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Multimodal Data Fusion: An Overview

of Methods, Challenges and Prospects
Dana Lahat, Tülay Adalı, Fellow, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—In various disciplines, information about the same
phenomenon can be acquired from different types of detectors, at
different conditions, in multiple experiments or subjects, among
others. We use the term “modality” for each such acquisition
framework. Due to the rich characteristics of natural phenomena,
it is rare that a single modality provides complete knowledge
of the phenomenon of interest. The increasing availability of
several modalities reporting on the same system introduces new
degrees of freedom, which raise questions beyond those related to
exploiting each modality separately. As we argue, many of these
questions, or “challenges”, are common to multiple domains.
This paper deals with two key questions: “why we need data
fusion” and “how we perform it”. The first question is motivated
by numerous examples in science and technology, followed by a
mathematical framework that showcases some of the benefits that
data fusion provides. In order to address the second question,
“diversity” is introduced as a key concept, and a number of data-
driven solutions based on matrix and tensor decompositions are
discussed, emphasizing how they account for diversity across the
datasets. The aim of this paper is to provide the reader, regardless
of his or her community of origin, with a taste of the vastness
of the field, the prospects and opportunities that it holds.

Index Terms—Keywords: data fusion, multimodality, multiset
data analysis, latent variables, tensor, overview.

I. INTRODUCTION

Information about a phenomenon or a system of interest can

be obtained from different types of instruments, measurement

techniques, experimental setups, and other types of sources.

Due to the rich characteristics of natural processes and envi-

ronments, it is rare that a single acquisition method provides

complete understanding thereof. The increasing availability of

multiple datasets that contain information, obtained using dif-

ferent acquisition methods, about the same system, introduces

new degrees of freedom that raise questions beyond those

related to analysing each dataset separately.

The foundations of modern data fusion have been laid in the

first half of the 20th century [1], [2]. Joint analysis of multiple

datasets has since been the topic of extensive research, and

earned a significant leap forward in the late 1960’s–early

1970’s with the formulation of concepts and techniques such

as multi-set canonical correlation analysis (CCA) [3], parallel

factor analysis (PARAFAC) [4], [5], and other tensor decom-

positions [6], [7]. However, until rather recently, in most cases,
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these data fusion methodologies were confined within the

limits of psychometrics and chemometrics, the communities

in which they evolved. With recent technological advances, in

a growing number of domains, the availability of datasets that

correspond to the same phenomenon has increased, leading to

increased interest in exploiting them efficiently. Many of the

providers of multi-view, multirelational, and multimodal data

are associated with high-impact commercial, social, biomed-

ical, environmental, and military applications, and thus the

drive to develop new and efficient analytical methodologies is

high and reaches far beyond pure academic interest.

Motivations for data fusion are numerous. They include

obtaining a more unified picture and global view of the system

at hand; improving decision making; exploratory research; an-

swering specific questions about the system, such as identify-

ing common vs. distinctive elements across modalities or time;

and in general, extracting knowledge from data for various

purposes. However, despite the evident potential benefit, and

massive work that has already been done in the field (see, for

example, [8]–[16] and references therein), the knowledge of

how to actually exploit the additional diversity that multiple

datasets offer is still at its very preliminary stages.

Data fusion is a challenging task for several reasons [8]–

[11], [17]–[19]. First, the data are generated by very complex

systems: biological, environmental, sociological, and psycho-

logical, to name a few, driven by numerous underlying pro-

cesses that depend on a large number of variables to which

we have no access. Second, due to the augmented diversity,

the number, type and scope of new research questions that can

be posed is potentially very large. Third, working with hetero-

geneous datasets such that the respective advantages of each

dataset are maximally exploited, and drawbacks suppressed,

is not an evident task. We elaborate on these matters in the

following sections. Most of these questions have been devised

only in the very recent years, and, as we show in the sequel,

only a fraction of their potential has already been exploited.

Hence, we refer to them as “challenges”.

A rather wide perspective on challenges in data fusion is

presented by [8], which discusses linked-mode decomposition

models within the framework of chemometrics and psycho-

metrics, and [9], which focusses on “automated decision

making” with special attention to multisensor information

fusion. In practice, however, challenges in data fusion are most

often brought up within a framework dedicated to a specific

application, model and dataset; examples will be given in the

sections that follow.

In this paper, we bring together a comprehensive (but

definitely not exhaustive) list of challenges in data fusion.
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Following from [8], [9], [16], [19] (and others), and further

emphasized by our discussion in this paper, it is clear that

at the appropriate level of abstraction, the same challenge in

data fusion can be relevant to completely different and diverse

applications, goals and data types. Consequently, a solution to

a challenge that is based on a sufficiently data-driven, model-

free approach may turn out to be useful in very different

domains. Therefore, there is an obvious interest in opening

up the discussion of data fusion challenges to include and

involve disparate communities, so that each community could

inform the others. Our goal is to stimulate and emphasize the

relevance and importance of a perspective based on challenges

to advanced data fusion. More specifically, we would like

to promote data-driven approaches, that is, approaches with

minimal and weak priors and constraints, such as sparsity,

non-negativity, low-rank and independence, among others,

that can be useful to more than one specific application or

dataset. Hence, we present these challenges in quite a general

framework that is not specific to an application, goal or data

type. We also give examples and motivations from different

domains.

In order to contain our discussion, we focus on setups in

which a phenomenon or a system is observed using multiple

instruments, measurement devices or acquisition techniques. In

this case, each acquisition framework is denoted as a modality

and is associated with one dataset. The whole setup, in which

one has access to data obtained from multiple modalities, is

known as multimodal. A key property of multimodality is

complementarity, in the sense that each modality brings to

the whole some type of added value that cannot be deduced

or obtained from any of the other modalities in the setup.

In mathematical terms, this added value is known as diversity.

Diversity allows to reduce the number of degrees of freedom in

the system by providing constraints that enhance uniqueness,

interpretability, robustness, performance, and other desired

properties, as will be illustrated in the rest of this paper.

Diversity can be found in a broad range of scenarios and plays

a key role in a wide scope of mathematical and engineering

studies. Accordingly, we suggest the following operative def-

inition for the special type of diversity that is associated with

multimodality:

Definition I.1: Diversity (due to multimodality) is the

property that allows to enhance the uses, benefits and

insights (such as those discussed in Section II), in a way

that cannot be achieved with a single modality.

Diversity is the key to data fusion, as will be explained in

Section III. Furthermore, in Section III, we demonstrate how a

diversity approach to data fusion can provide a fresh new look

on previously well-known and well-founded data and signal

processing techniques.

As already noted, “data fusion” is quite a diffuse con-

cept that takes different interpretations with applications and

goals [8], [9], [20]. Therefore, within the context of this

paper, and in accordance with the types of problems on

which we focus, our emphasis is on the following tighter

interpretation [21]:

Definition I.2: Data fusion is the analysis of several

datasets such that different datasets can interact and

inform each other.

This concept will be given a more concrete meaning in

Sections III and V.

The goal of this paper is to provide some ideas, perspec-

tives, and guidelines as to how to approach data fusion. This

paper is not a review, not a literature survey, not a tutorial

nor a cookbook. As such, it does not propose or promote

any specific solution or method. On the contrary, our message

is that whatever specific method or approach is considered,

it should be kept in mind that it is just one among a very

large set, and should be critically judged as such. In the same

vein, any example in this paper should only be regarded as a

concretization of a much broader idea.

How to read this paper? In order to make this paper

accessible for readers with various interests and back-

grounds, it is organized in two types of cross-sections.

The first part (Sections II–III) deals with the question

“why?”, i.e., why we need data fusion. The second part

(Sections IV–V) deals with the question “how?”, i.e, how

we perform data fusion. Each question is treated on two

levels: data (Sections II and IV), and theory (Sections III

and V). More specifically, Section II presents the concepts

of multimodality and data fusion, and motivates them

using examples from various applications. In Section III

we introduce the concept of diversity as a key to data

fusion, and give it a concrete mathematical formulation.

Section IV discusses complicating factors that should be

addressed in the actual processing of heterogeneous data.

Section V gives some guidelines as to how to actually

approach a data fusion problem from a model design

perspective. Section VI concludes our work.

II. WHAT IS MULTIMODALITY? WHY DO WE NEED

MULTIMODALITY?

For living creatures, multimodality is a very natural concept.

Living creatures use external and internal sensors, sometimes

denoted as “senses”, in order to detect and discriminate among

signals, communicate, cross-validate, disambiguate, and add

robustness to numerous life-and-death choices and responses

that must be taken rapidly, in a dynamic and constantly

changing internal and external environment.

The well-accepted paradigm that certain natural processes

and phenomena can express themselves under completely

different physical guises is the raison d’être of multimodal

data fusion. Too often, however, very little is known about the

underlying relationships among these modalities. Therefore,

the most obvious and essential endeavour to be undertaken

in any multimodal data analysis task is exploratory: to learn

about relationships between modalities, their complementarity,
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shared vs. modality-specific information content, and other

mutual properties.

In this section, we try to provide, by numerous practical

examples, a more concrete sense to what we mean when we

speak of “diversity” and “multimodality”. The examples below

illustrate the complementary nature of multimodal data, and

as a result, some of the prominent uses, benefits and insights

that can be obtained from properly exploiting multimodal data,

especially as opposed to the analysis of single-set and single-

modal data. They also present various complicating factors,

due to which multimodal data fusion is not an evident task.

The purpose of this section is to show that multimodality is

already present in almost every field of science and technology,

and thus it is of potential interest to everyone.

A. Multisensory Systems

Example II-A.1: Audio-Visual Multimodality. Audio-visual

multimodality is probably the most intuitive, since it uses

two of our most informative senses. Most human verbal com-

munication involves seeing the speaker [18]. Indeed, a large

number of audio-visual applications involve human speech and

vision. In such applications, it is usually the audio channel that

conveys the information of interest. It is well-known that audio

and video convey complementary information. Audio has the

advantage over video that it does not require line of sight.

On the other hand, the visual modality is resistant to various

factors that make audio and speech processing difficult, such as

ambient noise, reverberations, and other acoustic disturbances.

