matter morphometry and skeletonized FA, AD and
RD maps were aligned to the same space, concatenated, and
then used as input for a linked ICA using FSL tools (Llera
et al., 2019). This is a data-driven approach that uncovers
the neurobiological variations across multiple MRI parameter
maps (Groves et al., 2011) so by including multiple diffusion
measures we aim to explain the neurobiology more specifically.
Briefly, the concatenated imaging data from all subjects are
decomposed into a series of linked independent components.
Linked components involve a spatial map for each MRI
parameter (Figure 1D) that displays where that combination
of MRI metrics co-vary across participants according to
a common component weighting (Figure 1C). Each MRI
parameter has a relative modality loading in each component
(Groves et al., 2012) that contributes a fraction of the total
variance explained by that component. The component weight
describes the combined relative variability of multiple MRI
metrics across participants and decreases the number of
multiple comparisons while enabling examination of multiple
parameters in conjunction (Figure 1). Functional data could not
be incorporated in our linked models because only a subset of
participants’ functional data passed quality check procedures.

Resting state functional magnetic
resonance imaging

Resting state functional MRI preprocessing is described in
detail elsewhere (Long et al., 2019). Briefly, processing was
undertaken using FSL (slice timing, head motion correction,
T1 image segmentation, head motion outlier detection,
co-registration, and spatial normalization and smoothing)
(Jenkinson et al., 2002) and AFNI v17.3.03 (regression of the
nuisance signals, band-pass filtering and linear trend removal)
(Cox, 1996). fMRI data was registered to a pediatric template
in MNI standard space (Fonov et al., 2011). Participants with
fMRI data that had < 4 min of low-motion data, or excessive
motion (relative frame-wise displacement < 0.3 mm) at any
time (Satterthwaite et al., 2013) were excluded from the analysis,
resulting in a total of 21 fMRI datasets.

Clean fMRI data (n = 21) was temporally concatenated and
analyzed using ICA to decompose the data into 20 components
or networks. This model order was chosen to adequately model
known neural networks, physiological signals, and noise (Wang
and Li, 2015). To identify resting state networks (RSNs), the
components were compared (using cross correlation) to the
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FIGURE 1

Linked independent component analysis pipeline. (A) Preprocessed T1 and diffusion weighted images (DWI) were processed using voxel-based
morphometry (VBM) and tract-based spatial statistics (TBSS) pipelines (with the reading-related tracts mask shown in yellow) to create (B)
individual VBM, fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) spatial maps for each subject as input for the linked
independent component analysis (ICA). The data is decomposed into a series of linked components comprised of (C) component weights that
reflect the inter-subject variation shared across (D) all input measures (VBM, FA, AD, and RD) in specific brain regions (for example, shown in red).

10 most common RSNs (Smith et al., 2009). We focused on
the left-lateralized FPL network because it involves regions,
including Broca’s and Wernicke’s areas, that are functionally
active during cognitive-language tasks (Smith et al., 2009;
Reynolds et al., 2019b). Dual regression algorithms were used
to back-reconstruct subject-specific RSNs composed of data-
driven voxel-wise clusters. Reading is a complex skill that
involves communication between distinct networks in the brain
that are involved with visual, memory, attention, and language
processing. Therefore, we focused on how the FPL network
communicates with other relevant brain networks, as recent
findings in preschool aged children suggest that both within-
network communication as well as integration with other
networks support pre-reading skills (Benischek et al., 2020). We
investigated the inter-network communication between the FPL
and networks responsible for visual processing, memory, and
attention. The average timeseries from each of these networks
(FPL, visual, DMN, and the cerebellar RSN) was extracted. Inter-
network functional connectivity between the FPL network and
the three RSNs were calculated for each participant.