Perhaps the most striking evidence to the amount of caution

that needs to be taken in the design and use of multimodal

systems is the “McGurk effect” [18]. In their seminal paper,

McGurk and McDonald [18] have shown that presenting

contradictory, or discrepant, speech [“ba”] and visual lip

movements [“ga”], can cause a human to perceive completely

different syllables [“da”]. These unexpected results have since

been the subject of ongoing exploratory research on human

perception and cognition [22, Section VI.A.5]. The McGurk

effect serves as an indication that in real-life scenarios, data

fusion can take paths much more intricate than simple sum-

mation of information. Not less important, it serves as a lesson

that fusing modalities can yield undesired results and severe

degradation of performance if the underlying relationships

between modalities are not properly understood.

Nowadays, audio-visual multimodality is used for a broad

range of applications [10], [23]. Examples include: speech

processing, including speech recognition, speech activity de-

tection, speech enhancement, speaker extraction and separa-

tion; scene analysis, for example tracking a speaker within

a group, biometrics and monitoring, for safety and security

applications [24]; human-machine interaction (HMI) [10];

calibration [25] [10, Section V.C]; and more.

Example II-A.2: Human-Machine Interaction. A domain

that is heavily inspired by natural multimodality is HMI. In

HMI, an important task is to design modalities that will make

HMI as natural, efficient and intuitive as possible [11]. The

idea is to combine multiple interaction modes based on audio-

vision, touch, smell, movement (e.g., gesture detection and

user tracking), interpretation of human language commands,

and other multisensory functions [10], [11]. The principal

point that makes HMI stand out among other multimodal

applications that we mention is that, in HMI, the modalities

are often interactive (as their name implies). Unlike other

multimodal applications that we mention, not one but two

very different types of systems (human and machine) are “ob-

served” by each other’s sensors, and the goal of data fusion is

not only to interpret each system’s output, but also to actively

convey information between these two systems. An added

challenge is that this task should usually be accomplished

in real-time. An additional complicating factor that makes

multimodal HMI stand out is due to the fact that the human

user often plays an active part in the choice of modalities

(from the available set) and in the way that they are used

in practice. This implies that the design of the multimodal

setup and data fusion procedure must rely not only on the

theoretically and technologically optimal combination of data

streams but also on the ability to predict and adapt to the

subjective cognitive preferences of the individual user. We

refer to [11] (and references therein) for further discussion

of these aspects.

B. Biomedical, Health

Example II-B.1: Understanding Brain Functionality. Func-

tional brain study deals with understanding how the different

elements of the brain take part in various perceptual and

cognitive activities. Functional brain study largely relies on

non-invasive imaging techniques, whose purpose is to recon-

struct a high-resolution spatio-temporal image of the neuronal

activity within the brain. The neuronal activity within the brain

generates ionic currents that are often modelled as dipoles.

These dipoles induce electric and magnetic fields that can

be directly recorded by electroencephalography (EEG) and

magnetoencephalography (MEG), respectively. In addition,

neuronal activity induces changes in magnetization between

oxygen-rich and oxygen-poor blood, known as the haemody-

namic response. This effect, also called blood-oxygen-level

dependent (BOLD) changes, can be detected by functional

magnetic resonance imaging (fMRI). Therefore, fMRI is an

indirect measure of neuronal activity. These three modalities

register data at regular time intervals and thus reflect temporal

dynamics. However, these techniques vary greatly in their

spatio-temporal resolutions: EEG and MEG data provide high

temporal [millisecond] resolution, whereas fMRI images have

low temporal [second] resolution. fMRI data are a set of

high-resolution 3D images, taken at regular time intervals,

representing the whole volume of the brain of a patient lying

in an fMRI scanner. EEG and MEG data are a set of time-

series signals reflecting voltage or neuromagnetic field changes

recorded at each of the (usually a few dozen of) electrodes

attached to the scalp (EEG) or fixed within an MEG scanner

helmet. The sensitivity of EEG and MEG to deep-brain signals

is limited. In addition, they have different selectivity to signals

as a function of brain morphology. Therefore, they provide

data at much poorer spatial resolution and do not have access

to the full brain volume. Consequently, the spatio-temporal in-
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formation provided by EEG, MEG and fMRI is highly comple-

mentary. Functional imaging techniques can be complemented

by other modalities that convey structural information. For

example, structural magnetic resonance imaging (sMRI) and

diffusion tensor imaging (DTI) report on the structure of the

brain in terms of gray matter, white matter and cerebrospinal

fluid. sMRI is based on nuclear magnetic resonance of water

protons. DTI measures the diffusion process of molecules,

mainly water, and thus reports also on brain connectivity. Each

of these methods is based on different physical principles and

is thus sensitive to different types of properties within the

brain. In addition, each method has different pros and cons in

terms of safety, cost, accuracy, and other parameters. Recent

technological advances allow recording data from several

functional brain imaging techniques simultaneously [26], [27],

thus further motivating advanced data fusion.

It is a well-accepted paradigm in neuroscience that EEG

and fMRI carry complementary information about brain func-

tion [26], [28]. However, their very heterogeneous nature and

the fact that brain processes are very complicated systems that

depend on numerous latent phenomena imply that simultane-

ously extracting useful information from them is not an evident

task. The fact that there is no ground truth is reflected in the

very broad range of methods and approaches that are being

proposed [12], [15], [17], [21], [28]–[31]. Works on biomed-

ical brain imaging often emphasize the exploratory nature of

this task. Despite decades of study, the underlying relationship

between EEG and fMRI is far from being understood [17],

[29], [30], [32].

A well-known challenge in brain imaging is the EEG inverse

problem. A prevalent assumption is that the measured EEG

signal is generated by numerous current dipoles within the

brain, and the goal is to localise the origins of this neuronal

activity. Often formulated as a linear inverse problem, it is

ill-posed: many different spatial current patterns within the

skull can give rise to identical measurements [33]. In order

to make the problem well-conditioned, additional hypotheses

are required. A large number of solutions are based on

adding various priors to the EEG data [34]. Alternatively, an

identifiable and unique solution can be obtained using spatial

constraints from fMRI [12], [22], [30].

Example II-B.2: Medical Diagnosis. Various medical condi-

tions such as potentially malignant tumours cannot be diag-

nosed by a single type of measurement due to many factors

such as low sensitivity, low positive predictive values, low

specificity (high false-positive), a limited number of spatial

samples (as in biopsy), and other limitations of the various

assessment techniques. In order to improve the performance

of the diagnosis, risk assessment and therapy options, it is

necessary to perform numerous medical assessments based on

a broad range of medical diagnostic techniques [35], [36]. For

example, one can augment physical examination, blood-tests,

biopsies, static and functional magnetic resonance imaging,

with other parameters such as genetic, environmental and

personal risk factors. The question of how to analyse all these

simultaneously available resources is largely open. Currently,

this task relies mostly on human medical experts. One of the

main challenges is the automation of such decision procedures,

in order to improve correct interpretation, as well as save costs

and time [35].

Example II-B.3: Developing Non-Invasive Medical Diag-

nosis Techniques. In some cases, the use of multimodal

data fusion is only a first step in the design of a single-

modal system. In [37], the challenge is understanding the

link between surface and intra-cardiac electrodes measuring

the same atrial fibrillation event and the goal is eventually

extracting relevant atrial fibrillation activity using only the

non-invasive modality. For this aim, the intra-cardiac modality

is exploited as a reference to guide the extraction of an atrial

electrical signal of interest from non-invasive electrocardiog-

raphy (ECG) recordings. The difficulty lies in the fact that the

intra-cardiac modality provides a rather pure signal whereas

the ECG signal is a mixture of the desired signal with other

sources, and the mixing model is unknown.

Example II-B.4: Smart Patient Monitoring. Health moni-

toring using multiple types of sensors is drawing increasing

attention from modern health services. The goal is to provide

a set of non-invasive, non-intrusive, reasonable-cost sensors

that allow the patient to run a normal life while providing

reliable warnings in real-time. Here, we focus on monitoring,

predicting and warning epileptic patients from potentially

dangerous seizures [38]. The gold standard in monitoring

epileptic seizures is combining EEG and video, where EEG

is manually analysed by experts and the whole diagnostic

procedure requires a stay of up to several days in a hospital

setting. This procedure is expensive, time consuming, and

physically inconvenient for the patient. Obviously, it is not

practical for daily life. While much effort has already been

dedicated to the prediction of epileptic seizures from EEG,

with no clear-cut results so far, a considerable proportion of

potentially lethal seizures are hardly detectable by EEG at

all. Therefore, a primary challenge is to understand the link

between epileptic seizures and additional body parameters:

movement, breathing, heart-rate, and others. Due to the fact

that epileptic seizures vary within and across patients, and due

to the complex relations between different body systems, it is

likely that any such system should rely on more than one

modality [38].

C. Environmental Studies

Example II-C.1: Remote Sensing and Earth Observations.

Various sensor technologies can report on different aspects

of objects on Earth. Passive optical hyperspectral (resp. mul-

tispectral) imaging technologies report on material content

of the surface by reconstructing its spectral characteristics

from hundreds of (resp. a few) narrow (resp. broad) adjacent

spectral bands within the visible range and beyond. A third

type of an optical sensor is panchromatic imaging, which

generates a monochromatic image with a much broader band.

Typical spatial resolutions of hyperspectral, multispectral and

panchromatic images are tens of meters, a few meters and

less than one meter, respectively. Hence, there exists a trade-

off between spectral and spatial resolution [39], [40] [13,

Chapter 9]. Topographic information can be acquired from

active sensors such as light detection and ranging (LiDAR)
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and synthetic aperture radar (SAR). LiDAR is based on a

narrow pulsed laser beam and thus provides highly accurate

information about distance to objects, i.e., altitude. SAR is

based on radio waves that illuminate a rather wide area,

and the backscattered components reaching the sensor are

registered; interpreting the reflections from the surface requires

some additional processing with respect to (w.r.t.) LiDAR.

Both technologies can provide information about elevation,

three-dimensional structure of the observed objects, and their

surface properties. LiDAR, being based on a laser beam,

generally reports on the structure of the surface, although it

can partially penetrate through certain areas such as forest

canopy, providing information on the internal structure of the

trees, for example. This ability is a mixed blessing, however,

since it generates reflections that have to be accounted for.

SAR and LiDAR use different electromagnetic frequencies

and thus interact differently with materials and surfaces. As

an example, depending on the wavelength, SAR may see the

canopy as a transparent object (waves reach the soil under

the canopy), semi-transparent (they penetrate in the canopy

and interact with it) or opaque (they are reflected by the top

of the canopy). Optical techniques are passive, which implies

that they rely on natural illumination. Active sensors such as

LiDAR and SAR can operate at night and in shaded areas [41].

Beyond the strengths and weaknesses of each technology

w.r.t. the others, the use of each is limited by a certain in-

herent ambiguity. For example, hyperspectral imaging cannot

distinguish between objects made of the same material that

are positioned at different elevations, such as concrete roofs

and roads. LiDAR cannot distinguish between objects with

the same elevation and surface roughness that are made of

different materials such as natural and artificial grass [42].

SAR images may sometimes be difficult to interpret due to

their complex dependence on the geometry of the surface [41].

In real-life conditions, interpretability of the observations of

one modality may be difficult without additional information.

For example, in hyperspectral imaging, on a flat surface,

reflected light depends on the abundance (proportion of a ma-

terial in a pixel) and on the endmember (pure material present

in a pixel) reflectance. In a non-flat surface, the reflected light

depends also on the topography, which may induce variations

in scene illumination and scattering. Therefore, in non-flat

conditions, one cannot accurately extract material content

information from optical data alone. Adding a modality that

reports on the topography, such as LiDAR, is necessary to

resolve spectra accurately [43].

As an active initiative, we point out the yearly data fusion

contest of the IEEE Geoscience and Remote Sensing Society

(GRSS) (see dedicated paper in this issue [44]). Problems

addressed include multi-modal change detection, in which the

purpose is to detect changes in an area before and after an

event (a flood, in this case), given SAR and multispectral

imaging [45], using either all or part of the modalities; multi-

modal multi-temporal data fusion of optical, SAR and LiDAR

images taken at different years over the same urban area [41],

where suggested applications include assessing urban density,

change detection and overcoming adverse illumination con-

ditions for optical sensors; and proposing new methods for

fusing hyperspectral and LiDAR data of the same area, e.g., for

improved classification of objects [42].

Example II-C.2: Meteorological Monitoring. Accurate mea-

surements of atmospheric phenomena such as rain, water

vapour, dew, fog and snow are required for meteorological

analysis and forecasting, as well as for numerous applications

in hydrology, agriculture and aeronautical services. Data can

be acquired from various devices such as rain gauges, radars,

satellite-borne remote sensing devices (see Example II-C.1),

and recently also by exploiting existing commercial microwave

links [46]. Rain gauges, as an example, are simply cups that

collect the precipitation. Albeit the most direct and reliable

technique, their small sampling area implies very localized

representativeness and thus poor spatial resolution (e.g., [46],

[47]). Rain gauges may be read automatically at intervals as

short as seconds. Satellites observe Earth at different frequen-

cies, including visible, microwave, infrared, and shortwave

infrared to report on various atmospheric phenomena such

as water vapour content and temperature. The accuracy of

radar rainfall estimation may be affected by topography, beam

effects, distance from the radar, and other complicating factors.

Radars and satellite systems provide large spatial coverage;

however, they are less accurate in measuring precipitation

at ground level (e.g., [48]). Microwave links are deployed

by cellular providers for backhaul communication between

base stations. The signals transmitted by the base stations

are influenced by various atmospheric phenomena (e.g., [49]),

primarily attenuation due to rainfall [46], [47]. These changes

in signal strength are recorded at predefined time intervals and

kept in the cellular provider’s logs. Hence, the precipitation

data is in fact a “reverse engineering” of this information. The

microwave links’ measurements provide average precipitation

on the entire link and close to ground level [46]. Altogether,

these technologies are largely complementary in their ability to

detect and distinguish between different meteorological phe-

nomena, spatial coverage, temporal resolution, measurement

error, and other properties. Therefore, meteorological data are

often combined for better accuracy, coverage and resolution;

see, e.g., [19], [47], [48] and references therein.

Example II-C.3: Cosmology. A major endeavour in astron-

omy and astrophysics is understanding the formation of our

Universe. Recent results include robust support for the six-

parameter standard model of cosmology, of a Universe domi-

nated by Cold Dark Matter and a cosmological constant Λ,

known as ΛCDM [50], [51]. The purpose of ongoing and

planned sky surveys is to decrease the allowable uncertainty

volume of the six-dimensional ΛCDM parameter space and to

improve the constraints on the other cosmological parameters

that depend on it [51]. The goal is to validate (or disprove)

the standard model.

A major difficulty in astrophysics and cosmology is the

absence of ground truth. This is because cosmological pro-

cesses involve very high energies, masses, large space and time

scales that make experimental study prohibitive. The lack of

ground truth and experimental support implied that, from its

very beginning, cosmological research had to rely on cross-

validation of outcomes of different observations, numerical
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simulations and theoretical analysis; in other words, data fu-

sion. A complicating factor associated with this task is the fact

that in many types of inferences, for all practical purposes, we

have only one realization of the Universe. This means that even

if we make statistical hypotheses about underlying processes,

there is still only one sample. This fact induces an uncertainty

called “cosmic variance” that cannot be accommodated by

improving the measurement precision.

Despite its simplicity, the ΛCDM model has proved to

be successful in describing a wide range of cosmological

data [52]. In particular, it is predicted that its six parameters

can fully explain the angular power spectra of the temper-

ature and polarization fluctuations of the cosmic microwave

background radiation (CMB). Therefore, since the first ex-

perimental discovery of the CMB in 1965 [53], there has

been an ongoing effort to obtain better and more accurate

measurements of these fluctuations.

A severe problem in validating the ΛCDM model from

CMB observations is known as “parameter degeneracy”. Al-

though the CMB power spectrum can be fully explained by

the standard model, this relationship is not unique in the

sense that the same measured CMB power spectrum can be

explained by other models, not only ΛCDM. These degen-

eracies can be broken by combining CMB observations with

other cosmological data. While CMB corresponds to photons

released about 300,000 years after the Big Bang, the same

parameters that controlled the evolution of the early Universe

continue to influence its matter distribution and expansion rate

to our very days. Therefore, other measures, such as redshift

from certain types of supernovae, angular and radial baryon

acoustic oscillation scales that can be derived from galaxy

surveys, galaxy clustering [54], [55], and stacked gravitational

lensing, also serve as important cosmological probes [51],

[52]. Since the cosmological parameters that determine the

evolution of the early Universe are the same as those that

control high-energy physics, cosmological observations are

fused and cross-validated with experimental outcomes such

as the Large Hadron Collider Higgs data [56].

III. MULTIMODALITY AS A FORM OF DIVERSITY

In this section, we discuss data fusion from a theoretical

perspective. In order to contain our discussion, we focus on

data-driven methods. Within these, we restrict our examples

to a class of problems known as blind separation, and within

these, to data and observations that can be represented by

(multi-) linear relationships. Reasons are as follows. First,

by definition, data-driven models may be useful to numerous

applications, as will be explained in Section III-B. Second,

there exist much established theory and numerous models that

fit into this framework. Third, it is impossible to cover all

types of models. Still, the ideas that these examples illustrate

go far beyond these specific models.

A key property in any analytical model is uniqueness.

Uniqueness is necessary in order to achieve interpretability,

i.e., attach physical meaning to the output [2], [5]. In order

to establish uniqueness, all blind separation problems invari-

ably rely on one or more types of diversity [57]: concrete

mathematical examples will be given in Section III-C1. In the

sequel, we show how the concept of “diversity” plays part,

under different guises, in data fusion. In particular, we show

that multimodality can provide a new form of diversity that

can achieve uniqueness even in cases that are otherwise non-

unique.

The rest of this section is as follows. Section III-A presents

some basic mathematical preliminaries that will serve us to

provide a more concrete meaning to the ideas that we lay out

in the rest of this work. Section III-B explains the model-

driven vs. the data-driven approach, and motivates the latter.

Section III-C discusses diversity and data fusion in datasets

that are stacked in a single matrix or a higher-order array,

also known as a tensor. In Section III-D, we go beyond single-

array data analysis, and establish the idea of “a link between

datasets as a new form of diversity” as the key to advanced data

fusion. We conclude our claims and summarize these ideas in

Section III-E.

A. Mathematical Preliminaries

In a large number of applications, one is interested in

extracting knowledge from the data. In real-life scenarios, each

observation or measurement often consists of contributions

from multiple sources. These can be divided into sources of

interest, which carry valuable information, and other sources,

which do not carry any information of interest. The latter

type of contribution is sometimes referred to as noise, or

interference, depending on the scenario and context.

Consider one point x in the measurement space. We can

approximate it as (we write equality but we mean that we

attribute a certain model to it)

x = f(z) , (1)

where z = {z1, . . . , zV } is the ensemble of points in the

latent variable space. These could be signals, parameters or

any other elements that contribute to the observation x, and

f represents the corresponding transformation (e.g., channel

effects). We are interested in scenarios where z is unknown,

and in addition, cannot be observed directly without the

intermediate transformation f . In certain scenarios, also f is

unknown. We denote all the unknown elements of the model

as “latent variables”.

Perhaps the first and most obvious interpretation of (1) is

an inverse problem, where the goal is to obtain an estimate

as precise as possible of z and f given x. Recovering f

and z can also be regarded as finding the simplest set of

variables that explains the observations [5, Section I]. This

interpretation particularly corresponds to exploratory research.

In addition, and especially when the number of observations

is large w.r.t. the size of z, recovering the smallest-size z that

best explains the observations can be regarded as a form of

compression, which can be particularly useful in large-scale

data scenarios. It is clear that in order to solve (1), one needs

a sufficient number of constraints in order to (over-) determine

the problem, i.e., constrain the number of degrees of freedom

such that the problem is well-posed.