Statistical analysis

This exploratory study used partial correlations controlling
for sex. We performed bootstrapping in SPSS (version 26)
with 1,000 samples to determine confidence interval of any

relationships between the linked ICA component weights at
3.5 years and pre-reading measures at 4.5 years. Sex was
included as a covariate because of known sex differences in brain
development in this age range (Reynolds et al., 2019a). The inter-
network functional connectivity between the FPL and the three
RSNs was also tested for correlations with pre-reading measures
1 year later using a partial correlation analysis controlling for sex
and age at the time of the scan. As this was an exploratory study,
the nominal p-values for the relationships between component
weights, inter-network functional connectivity and pre-reading
measure are reported. We also report if these relationships
survive false-discovery rate (FDR) correction for the linked ICA
and functional RSNs analyses separately.

Results

Pre-reading measures

At 4.5-years, the mean Phonological Processing standard
score was 11.9 ± 2.1 and ranged from 7 to 16. The mean Speeded
Naming standard score was 12.4 ± 2.3 and ranged from 7 to 18.
Speeded Naming and Phonological Processing scores at 3.5 years
of age were not correlated with scores obtained at 4.5 years
(Speeded Naming: r = 0.02, p = 0.91; Phonological Processing:
r = 0.26, p = 0.14).
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Linked brain structure features that
relate to pre-reading

The masked (bilateral UF, IFO/ILF, and SLF) and
skeletonized DTI maps (FA, AD, RD) and the gray matter
morphometry maps were input into the linked ICA. The linked
ICA generated 14 components. Of these, three components were
driven by an individual subject; therefore, these components
were not included in the correlation analysis that investigated
the relationships between the brain imaging component weights
and pre-reading measures. Of the remaining 11 components,
two correlated with pre-reading measures. To confirm the
validity of components of interest, linked independent
component models with 13 and 15 components (model order)
were also assessed. The two components described below
were reproducible using all three model orders (p < 0.05).
Intracranial volume was not related to either reading score
(p > 0.05).

Component 8 weights were positively associated with
Speeded Naming scores (r = 0.37, p = 0.03, CI: [0.04, 0.64])
at age 4.5 years (Figure 2), but this relationship did not
survive FDR correction (corrected p = 0.3). This component
involved volumetric variability in the angular gyrus, thalamus,
fusiform gyrus, middle temporal regions, and the dorsolateral
prefrontal cortex (Table 1) and was linked with bilateral
changes in FA and AD along the SLF. Specifically, relatively
higher component weights amongst participants represent
larger volumes in the sensorimotor regions, the angular gyrus,
thalamus, fusiform gyrus, and middle temporal area, smaller
volumes in the posterior cingulate and visual association areas

and the prefrontal cortex, combined with higher FA and AD,
and lower RD (though less pronounced than FA and AD) in the
bilateral SLF were related to higher pre-reading scores.

A second component (Component 10) was dominated by
volumetric variability in the cerebellum, precuneus, angular
gyri, and areas in the occipital cortex (visual regions), and was
positively associated with Speeded Naming (r = 0.35, p = 0.04,
CI: [0.06, 0.61]) at age 4.5 years (Figure 3). This association did
not survive FDR correction (corrected p = 0.2). Smaller cortical
volumes in the cerebellum, and supramarginal and angular gyri,
and relatively larger volumes in visual areas in the occipital lobe
and the fusiform in participants at 3.5 years (Table 2) were
associated with higher pre-reading scores at 4.5 years.

Resting state networks and
pre-reading

We examined average inter-network functional connectivity
between the FPL RSN (Figure 4) and three other networks
including the DMN, the occipital pole visual and the cerebellar
RSNs. The inter-network functional connectivity (correlation
between average RSN time series) between the FPL and
the DMN assessed at 3.5 years of age was correlated with
Phonological Processing scores 1year later at 4.5 years of age
(r = 0.62, p = 0.006, CI: [0.25, 0.86]) and this relationship
survived FDR correction (corrected p = 0.02). Inter-network
functional connectivity between the occipital pole visual
RSN and the FPL at 3.5 years of age was associated with
Phonological Processing scores one year later (r = 0.51,