In the rest of this paper, we use standard mathematical

notations. Scalars, vectors, matrices, and higher-order arrays
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(tensors) are denoted as a, a, A, and A, respectively. The

dimensions of an N th-order array (tensor) are I1×I2×· · ·×IN ,

where N = 1, 2, 3, . . . implies a vector, matrix or higher-

order array (tensor), respectively. (·)⊤ denotes transpose or

conjugate transpose, where the exact interpretation should be

understood from the context.

B. Data-Driven vs. Model-Driven Methods

Roughly, and for the sake of the discussion that follows,

approaches to the problem in Section III-A can be divided

into two groups: model driven, and data driven. Model-driven

approaches rely on an explicit realistic model of the underlying

processes [27, Section 3.3] [12], [58], and are generally

successful if the assumptions are plausible and the model

holds. However, model-driven methods may not always be

the best choice, for example, when the underlying model of

the signals or the medium in which they propagate is too

complicated, varying rapidly, or simply unknown.

In the context of multimodal datasets that are generated by

complex systems as those mentioned in Sections I–II, very

little is known about the underlying relationships between

modalities. The interactions between datasets and data types

are not always known or sufficiently understood. Therefore, we

focus on and advocate a data-driven approach. In practice, this

means making the fewest assumptions and using the simplest

models, both within and across modalities [5]. “Simple”

means, for example, linear relationships between variables,

avoiding model-dependent parameters, and/or use of model-

independent priors such as sparsity, non-negativity, statistical

independence, low-rank, and smoothness, to name a few. As

its name implies, a data-driven approach is self-contained in

the sense that it relies only on the observations and their

assumed model: it avoids external input [5]. For this reason,

and especially in the signal-processing community, data-driven

methods are sometimes termed “blind”. In the rest of this

section, we give a more concrete meaning to these ideas.

Data-driven methods, both single-modal and multimodal,

have already proven successful in a broad range of prob-

lems and applications. A non-comprehensive list includes

astrophysics [59], biomedics [60], telecommunications [61],

audio-vision [23], chemometrics [62], and more. For further

examples see e.g., [63]–[65] and references therein, as well as

the numerous models mentioned in the rest of this paper.

In the rest of this section, we discuss and explain the role

of diversity in achieving uniqueness in data-driven models. In

particular, we demonstrate how the presence of multiple data

sets can be exploited as a new form of diversity.

C. Diversity in Single Matrix or Tensor Decomposition Mod-

els

Earlier in this section, we argued that diversity has a key

role in achieving uniqueness of analytical models. We now

give a concrete mathematical meaning to this statement, by

way of examples from signal processing, linear and multilinear

algebra. We begin by discussing diversity in datasets that can

be stacked in a single array, be it a matrix or a higher-order

array.

1) Diversity in Matrix Decomposition Models: Perhaps the

most simple yet useful implementation of (1) is

x =
R
∑

r=1

arbr . (2)

In many applications, model (2) is generalized as

xij =

R
∑

r=1

airbjr (3)

where i = 1, . . . , I , j = 1, . . . , J . An often-used interpretation

is that xij is a linear combination of R signals bj1, . . . , bjR
impinging on sensor i at sample index j, with weights

ai1, . . . , aiR. Eq. (3) can be rewritten in matrix form as

X =
R
∑

r=1

arb
⊤

r = AB
⊤ (4)

such that xij is the (i, j)th entry of X ∈ K
I×J , K ∈ {R,C},

and similarly for A ∈ K
I×R and B ∈ K

J×R. The rth

column vectors of A and B are ar = [a1r, . . . , aIr]
⊤ and

br = [b1r, . . . , bJr]
⊤, respectively.

The model in (4) provides I linear combinations of the

columns of B and J linear combinations of the columns of

A [57]. In the terminology of [57], X provides I-fold diversity

for B and J-fold diversity for A. Unfortunately, these types

of diversity are generally insufficient to retrieve the underlying

factor matrices A and B. For any R×R invertible matrix T,

it always holds that

X = AB
⊤ = (AT

−1)(TB
⊤) . (5)

Hence, the pairs (AT
−1,TB

⊤) and (A,B⊤) have the same

contribution to the observations X and thus cannot be distin-

guished. Consequently, one cannot uniquely identify the rank-

1 terms arb
⊤
r unless R ≤ 1 [66, Lemma 4i]. We refer to this

matter as the indeterminacy problem. A prevalent approach is

to reduce T to a unitary matrix using a simplifying assumption

that the columns of B are decorrelated. In such cases, the

indeterminacy (5) is referred to as the rotation problem [67,

Section 4] [2], [5]. Conversely, even if the rank-1 terms are

known, it is clear from (4) that they can be uniquely charac-

terized, at most, up to (αrar)(βrbr)
⊤ = arb

⊤
r , αrβr = 1,

if R ≤ min(I, J). The latter amounts to T = PΛ, where

P is a permutation matrix and Λ is diagonal and invertible.

The presence of P implies that the indexing 1, . . . , R is

arbitrary. This indeterminacy is inherent to the problem and

thus inevitable. If all decompositions yield the same rank-1

terms then we say that the model is unique. The fact that the

factorization of a matrix into a product of several matrices is

generally not unique for R > 1 unless additional constraints

are imposed is well-known [66, Section 3].

We now discuss approaches to fix the indeterminacy in (5).

In a general algebraic context, matrix factorizations such as

singular value decomposition (SVD) and eigenvalue decom-

position (EVD) are made unique by imposing orthogonality

on the underlying matrices and inequality on the singular

or eigenvalues [66, Section 3] [68]. Such constraints are

convenient mathematically but usually physically implausible
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since they yield non-interpretable results [69]. It is thus

desirable to find other types of constraints that allow for better

representation of the natural properties of the data.

Depending on the application, the matrix factorization

model in (4) may be interpreted in different ways that give

rise to different types of constraints. When the model in (4) is

used to analyse data, it is sometimes termed factor analysis

(FA) [70]. In the signal processing community, when the

columns of B represent signal samples and the goal is to

recover these signals given only the observations X, model (4)

is commonly associated with the blind source separation (BSS)

problem [63], [71]. The goal of FA and BSS is to represent

X as a sum of low-rank terms with interpretable factors [65],

where the difference lies in the type of assumptions being

used.

In FA, one approach to fixing the indeterminacy (5) is by

imposing external constraints [5, Section I]. This is not a data-

driven approach and is thus excluded from our discussion. A

data-driven approach to FA is to use physically-meaningful

constraints on the factor matrices that reduce the number of

degrees of freedom. For example, a specific arrangement of a

receive antenna array or other properties of a communication

system may be imposed via a Vandermonde [72]–[75] or

Toeplitz [76] structure. Alternatively, a factor may reflect

a specific signal type such as constant modulus or finite

alphabet [57], [61]. Another approach is to use sparsity [77]–

[79].

Probably the most well-known BSS approach to fix the

indeterminacy in (5) is independent component analysis (ICA).

ICA is more commonly formulated as

x(t) = As(t) , t = 1, . . . , T (6)

where s(t) = [s1(t), . . . , sR(t)]
⊤ ∈ K

R×1 is a vector of R sta-

tistically independent random processes known as “sources”,

and x(t) ∈ K
I×1 their observations. A is full column rank.

The link with (4) is established via X = [x(1), . . . ,x(T )],
J = T , and B

⊤ = [s(1), . . . , s(T )] such that the R columns

of B represent samples from the R statistically independent

random processes. ICA uses the “spatial diversity” provided by

an array of sensors, which amounts to the I-fold diversity for

B mentioned before, together with an assumption of statistical

independence on the sources, in order to obtain estimates of

s(t) whose entries are as statistically independent as possible.

This amounts to fixing the indeterminacy (5). Under these

assumptions, separation can be achieved if the statistically

independent sources are non-stationary, non-white, or non-

Gaussian [71], [80]–[82]. The first two can be interpreted

as diversity across time or diversity in the spectral domain:

the sources must have different nonstationarity profiles or

power spectra [81, Section 6]. Non-Gaussianity is associated

with diversity in higher-order statistics (HOS). A plethora of

methods has been devised to exploit this diversity [63], [80],

[83]–[86], and the matter is far from being exhausted.

Both FA and ICA have been used for decades and with much

success to analyse a very broad range of data, their success

being much due to the simplicity of their basic idea and the fact

that very robust algorithms exist that yield satisfying results.

Therefore, they are at the focus of our discussion. It should

be kept in mind, however, that in practice, many observations

can be better explained by other types of underlying models

that are not limited to decomposition into a sum of rank-1

terms, statistical independence, linear relationships, or even

matrix factorizations. Other properties that are often used to

achieve uniqueness, improve numerical robustness and en-

hance interpretability are, for example, non-negativity, sparsity,

and smoothness [63]. Proving uniqueness for these types of

factorizations is a matter of ongoing research.

Any type of constraint or assumption on the underlying

variables that helps achieve essential uniqueness can be

regarded as a “diversity”.

2) Going up to Higher-Order Arrays:: In Section III-C1,

we have seen that the two linear types of diversity that are

present in the rows and columns of X are not sufficient

in order to obtain a unique matrix factorization. We saw

that uniqueness can be established by imposing sufficiently

strong constraints on the factor matrices A and B in (4).

An alternative approach is to enrich the observational domain,

without constraining the factor matrices. For example, if the

two linear diversities given by the two-dimensional array

X are interpreted as spatial and temporal, it is possible to

obtain uniqueness by adding a third diversity in the frequency

domain, without imposing constraints on the factor matrices.

We now explain how this can be done.

The two-way model (4) can be generalized by extending (3)

to

xijk =

R
∑

r=1

airbjrckr (7)

with i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K. These

observations can be collected into a three-way array (third-

order tensor) with dimensions I × J ×K,

X =

R
∑

r=1

ar ◦ br ◦ cr (8)

whose (i, j, k)th entry is xijk. A = [a1, . . . ,aR] ∈ K
I×R,

B = [b1, . . . ,bR] ∈ K
J×R and C = [c1, . . . , cR] ∈ K

K×R

are matrices whose column vectors are ar, br and cr =
[c1r, . . . , cKr]

⊤, respectively. Here, ar ◦br ◦cr ∈ K
I×J×K is

an outer product of three vectors and thus is a rank-1 term. Its

(i, j, k)th entry is airbjrckr. When (8) holds and is irreducible

in the sense that R is minimal, it is sometimes referred to as

the canonical polyadic decomposition (CPD) [4], [87]. Note

that (4) can be rewritten as X =
∑R

r=1 ar ◦ br.

In striking difference to (5), the pair {(A,B,C),(A,B,C)}
has the same triple product (8) if and only if there exists

an R × R permutation matrix P and three diagonal matrices

ΛA,ΛB ,ΛC such that

A = APΛA , B = BPΛB , C = CPΛC

and ΛAΛBΛC = IR (9)

even for R > 1, under very mild constraints on A, B, C [66],

[67], [88]. Eq. (9) can be reformulated as X =
∑R

r=1(αrar)◦
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(βrbr) ◦ (γrcr) ∀αrβrγr = 1. If a three-way array is subject

only to these trivial indeterminacies (alternatively: if all CPDs

yield the same rank-1 terms) then we say that it is (essentially)

unique.

The key difference between matrix and tensor factoriza-

tions is that CPD is inherently “essentially unique” up to

a scaled permutation matrix, whereas in the bilinear case

the indeterminacy is an arbitrary non-singular matrix.

The uniqueness of the CPD becomes even more pronounced

when it is joined with the fact that it holds also for R >

max(I, J,K) [67], [89]. This is in contrast to FA, where it

holds only for R ≤ min(I, J). The immediate outcome is

that underdetermined cases of “more sources than sensors”

can be handled straightforwardly. In addition, the factor ma-

trices A,B,C need not be full column rank [67], [89] [90,

Theorem 2.2], see Example III-D.2. Upper bounds on R have

first been derived by [88], [89]. These results have later been

extended to higher-order arrays, where “order” indicates the

number N of indices xijk··· and N ≥ 3 [57], [72], [91].

Recently, more relaxed bounds that guarantee uniqueness for

larger R have been derived; see e.g., [92]–[97] and references

therein.

In analogy to (4), the three-way array X provides three

modes of linear diversity. It contains JK linear combinations

of the columns of A, IK of B and IJ of C [57]. The

fact that there exist multiple linear relationships within the

model gives it the name “multilinear”. As argued by [57], in

many real-life scenarios, often there exist N ≥ 3 linear types

of diversity that admit the multilinear decomposition (8) and

thus guarantee uniqueness without any further assumptions.

For example, in direct-sequence code-division multiple access

(DS-CDMA) communication systems, one may exploit (spatial

× temporal × spreading code) [57] or (sensor × polarization

× source signal) types of diversity; in psychometrics, (occa-

sions × persons × tests) [70] or (observations × scores ×
variables) [98]; in chemometrics and metabolomics, (sample

× frequency × emission profile × excitation profile) [8], [62],

[99]; in polarized Raman spectroscopy, (polarization × spatial

diversity × wavenumber) [100]; in EEG, (time × frequency

× electrode) [101]–[103]; and in fMRI, (voxels × scans ×
subjects) [104].

Each type of constraint, structural (i.e., on the factor

matrices) or observational (i.e., any of the non-degenerate

modes of a matrix or a higher-order array), that con-

tributes to the unique decomposition and thus to the

identifiability of the model, and cannot be deduced from

the other constraints, i.e., is “disjoint” [16], can be

regarded as a “diversity”. In particular, each observational

mode in the N th order tensor (8) is a “diversity”. Hence,

a tensor order corresponds to the number of types of

(observational) diversity [57], [61].

The explicit link between tensor order as a diversity and data

fusion has been made in [16]. The fact that we can now

associate “diversity” with well-defined mathematical proper-

ties of an analytical model implies that we can now link

results on uniqueness, identifiability, and performance with the

number of types of diversity that this model involves. Hence,

the contribution of each “diversity” to the model can now be

characterized and quantified [57], [82].

An application of this idea is the question raised in [57] as to

how the number of types of observational diversity, i.e., tensor

order N ≥ 3, contributes to the identifiability. To answer this

question, it is shown that as N increases, indeed the bound

on the number of rank-1 terms that can be uniquely identified

becomes more relaxed. In other words, more observational

modes allow to identify more sources in the same setup.

Hence, this is a proof that increasing observational diversity

improves identifiability. This is an example how questions

regarding multimodality and diversity are a stimulus for new

mathematical and theoretical insights.

Until now, we have looked at N -way arrays as a way to

represent simultaneously N (multi-) linear types of diversity.

An interesting link with the matrix factorization problem in

Section III-C1 is achieved if we look at an N -way array as

a structure that stores (N − 1)-way arrays by stacking them

along the N th dimension. As noted, e.g., by [4], [5], [70],

[89], [105], the CPD can be thought of as a generalization of

FA, as follows. Let

Xk = AΛkB
⊤ , k = 1, . . . ,K (10)

denote K instances of the FA problem (4) where the diagonal

R × R matrix Λk = diag{ck1, . . . , ckR} can be regarded

as a scaling of the rows of B. It can be readily verified

that stacking the K matrices Xk in parallel along the third

dimension results in (8). As we already know from (9), the

rotation problem is eliminated [89]. It is thus no surprise

that the tensor decomposition (8) is also known as parallel

factor analysis (PARAFAC) [5]. Combining this observation

with the perspective of data fusion, it has been noted that

a tensor decomposition can be regarded as a way to fuse

and jointly analyse data of multiple observations when all

the datasets have the same size and share the same type of

decomposition [16]. Note that this notion applies also to two-

way arrays. For example, if we associate a BSS interpretation

to the model in (4), the ith row can be regarded as the

contribution of the ith sensor, and stacking all I observations

yields the I × J observation matrix X [16].

Model (10) can be linked not only to FA but also to BSS,

as follows. In Section III-C1, we mentioned that uniqueness

of BSS can be achieved if the sources are non-Gaussian,

non-stationary, or non-spectrally-flat (i.e., coloured). These

properties can be reformulated algebraically as a symmetric

joint diagonalization (JD) of several matrices [81], [83], i.e., a

special case of (10) when A = B. As we have just explained,

JD can be interpreted as a simple data fusion problem in which

several datasets share the same mixing matrix. A key point is

that diagonalization of a single matrix has an infinite number

of solutions, and each of these “non-properties” [81] provides

a set of at least two matrices that can be jointly diagonalized,

thus fixing the indeterminacies.
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The discussion in this section implies that if we can rep-

resent our observations in terms of N ≥ 3 linear types of

diversity or stack multiple datasets in an N th-order tensor then

we may benefit from the following powerful properties:

Why are tensor decompositions useful for data fusion?

(1) The model for R ≥ 1 rank-1 terms is identifiable:

The exact maximal number of identifiable rank-1 terms is

generally unknown, though bounds that depend on various

properties of the factor matrices exist.

(2) Under-determined mixtures are identifiable: identifica-

tion of R ≥ 1 rank-1 terms even for “more sources than

sensors” cases.

(3) Factor matrices need not be full rank: identifiability

of R ≥ 1 rank-1 terms even if no factor matrix A, B,

C, . . ., is of full rank.

(4) Rank-1 terms are identifiable up to permutation: when

a tensor decomposition is interpreted as joint analysis of

lower-order tensors, the arbitrary individual permutation

that arises if each decomposition is done separately be-

comes common to all decompositions.

(5) Increasing N allows uniqueness for higher R: more

types of observational diversity allow to resolve more

latent sources.

(6) There is no need for structural constraints or assump-

tions such as statistical independence, non-negativity,

sparsity, or smoothness in order to achieve a unique

decomposition. And yet, multilinear structures readily

admit such additional types of diversity that can further

contribute to interpretability, robustness, uniqueness, and

other desired properties; see end of Section III-D for

examples.

More properties of tensor decompositions and their uses in

various engineering applications can be found for example

in [64], [65], [106] and references therein.

Concluding Section III-C, Sections III-C1 and III-C2 pre-

sented two ways to look at matrices or tensors as data fusion

structures. We have shown that matrix or tensor decompo-

sitions provide a natural framework to incorporate multiple

types of observational diversity [16] on top of structural ones.

We have shown that matrices and higher-order tensors can

be regarded as ways to jointly analyse multiple observations

of the same data, when datasets share the same underlying

structure [16]. It is thus no surprise that many multimodal

data fusion models use matrix or tensor decompositions as

their underlying analytical engine.

Until now, we focused on decompositions in sum of rank-1

factors and statistical independence. In fact, these constraints

can be regarded as too strong. Indeed, there exist other

factorizations that may represent more flexible underlying

relationships; see end of Section III-D for examples. It is only

for the sake of simplicity and limited space that we restrict

our discussion to one type of decomposition.

D. A Link Between Datasets as a New Form of Diversity

As explained in Section III-C, if all datasets share the

same underlying factorization model, and in addition, admit

a (multi-) linear relationship, then it may be possible to use

a single matrix or tensor decomposition in order to perform

data fusion. This assumption may be challenged in various

scenarios. An obvious conflict arises when datasets are given

in different types of physical units. A technical difficulty

is when datasets are stacked in arrays of different orders,

such as matrices vs. higher-order arrays. Further examples

are datasets with different latent models, different types of

uncertainty, or when not all factors or latent variables are

shared by all datasets. In such cases, we say that datasets are

heterogeneous [8]. While each of these complicating factors

may be accommodated by preprocessing the datasets such that

they all comply, e.g., by normalizing, realigning, interpolating,

up- or down-sampling, using features, or reducing dimensions,

these procedures have the risk of being lossy in various

respects (for further discussion on complicating factors in data

fusion, see Section IV). For these reasons, more elaborate

models that allow heterogeneous datasets to remain in their

most explanatory form and still perform true data fusion, i.e.,

in the sense of Definition I.2 and Section V-A, have been

devised.

In the following, we discuss data fusion approaches that go

beyond single matrix or tensor factorization. Our emphasis is

on demonstrating how the concepts of true data fusion allow

pushing even further the limits of extracting knowledge from

data that were summarized in Section III-C2. We show how

these properties are carried over to more elaborate data fusion

models and how they can be reinforced into stronger properties

that cannot be achieved using single-set single-modal data.