FIGURE 2

Component 8 was approximately evenly weighed by the voxel-based morphometry (VBM) gray matter, fractional anisotropy (FA), radial
diffusivity (RD), and axial diffusivity (AD) contributions. This component was positively correlated with Speeded Naming at 4.5 years. For regions
in red (positive clusters), children with larger volumes/higher DTI metrics performed better on Speeded Naming, and for regions in blue
(negative clusters), children with smaller volumes/DTI metrics performed better on Speeded Naming. For reference, the superior longitudinal
fasciculus is also shown.
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TABLE 1 Characterization of component 8 voxel-based morphometry gray matter clusters.

# Pos. voxels Peak (x, y, z)
coordinates

Regions within the cluster Region labels Peak z-statistic

1,062 (–21, –45, 61) BA7, BA39 (L)† Angular gyrus (Wernicke’s area) 5.9

357 (9, –13, 17) Thalamus 3.83

317 (1, –23, 71) BA6 Premotor and supplementary motor cortex 4.22

288 (35, 23, 37) BA8 (R), BA6 (R) Frontal eye fields, motor association cortex 4.21

184 (35, –37, –15) Fusiform (R) 3.35

180 (–1, 49, 33) BA9 Dorsolateral and medial prefrontal 5.17

158 (–35, –57, 39) BA39 (L) Angular gyrus (Wernicke’s area) 5.22

141 (57, –35, –15) BA21 (R) Middle temporal gyrus 5.01

137 (–51, –51, –3) Fusiform (L) 6.18

132 (27, –61, 43) BA39 (R) Angular gyrus (Wernicke’s area) 4.31

75 (–65, –17, 25) Primary sensory (L) 3.79

74 (25, –41, 63) BA5 (R) Somatosensory association cortex 3.51

72 (–37, 41, 19) BA10 (L), BA46 (L) Anterior and dorsolateral prefrontal cortex 4.77

66 (–59, 3, 17) BA44 (L) Broca’s area pars opercularis 3.84

63 (–3, 27, –7) BA32 (L) Dorsal anterior cingulate cortex 3.23

60 (–51, 1, 41) BA6 (L) Premotor and supplementary motor cortex 3.09

56 (3, 1, 33) BA24 (R) Ventral anterior cingulate cortex 3.2

54 (–43, –45, 41) BA40 (L) Supramarginal gyrus (Wernicke’s area) 4.61

# Neg. voxels Peak (x, y, z)
coordinates

Regions within the cluster Peak z-statistic

308 (–25, –59, 7) BA23 (L), BA18 (L), BA30 (L) Ventral posterior cingulate cortex, secondary
visual cortex

5.73

290 (–47, –51, 17) BA39 (L) Angular gyrus (Wernicke’s area) 5.61

255 (–39, –77, 27) BA19 (L), BA39 (L) Visual association, angular gyrus (Wernicke’s
area)

4.17

215 (35, 47, 5) BA10 (R) Anterior prefrontal cortex 4.2

119 (19, –59, 7) BA23 (R), BA18 (R) Ventral posterior cingulate cortex, secondary
visual cortex

4.01

80 (47, –35, 21) BA22 (R), BA40 (R) Superior temporal and supramarginal gyrus
(Wernicke’s area)

3.89

62 (1, 33, 41) BA8 (R), BA8 (L) Frontal eye fields 3.63

61 (–23, 7, 1) Putamen (L) 3.33

59 (–21, –93, 21) BA18 (L) Secondary visual cortex 3.98

55 (–45, 21, 7) BA45 (L) Broca’s area (pars triangularis) 3.75

54 (–49, –37, –19) BA20 (L) Inferior temporal gyrus 4.06

†BA, Brodmann area; L, left; R, right.

p = 0.03, CI: [0.001, 0.85]), but this did not survive FDR
correction (corrected p = 0.05). Inter-network functional
connectivity was not significantly related to either structural
linked component weights.