In particular, (i) allowing more relaxed uniqueness conditions

that admit more challenging scenarios: for example, more

relaxed assumptions on the underlying factors, and the ability

to resolve more latent variables (low-rank terms) in each

dataset, and (ii) terms that are shared across datasets enjoy the

same permutation at all datasets. This obviates the need for

an additional step of identifying the arbitrarily-ordered outputs

of each individual decomposition and matching them, a task

that generally cannot be accomplished without additional

information, in a blind or data-driven context. Fixing the

permutation reduces the number of degrees of freedom and

thus enhances performance and interpretability. The following

examples illustrate these points.

Example III-D.1: Coupled Independent Component Anal-

ysis. Consider the ICA problem (6). It is well-known that

statistically independent real-valued Gaussian processes with

independent and identically distributed (i.i.d.) samples, mixed

by an invertible A, cannot be blindly separated based on their

observations x(t) alone [71], [107]. If several such datasets

are considered simultaneously, however, without changing the

model within each mixture, but allowing statistical dependence

across datasets, then a unique and identifiable solution to

all these mixtures, up to unavoidable scale and permutation

ambiguities, exists [82]. This model, when not restricted

to Gaussian i.i.d. samples, is known as independent vector
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analysis (IVA) [82], [108], [109] and can be solved using

second-order statistics (SOS) alone [110], [111].

IVA was originally proposed to separate convolutive mix-

tures of audio signals [108], [109]. In the frequency do-

main, this amounts (approximately) to resolving M ICA

mixtures (6),

x
(m)(t) = A

(m)
s
(m)(t) , t = 1, . . . , T , (11)

where the M matrices A
(m), m = 1, . . . ,M , are generally

different (in this context, t denotes samples in the frequency

domain and m are the frequency bins). For simplicity, we

assume that both x
(m)(t) and s

(m)(t) are I × 1. When each

mixture (11) is solved separately, it is associated with an

individual permutation matrix P
(m). It is clear that proper

separation and reconstruction of the I audio signals cannot

be achieved if the elements of the same source at different

frequency bins are not properly matched. The key point in

IVA w.r.t. a collection of ICA is that it exploits statistical

dependence among latent sources that belong to different

mixtures, as illustrated in Figure 1. Under certain conditions,

the IVA framework provides a single R×R permutation matrix

P
(m) = P that applies to all the involved mixtures [82], [109].

The ability of IVA to obviate the need to match the

outputs of M separate ICA soon turned out useful far beyond

convolutive mixtures: it has since been applied to fMRI

group data analysis [112], [113], multimodal fusion of several

brain-imaging modalities [114], and the analysis of temporal

dynamic changes [115]. IVA extends CCA [1] and its multi-

set extension (MCCA) [3], which have both been widely used

for fusion [31], [36], [58], [116]–[118], to the case where

not only second-order statistics but all-order statistics are

taken into account [82]. Recently, a generalization of IVA

that allows decomposition into terms of rank larger than one

has been proposed [119]–[121]. In addition, since IVA is

a generalization of ICA, it readily accommodates additional

types of diversity such as coloured (i.e., non-spectrally-flat)

or non-stationary sources [111], [122] (recall Section III-C1).

Identifiability analysis of the multiple types of diversity in IVA

is given in [82], [123]. It should be noted that the uniqueness

results for coupled CPD [90] (Example III-D.2) require at least

one tensor of order larger than two in the coupled set and thus

they cannot be applied to IVA.
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Fig. 1: Diagram of the IVA model. Figure reproduced

from [116, Figure 1].

Example III-D.2: Coupled Tensor Decompositions. In mul-

tilinear algebra, an ongoing endeavour is to obtain uniqueness

conditions on a tensor decomposition [67], [88], [92]–[97].

The goal is to derive bounds that are as relaxed as possible on

the largest R that still satisfies essential uniqueness (9). As an

example, two necessary conditions for the essential uniqueness

of the CPD of a third-order tensor (8) are that

(A⊙B) , (C⊙A) and (B⊙C) have full column rank,

and min(kA, kB, kC) ≥ 2 (12)

(e.g., [72], [92]) where ⊙ denotes the column-wise Khatri-Rao

product and kA is the Kruskal-rank of matrix A, equal to the

largest integer kA such that every subset of kA columns of A

is linearly independent [67].

Consider now M third-order tensors X (m) ∈ C
Im×Jm×K ,

m = 1, . . . ,M , with the same factorization as (8), that are

coupled by sharing one factor,

X (m) =

R
∑

r=1

a
(m)
r ◦ b(m)

r ◦ cr (13)

where the factor matrices of the mth tensor are A
(m) =

[a
(m)
1 , . . . ,a

(m)
R ] ∈ C

Im×R, B
(m) = [b

(m)
1 , . . . ,b

(m)
R ] ∈

C
Jm×R, C = [c, . . . , cR] ∈ C

K×R. The coupled rank of the

set {X (m)} is defined as the minimal number of rank-1 terms

a
(m)
r ◦b

(m)
r ◦cr that yield {X (m)} in a linear combination [90].

If the coupled rank of {X (m)} is R, then (13) is called the

coupled CPD of {X (m)}. It has recently been shown that

the coupled CPD may be unique even if conditions (12) are

violated such that none of the individual CPDs in (13) is

unique [90].

This fundamental result extends to more elaborate scenarios.

Uniqueness can be further improved if the order of (at least

one of) the involved tensors increases [90]. This is analogous

to the previously-mentioned result (Section III-C2) for a single

tensor, that increasing its order N relaxes the bound on R [57],

[91]. Adding assumptions such as individual uniqueness of one

of the involved CPDs, full column rank of the shared factor

C, or a specific structure such as a Vandermonde matrix, also

reinforces the uniqueness of the whole decomposition [90],

[124]. Finally, all these results can be extended to more

elaborate tensor decompositions that are not limited to rank-1

terms [90] .

Another benefit from coupling is that it helps relax the

permutation ambiguity. Coupled tensor decompositions have a

unique arbitrary permutation matrix in a manner that extends

single-tensor results (9) [125, Section III.A] [90]. Conse-

quently, the low-rank terms that are shared by all the coupled

tensors automatically have the same ordering at the output of

the algorithm.

Linked-mode PARAFAC in which two or more third-order

tensors share a mode has first been suggested in [126, p. 281].

The idea was extended to the case of arrays of different

orders (one of them must be three-way or higher) in [69,

Section 5.1.1]. Coupled tensor decompositions have already

proven useful in telecommunications [125], multidimensional

harmonic retrieval [124], chemometrics and psychometrics [8],

[99], and more. See Figure 2a for an example in metabolomics.
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Fig. 2: Illustration of different types of coupling between

matrices and third-order tensors. (a) Linked-mode matrices

and tensors in metabolomics. Datasets represent four different

acquisition methods. All datasets share the same “samples”

mode. Figure reproduced from [127]. (b) Arrays (in this case,

third-order tensors) may be coupled in different modes and

also via only part of a mode. In addition, linked arrays may

be regarded as elements in a larger volume (the red cube),

in which certain data points are missing. Figure reproduced

from [69, Figure 3].

Linked-mode analysis has also been proposed as a means to

represent missing values: each tensor is a dataset that by itself

is complete, but as a whole, each dataset has only partial

information w.r.t. a larger array in which all these datasets are

enclosed. This idea is accompanied by a more flexible coupling

design where more than one mode may be shared between

two tensors and the coupling may even involve only parts of

modes, i.e., shared (sub) factors [69, Section 5.1.2]. Figure 2b

illustrates this idea. Missing values are further discussed in

Challenge IV-B.4.

We now summarize Examples III-D.1 and III-D.2. In Sec-

tion III-C, we have shown that both ICA and PARAFAC

can provide sufficient diversity to overcome the indeterminacy

problem inherent to FA. We then extended our discussion to

jointly analysing M such problems: M×ICA
joint pdf
−−−−→ IVA (Ex-

ample III-D.1) and M×PARAFAC
shared factor
−−−−−−−→ coupled CPD

(Example III-D.2). We have shown that by properly defining

a link between datasets, we can extend and reinforce unique-

ness and identifiability beyond those obtained by individual

analysis, up to the point of establishing uniqueness of oth-

erwise non-unique scenarios. In PARAFAC, mixtures share

certain factors, whereas in IVA, each mixture has its own

individual parameters and the link is via statistical dependence

between certain variables. Next, we have shown that all these

models are flexible in the sense that they can easily be fine-

tuned and modified in multiple ways, in order to better fit

various real-life data. More specifically, they readily admit

various types of diversity. A first generalization of these

basic models is by relaxing the assumptions within each

decomposition: allowing statistical dependence between latent

sources of the same mixture in ICA (resp. IVA) leads to

independent subspace analysis (ISA) [128]–[132] (resp. joint

independent subspace analysis (JISA) [119]–[121]) as well

as other BSS models [133], [134]. Relaxing the sum-of-

rank-1-terms constraint in PARAFAC leads to more flexible

tensor decompositions such as Tucker [6], [7], block term

decomposition (BTD) [135], three-way decomposition into

directional components (DEDICOM) [136], and others [137].

A second generalization is by combining several types of

constraints and assumptions: for example, PARAFAC may

be combined with statistical independence [104], [138], non-

negativity, sparsity, as well as structure of the latent factors:

Vandermonde [72]–[75], Toeplitz [76], among others [16],

[65], [106], [139]. A third generalization is increasing the

number of types of observational diversity by increasing the

tensor order [57], [91]. A fourth is by linking datasets, leading

to various coupled models, as explained in this section. When

all these types of generalizations are taken into account, one

obtains very general data fusion frameworks such as structured

data fusion (SDF) [16], coupled matrix and tensor factor-

ization (CMTF) [99], linked multiway component analysis

(LMWCA) [65], and others [140]–[142]. These generaliza-

tions, and many more, are further discussed in Section V.

In all cases, the link between underlying factors at different

modalities helps not only to enhance uniqueness but also to

enable the same ordering for all decompositions, thus further

enhancing performance, identifiability, and interpretability.

E. Conclusion: A Link Between Datasets is Indeed a New

Form of Diversity

The strength of IVA and coupled CPD over a set of unlinked

factorizations lies in their ability to exploit commonalities

among datasets. In IVA, it is the statistical dependence of

sources across mixtures; in coupled CPD, it is the shared

factors. In both scenarios, the links themselves are new types

of information: the fact that datasets are linked, that elements

in different datasets are related (or not), and the nature of these

interactions, bring new types of constraints into the system

that allow to reduce the number of degrees of freedom and

thus enhance uniqueness, performance, interpretability, and

robustness, among others. On top of that, the links among

the datasets allow desired properties within one dataset to

propagate to the ensemble and enhance the properties of the

whole decomposition [16]. This is a concrete mathematical

manifestation of the raison d’être of data fusion that we have

mentioned in Section II, implying that [11, Section 9] [82],

[143]

An ensemble of datasets is “more than the sum of its

parts” in the sense that it contains precious information

that is lost if these relations are ignored.

The models that we have just presented allow multiple datasets

to inform each other and interact, as formulated in Defini-
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tion I.2 and further elaborated in Section V-A. Therefore, in

the same vein of the preceding discussion and Definition I.1,

we conclude that [16], [82], [143]

Properly linking datasets can be regarded as introducing

a new form of diversity, and this diversity is the basis and

driving force of data fusion.

IV. CHALLENGES AT THE DATA LEVEL

Thanks to recent advances, the availability of multimodal

data is now a fact of life. The acquisition of multimodal data,

however, is only a first step. In this section, and Section V that

follows, we discuss some of the issues that should be addressed

in the actual processing of multimodal data. In this section,

we focus on challenges imposed by the data. These can be

partitioned into challenges at the acquisition and observation

level and challenges due to various types of uncertainty in the

data. A number of approaches, to both types of challenges,

are briefly mentioned in this section. Section V complements

this section with a more comprehensive discussion of how to

approach, in practice, some of these challenges, from a model

design perspective.

A. Challenges at the Acquisition and Observation Level

Challenge IV-A.1: Non-commensurability. As explained in

Sections I–II, a key motivation for multimodality is that

different instruments are sensitive to different physical phe-

nomena, and consequently, report on different aspects of

the underlying processes. A natural outcome is that the

raw measurements may be represented by different types

of physical units that do not commute. This situation is

known as non-commensurability. Numerous examples of non-

commensurable data fusion scenarios were given in Section II.

Allowing non-commensurable datasets to inform each other

and interact is probably the first and foremost task that one

encounters in a large number of multimodal data fusion

scenarios [8].

Challenge IV-A.2: Different resolutions. It is most natural

that different types of acquisition methods and observation

setups provide data at different sampling points, and often

at very disparate resolutions. The specific type of challenge

that is associated with this property varies according to the

task. Consequently, solutions are diverse. In some cases,

different resolutions may be associated with various types of

uncertainty, as explained in Section IV-B. Below, we list some

scenarios in which challenges related to different resolutions

occur. Data with different resolutions is a prevalent challenge

in multimodal image fusion [13], as well as many other imag-

ing techniques. For example, EEG has an excellent temporal

but low spatial resolution, whereas fMRI has a fine spatial

resolution but a very large integration time (Example II-B.1).

In remote sensing (Example II-C.1), a common task is “pan-

sharpening” [13, Chapter 9] [40]: merging a high-spatial, low-

spectral (single band) resolution panchromatic image with a

lower-spatial, higher-spectral (several bands) resolution mul-

tispectral image, in order to generate a new synthetic image

that has both the higher spectral and spatial resolution of the

two. In audio-visual applications, the temporal resolution of

the signals differs by orders of magnitude. An audio signal

is usually sampled at several kHz whereas the video signal

is typically sampled at 15–60 Hz [144] (Example II-A.1). In

meteorological monitoring (Example II-C.2), each modality

has very distinct spatial and temporal resolutions; this is prob-

ably the reason why solutions based on data integration [47]

(see Section V-A) are preferred. Different sampling schemes

in coupled matrix and tensor decompositions are discussed,

e.g., in [145], [146].

Challenge IV-A.3: Incompatible size. In practical situations,

it is quite rare that different datasets contain exactly the

same number of data samples. As explained in Section IV-B,

this incompatibility may be associated with various types of

uncertainty. Data size incompatibility may be due to a different

number of samples at each observational mode, as explained in

Challenge IV-A.2. Among possible causes are different acqui-

sition techniques and experimental setups. The difference in

size becomes even more acute if datasets are arrays of different

orders [8], [147], as is often encountered in chemometrics,

metabolomics (e.g., Figure 2a), and psychometrics, among

others.

Challenge IV-A.4: Alignment and registration. Registration

is the task of aligning several datasets, images, on the same

coordinate system. Registration is particularly challenging

when 3D biomedical imaging techniques are involved (Exam-

ple II-B.1). In a first scenario, images of the same subject are

taken at different times using the same imaging technique. The

difficulty arises from the fact that each image has some bias

and spatial distortion w.r.t. the others since the patient is never

precisely in the same position. In this case, image registration

usually relies on the basic assumption that image intensities are

linearly correlated [148]. This assumption, however, is much

less likely in the second scenario, for multimodal images.

Consider, for example, registration of modalities that convey

anatomical information with others that report on functional

and metabolic activity. Naturally, the information conveyed

by each modality is inherently of different physical nature.

Other complicating factors include different types of noise,

spatial distortions, varying contrasts, and different positions

of the imaging instruments. One approach uses information

theory and maximizes mutual information [148], [149]. In

remote sensing (Example II-C.1), images of the same area

are taken by different types of instruments, e.g., airborne

SAR and satellite-borne LiDAR, and possibly at different

times and conditions, e.g., before and after landscape-changing

events such as natural disasters. In principle, one can use

global positioning system (GPS) for aligning the images.

However, even the GPS signal has a finite spatial precision.

In biomedical imaging, the BOLD signal, to which fMRI

is sensitive, has a large integration time and thus a delay

w.r.t. EEG. This leads to non-instantaneous coupling, even if

the measurements themselves are perfectly synchronized.

Calibration can be interpreted as a special case of alignment

and registration using two sets of measurements, and thus it

can be considered as a form of data fusion. Calibration is
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a major task in chemometrics, where it is often achieved via

regression methods. Frequently-used models such as multiway

partial least squares (PLS) [150] and PARAFAC [62] are less

adequate when the underlying profiles change shape from

sample to sample. A regression method that can accommodate

such variability in multiway arrays is proposed in [151], and a

multimodal audio-visual calibration technique is given in [25].

The advantage of the proposed solution is that it is based on

direction of arrival estimation, an easier task than microphone-

based time-difference of arrival estimation, which requires

strict synchronization between microphones. The challenge

of automatic calibration of audio-visual sensors (and others)

in the context of HMI (Example II-A.2) is discussed in [10,

Section V.C].

B. Challenges due to Various Types of Uncertainty

We now turn to discussing uncertainty in the data. Any

real-world set of observations is prone to various types of

uncertainty. The presence of heterogeneous multiple datasets

creates new types of uncertainty that may also be heteroge-

neous. We argue that in such cases, it is the complementarity

and diversity (Definition I.1) of the datasets that should be

exploited to resolve these challenges [9].

Challenge IV-B.1: Noise. Thermal noise, calibration errors,

finite precision, quantization or any other quality degradation

in the measurements is unavoidable. For simplicity, we denote

all these unavoidable phenomena as “noise”. Naturally, each

acquisition method produces not only heterogeneous types

of desired data, but also heterogeneous types of errors [8].

The question of how to jointly weigh or balance different

sources of error is brought up in a number of data fusion

scenarios, although most data fusion work currently ignores

noise. Naturally, in the presence of noise, an appropriate model

yields a more precise inference.

Several authors [152]–[154] use an additive noise model

with a distribution whose parameters may vary within and

across datasets. A Bayesian or maximum likelihood (ML)

framework is then applied to estimate the noise parameters.

In some cases, the noise estimates are interpreted as weights

that balance the contribution of each element [153] (note

the link with Challenge IV-B.2). Beal et al. [24] propose a

graphical model for audio-visual object tracking in which they

attribute different parameters to audio and video noise, and

estimate both in a Bayesian inference framework. All these

methods assume independence among sources of noise across

modalities. However, ignoring possible links (correlations)

between noise across datasets may lead to bias [9].

Challenge IV-B.2: Balancing information from different

origins. In practice, for various reasons, not all observations

or data entries have the same level of confidence, reliability or

information quality [11], [21], [155]. Below, we list scenarios

in which this occurs, as well as some approaches to resolve

these problems.

In real-life scenarios, certain sensors may be provide informa-

tion that has more value than others, or certain measurements

might be taken at better-controlled scenarios. For example,

in a medical questionnaire about patients × symptoms, cer-

tain symptoms may be more obvious and some harder to

define [155]. In the same vein, heterogeneity of acquisition

methods implies heterogeneity in their level of importance

or usefulness. For example, we may use questionnaires filled

by specialists (experts) and others by patients (non-experts).

Alternatively, if we consider two medical questionnaires, pa-

tients × symptoms and patients × diagnosis, the first one

may be more reliable since symptoms are observed directly

whereas diagnosis relies on interpretation [155]. In order to

address this issue, Wilderjans et al. [153], [155] propose to

associate the level of reliability with noise, and use appro-

priate weights, obtained via an ML variant of simultaneous

component analysis (SCA). Şimsekli et al. [156] propose indi-

vidual weights for datasets with different divergence measures

based on their relative ‘importance’. Similar to [153], these

weights are interpreted as noise variances. Finally, in [47],

Liberman et al. process several meteorological monitoring

modalities separately and then make a soft decision, using an

optimal weighted average based on location, number of links,

rainfall intensity and other parameters.

Another source of potential unbalance is datasets of different

size (recall Challenge IV-A.3). In the absence of additional

assumptions, a simulation study favours equal weight to each

data entry regardless of its dataset of origin, over the al-

ternative approach of weighting datasets by the number of

their respective entries [147] . This approach is generalized

to the case of missing values, where the weights should be

proportional to the number of non-missing entries in each

dataset [16].