Discussion

In this exploratory study of typically developing young
children, we identified multiparametric brain imaging features
at 3.5 years of age that were associated with pre-reading

measures 1 year later. Variations in brain volume (angular
gyrus, lingual gyrus, thalamus, fusiform gyrus, middle temporal
regions, cerebellum, precuneus, and the dorsolateral prefrontal
cortex), SLF microstructure, and inter-network functional
connectivity of the FPL network at 3.5 years were associated
with better pre-reading skills at 4.5 years. More mature SLF
microstructure coincided with cortical morphometry variations
in portions of Wernicke’s area and Broca’s area. Both are
considered critical language comprehension and production
regions and were related to better pre-reading scores 1 year later.
Also, higher functional connectivity between the FPL and the

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.965602
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-965602 August 16, 2022 Time: 15:34 # 8

Manning et al. 10.3389/fnhum.2022.965602

FIGURE 3

Component 10 was dominated by gray matter contributions. This component was positively correlated with Speeded Naming performance at
4.5 years. For regions in red (positive clusters), children with larger volumes performed better on Speeded Naming, and for regions in blue
(negative clusters), children with smaller volumes performed better on Speeded Naming.

DMN and visual networks significantly predicted better pre-
reading measures 1 year later. Together these findings suggest
that gray and white matter structure, as well as inter-network
functional communication, contribute to the development of
pre-reading skills in young children.

Our multimodal approach was able to capture co-occurring
neurobiological variations (Wolfers et al., 2017; Llera et al.,
2019) in gray and white matter structures. Shared inter-subject
variation (Component 8) of gray matter volume in reading-
related regions (e.g., supramarginal and angular gyrus and
dorsolateral prefrontal cortex) co-varied with microstructural
measures (FA, AD, and a smaller contribution of RD) of the
white matter that connects them (SLF). Reading-related brain
areas such as the SLF and the cortical regions identified continue
to develop throughout childhood and even into adulthood
(Lebel et al., 2008) as the brain refines and integrates inter-
network communications. The SLF is a key dorsal pathway
involved in auditory-motor integration and the phonological
aspects of both reading and speech (Vigneau et al., 2006).
The associations between the SLF and pre-reading measures
is consistent with prior longitudinal diffusion MRI research
that has reported relationships between arcuate fasciculus (a
component of the SLF) microstructure and reading skills in
older children (Wandell and Yeatman, 2013). Furthermore,
arcuate fasciculus microstructure during infancy is associated
with phonological awareness skills and vocabulary knowledge
in kindergarten (Zuk et al., 2021). Our findings are also

consistent with prior research that has reported cross-section
and longitudinal associations between cortical thickness and
volume in these areas and reading abilities in older children.
Higher FA and lower MD suggest that participants with
increased myelin and/or more tightly packed axons (Beaulieu,
2002; Song et al., 2002, 2003). Because FA generally increases
and MD decreases during typical development (Reynolds
et al., 2019b), the profiles observed here suggest a more
mature SLF in children with better pre-reading skills at age
4.5 years. Congruent cerebral structural development involves
both thinning and thickening of the cortex depending on the
region and stage of development (Remer et al., 2017). These
results suggest that co-occurring white and gray matter structure
in early childhood may lay the foundation for more advanced
reading abilities throughout childhood and adolescence.

The second component associated with later pre-reading
performance was dominated by gray matter volume variations.
Smaller volumes in the cerebellum, frontal and sensory regions,
and larger angular and visual gyri cortical volumes at 3.5 years
of age were related to better Speeded Naming scores 1 year
later. The cerebellum plays a critical role in reading development
through both the dorsal and ventral circuits that support
phonological and semantic processes (Alvarez and Fiez, 2018;
Benischek et al., 2020). The inclusion of dorsal and ventral
cerebellar gray matter regions in this component suggests
that the cerebro-cerebellar pathway plays a key role in the
development of pre-reading skills. The angular gyrus also
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TABLE 2 Characterization of component 10 voxel-based morphometry gray matter clusters.

# Neg. voxels Peak (x, y, z)
coordinates

Regions within the cluster Region labels Peak z-statistic

9,016 (–29, –77, –41) Cerebellum (L)† 11.8

1,670 (13, 31, 59) BA8 (R) Lateral and medial supplementary motor area 5.64

1,186 (35, –65, 41) BA39 (R) Angular gyrus (Wernicke’s area) 8.28

669 (–47, 33, –5) BA47 (L) Fusiform gyrus 5.05

486 (–37, –37, 45) BA40 (L) Supramarginal gyrus (Wernicke’s area) 6.91

398 (–3, –19, 75) BA6 (L) Premotor and supplementary motor cortex 4.53

245 (–15, 53, 29) BA9 (L) Dorsolateral prefrontal cortex 4.1

234 (59, –41, –5) BA21 (R) Middle temporal gyrus 6.91

167 (–63, –3, –7) BA22 (L) Superior temporal gyrus (Wernicke’s area) 3.76

111 (–49, –59, 7) BA39 (L) Angular gyrus (Wernicke’s area) 4.49

90 (49, 1, 13) BA6 (R) Premotor and supplementary motor cortex 5

88 (41, –37, –19) Fusiform (R) 4.41

78 (–13, –89, 33) BA19 (L) Visual association 4.31

76 (15, 7, –19) BA11 (R) Orbitofrontal cortex 3.62

73 (19, –71, 47) BA7 (R) Somatosensory association cortex 3.93

69 (–42, –6, 45) BA6 (L) Premotor and supplementary motor cortex 4.91

66 (21, –37, 61) BA5 (R) Somatosensory association cortex 3.69

64 (19, –9, 61) BA6 (R) Premotor and supplementary motor cortex 5.51

63 (–43, –34, –12) BA20 (L) Inferior temporal gyrus 3.85

61 (29, 23, 41) BA8 (R) Frontal eye fields 4.49

60 (15, –77, –5) BA18 (R) Secondary visual cortex 3.71

58 (–23, 13, –21) BA47 (L) Inferior frontal gyrus (pars orbitalis) 4.1

58 (–49, 43, –15) BA47 (L) Inferior frontal gyrus (pars orbitalis) 3.53

55 (29, –11, 69) BA6 (R) Premotor and supplementary motor cortex 4.01

51 (21, –95, –5) BA18 (R) Secondary visual cortex 4.89

# Pos. voxels Peak (x, y, z)
coordinates

Regions within the cluster Peak z-statistic

1,238 (15, –87, 27) BA19 (R) Visual association 5.61

451 (–45, –49, –15) Fusiform (L) 5.95

444 (51, –47, 23) BA39 (R) Angular gyrus (Wernicke’s area) 5.67

247 (–29, –69, 33) BA39 (L) Angular gyrus (Wernicke’s area) 5.54

243 (–51, –31, –7) BA21 (L) Middle temporal gyrus 5.12

195 (23, 5, –41) BA36 (R) Perirhinal cortex 4.47

101 (–31, –49, –5) BA19 (L) Visual association 4.75

87 (–43, –71, 9) BA19 (L) Visual association 4.96

83 (45, –55, –3) Fusiform (R) 3.88

67 (15, –55, 57) BA7 (R) Somatosensory association cortex 5.83

†BA, Brodmann area; L, left; R, right.

plays a role in language and reading, including orthographic
processing, with increased functional interactions with Broca’s
and Wernicke’s areas and the visual word form area during
reading (Segal and Petrides, 2013; Benischek et al., 2020).
Better language ability is related to increased activation in this
region (Van Ettinger-Veenstra et al., 2016), and disruptions to
functional connectivity with temporal and occipital language
regions have been reported in adults with dyslexia compared

to controls (Horwitz et al., 1997). The visual system is also
important for reading, with sensitivity of the visual cortex
for word visibility increasing throughout childhood (Ben-
Shachar et al., 2011). Connectivity differences between visual
areas and other language and reading regions have been
observed in poor compared to good readers (Wandell et al.,
2012) suggesting that earlier refinement of the cerebellum
and somatosensory cortical regions, combined with growth
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FIGURE 4

The group average left-lateralized fronto-parietal resting state network (left) and the linear relationships between inter-network functional
connectivity at 3.5 years predicting Phonological Processing scores at 4.5 years of age.

of the visual cortex, relate to better pre-reading skills in the
preschool period.

Higher inter-network functional connectivity between the
left-lateralized FPL network and both the DMN (including
bilateral angular gyri) and visual RSNs at 3.5 years of age
predicted better Phonological Processing scores 1 year later.
Prior functional connectivity studies of reading have reported
mixed results, but have generally found increased activation
and connectivity amongst reading-related, sensory and motor
regions (Weiss-Croft and Baldeweg, 2015). However, across
development regions that are typically active during reading
tasks do not exclusively communicate amongst each other, but
instead tend to integrate with other networks including the
DMN (Smallwood et al., 2013; Vogel et al., 2013). Our results
reflect a similar pattern at a much earlier stage of development,
where higher functional connectivity between the FPL and
DMN was significantly predictive of Phonological Processing
scores in early childhood. This suggests that even before formal
reading education, better integration of functional networks
support pre-reading ability and may lay the foundation for
future reading capability as well.

In most individuals, language and reading are left-
lateralized in the brain, with resting state functional connectivity
patterns demonstrating increased lateralization throughout

early development (Reynolds et al., 2019b; Benischek et al.,
2020). Functional connectivity lateralization have been shown to
be related to the development of language skills task-based fMRI
studies (Szaflarski et al., 2006; Holland et al., 2007; Perani et al.,
2011; Yamada et al., 2011; Xiao et al., 2016), where lateralization
patterns tend to increase in the dominant hemisphere until
a plateau in early adulthood that then gradually decreases in
laterality over the life span (Szaflarski et al., 2006). The structural
brain properties associated with better speeded naming scores
were bilateral in our study, which may reflect that while
lateralization strengthens over time, a more broad network
of regions support pre-reading skills at this early stage of
development (Qiu et al., 2011). Our findings suggest that
more inter-connected functional network architecture at this
stage of development may lay the foundation for later reading
abilities, which require seamless communication between brain
networks. Functional brain signals are shared among specific
cortical regions and networks, and maturation and refinement
of the underlying microstructure of pathways connecting
those areas may directly support these functional pathways.
Children who utilize those particular pathways through frequent
exposure to language and reading in early childhood may
establish both the structural and functional brain foundations
to support reading abilities later in life.
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Limitations

This longitudinal study involved a group of typically
developing preschool children with average to high pre-reading
skills. Future studies including children with lower scores
may assist in determining whether similar patterns hold in
children more likely to develop reading problems. We had
a tight age range in this study, but the sample size in this
exploratory study was relatively small and the statistical tests
were under-powered. While VBM has shown similar volumetric
results compared to manual region of interest (Asami et al.,
2012), other factors like gyrification, surface area and cortical
thickness can influence results. Functional connectivity between
the FPL and DMN significantly predicted pre-reading measures,
specifically phonological processing; however, the structural
brain measures associated with pre-reading did not survive a
statistical correction. Further studies with larger sample sizes
are necessary to confirm these relationships between early
brain measures and their influence on a child’s pre-reading
abilities later in life.

Conclusion

In this study we found that linked development of brain
white and gray matter structure in early childhood was
associated with pre-reading measures 1 year later. In particular,
the SLF and the cortical regions that it connects, as well
as cerebellar-cerebral reading-related circuits, appear to be
important for the development of children’s pre-reading skills.
Furthermore, a more functionally integrated FPL network
predicted better pre-reading skills 1 year later. This analysis
approach demonstrates that co-development of white and gray
matter brain structures in early life, as well as the integration
of functional networks before formal reading education, are
associated with pre-reading abilities in preschool children.
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