Challenge IV-B.3: Conflicting, contradicting or inconsis-

tent data. Whenever more than one origin of information is

available, be it a single sensor or an ensemble of observations,

conflicts, contradictions, and inconsistencies may occur. If data

is fused at the decision level, then a decision or voting [8] rule

may be applied, for example, in the fusion of different classi-

fication maps in remote sensing (see Example II-C.1). Other

approaches, related to multisensor data fusion, are discussed

in [9], [157]. When only two datasets are confronted, more

elaborate solutions may be required. An obvious challenge

is to devise a suitable compromise. A more fundamental

challenge, however, is identifying these inconsistencies.

In [158], Tmazirte et al. consider the problem of detecting

faults in multimodal sensors in a distributed data fusion

framework, and dynamically reconfigure the system using

information theoretical concepts. Their approach is based on

detecting inconsistency in the mutual information contribution

of each sensor w.r.t. its history. Kumar et al. [159] deal with

the problem of multimodal sensors that occasionally produce

spurious data, possibly due to sensor failure or environmental

issues, and thus may bias estimation. The challenge arises

from the fact that spurious events are difficult to predict and

to model. Kumar et al. [159] propose a Bayesian approach

that can identify and eliminate spurious data from a sensor.

The procedure attributes less weight to the measurement

from a suspected sensor when fused with measurements from

other sensors. In the inference of cosmological parameters

(Example II-C.3), detecting and explaining (in)consistencies

of observations from different experiments is of utmost im-
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portance. A methodology for validation is comparing various

error measures on several types of analytical products (Ex-

ample V-A.1): cosmological parameters, CMB power spectra,

and full sky maps, with and without the inclusion of datasets

from both space-borne satellite missions and Earth-bound

telescopes [50]. These experiments vary in the spectral bands

at which they observe the sky, angular (spatial) resolution,

sensitivity to different types of polarization, sky coverage, sky-

scanning strategies [50, Section 4.1], types of noise, and other

parameters. Therefore, they carry complementary information.

Challenge IV-B.4: Missing values. The challenge of missing

values is not new and not unique to data fusion. The problem

of matrix and tensor completion is long-standing in linear and

multilinear algebra. However, its prevalence in data fusion

draws special attention to it. In Section III, we have seen

that low-rank tensors decompositions provide redundancy that

results in strong uniqueness that is further improved in the

presence of coupling or additional constraints. It turns out

that the same applies also in the case of missing values,

see [16], [99], [160]–[162] and references therein. Approaches

to missing values that are motivated by various aspects of data

fusion can be found, e.g., in [16], [160], [161].

Missing values may occur in various scenarios. While the

first case that we mention below is not unique to data

fusion, the remaining ones are. More specifically, the first

case deals with samples that are locally missing within an

individual dataset, whereas the other cases arise due to in-

teraction among datasets. First, certain data entries may be

unreliable, discarded, or unavailable due to faulty detectors,

occlusions, partial coverage, or any other unavoidable effects.

Second, sometimes a modality can report only on part of

the system w.r.t. the other modalities, as is the case with

EEG vs. MEG [12], nuclear magnetic resonance (NMR) vs.

liquid chromatography—mass spectrometry (LC-MS) [99],

occlusions or partial spatial coverage in remote sensing (Ex-

ample II-C.1), audio-video (Example II-A.1), meteorological

monitoring (Example II-C.2), and HMI (Example II-A.2).

A third scenario is illustrated in Figure 2b. In this case,

there exist several datasets, depicted as complete third-order

tensors. However, when linked together, they can be regarded

as elements in a larger third-order tensor in which they are all

contained, and whose volume is only partially filled. Fourth,

data may be regarded as structurally missing if samples at

different modalities are not taken at comparable sampling

points [8] (recall Challenge IV-A.2), and we would like to

construct a more complete picture from the entire sample

set. In this case, each modality is properly sampled on its

own, but there exist points on the common sampling grid

that do not contain data from all modalities; these points

can be regarded as missing values. A fifth scenario is link

prediction. This is a common issue in recommender systems

and social network analysis. In social network analysis, the

challenge is predicting social links or activities based on an

existing database of connections or activities, where only a

few entries are known. As an example for a recommender

system we mention the “Netflix Prize”, where the challenge

is defined as improving the accuracy of predictions about how

much a person is going to enjoy a future movie based on past

preferences. The data can be regarded as an incomplete user ×
movie matrix, whose entries are user ratings in an ordinal 1–5

scale, and the challenge is to fill in the missing entries (initially

set to zero). Among the many and diverse methods that have

been proposed we mention that some are based on (coupled)

matrix or tensor factorizations, possibly by augmenting these

data with further types of diversity; see, e.g., [16], [161], [163]

and references therein.

V. CHALLENGES AT THE MODEL DESIGN LEVEL

In this section, we confront the unavoidable “how” ques-

tion, presenting some guidelines that might be helpful in

the actual design of data fusion solutions, from a model

design perspective. This question has already been raised by

numerous authors, e.g., by [8]–[14], [16], [152], [163], [164],

among others, and the following discussion builds upon these

foundations. In a sense, this section concludes our paper.

It complements Section III by proposing theoretical model

design principles that allow diversity to manifest itself. It

complements Section II and Section IV by presenting model

design principles that can accommodate the practical data-level

challenges presented in Section IV and the numerous tasks

given in Section II. It provides examples of approaches that

allow datasets to interact and inform each other, in the sense

of Definition I.2. As in previous sections, due to the vastness

of the field, the discussion in this section is far from being

exhaustive: we only touch at certain topics, and leave others,

such as computation, algorithms and fusion of large-scale data,

outside the scope of this overview. The rest of this section

is organised as follows. In Section V-A, we discuss different

strategies to data fusion, and address, in particular, at which

level of abstraction, reduction and simplification the data

should be fused. Section V-B discusses mathematical models

for links between datasets that maximally exploit diversity, en-

hance interpretability and performance. Section V-C discusses

some theoretical approaches to the analysis of the ensemble

of linked datasets. Section V-D brings together the numerous

model design steps and considerations in a unified framework

of “structured data fusion”. We conclude our discussion with

validation issues in Section V-E.

A. Level of Data Fusion

At first thought, it may seem that fusing multiple datasets

at the raw-data level should always yield the best inference,

since there would be no loss of information. In practice,

however, due to the complex and largely unknown nature of

the underlying phenomena (Section II), various complicating

factors (Section IV), as well as the specific research question

(Sections I–II), it may turn out to be more useful to fuse the

datasets at a higher level of abstraction [9], and after certain

simplification and reduction steps. The procedures listed below

precede the actual fusion of the data. Therefore, they are

related to the preprocessing stage. Naturally, the choice of

analytical model is influenced by decisions taken at this point.

The first strategy that we mention is data integration.

It implies parallel processing pipelines for each modality,
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followed by a decision-making step. Integration is a common

approach to deal with heterogeneous data. When modalities

are completely non-commensurable (Challenge IV-A.1), as

with remote sensing techniques that report on material content

vs. others that report on three-dimensional structures (Exam-

ple II-C.1), integration becomes a natural choice, and is often

related to classification tasks. Integration can be done via soft

decision, using optimal weights, as in the fusion of data from

wireless microwave sensor networks and radar for rainfall

measurement and mapping [47] (Example II-C.2). Bullmore

and Sporns [165] study brain networks by first constructing

separate models of structural and functional networks based on

several brain imaging modalities and fuse them using a graph-

theoretical framework. Data integration may be preferred when

modality-specific information carries more weight compared

with the shared information, as argued for the joint analysis of

EEG–fMRI in [32] (Example II-B.1). A framework to choose

between alternative soft decision strategies in the presence

of multiple sensor outputs, given various assumptions on

uncertainty or partial knowledge, confidence levels, reliability,

and conflicts, in a data fusion context, is given in [157]. Due to

its simplicity, and relative stability since it allows to rely on

well-established methods from single-modal data analysis, a

large number of existing data fusion approaches are still based

on decision-level fusion. Pros and cons to data integration are

further discussed in [21].

A second type of data fusion strategy is processing modal-

ities sequentially, where one (or more) modality(ies) is used

to constrain another. Mathematically, this amounts to using

one modality to restrict the number of degrees of freedom,

and thus the set of possible solutions, in another. A sequential

approach makes sense when one modality has better quality

in terms of the information that it conveys than the others

in a certain respect, as in certain audio-visual scenarios [10],

[23] (Example II-A.1), as well as in the fMRI-constrained

solution for the otherwise-underdetermined, ill-posed EEG

inverse problem [12], [26] (Example II-B.1).

In this paper, we focus on a third strategy, true fusion, that

lets modalities fully interact and inform each other as claimed

in Section I. True fusion is also characterized by assigning a

symmetric role to all modalities, i.e., not sequential. The data

fusion models mentioned in Section III fall into this category,

as well as most of the models that we mention in the rest of

this section. Within “true fusion”, there are varying degrees:

True fusion using high-level features. In this approach, the

dimensionality is significantly reduced by associating each

modality with a small number of variables. High-level features

are often univariate. Examples include standard variation,

skewness, ratio of active voxels, other variables which con-

cisely summarize statistics, or geometrical and other prop-

erties. In this case, inference is typically of classification

type. Examples include multi-sensor [9], HMI [10] and remote

sensing [42] applications.

True fusion using multivariate features. Unlike high-level

features, this approach leaves the data sufficiently multivariate

within each modality (which now is in feature form) such

that data in each modality can fully interact [21], [58]. In

neuroimaging, common features are task-related spatial maps

from fMRI, gray matter images from sMRI, and event-related

potential (ERP) from EEG, extracted for each subject [21],

[58], [60]. In audio-visual applications, features often corre-

spond to speech spectral coefficients and visual cues such as

lip contours or speaker’s presence in the scene [23].

True fusion using the data as is, or with minimal reduction.

In fact, working with features implies a two-step approach: in

the first step, features are computed using a certain criterion;

in the second step, features are fused using a different, second

criterion. An approach that merges the two, and thus expected

to better exploit the whole raw data, is proposed in [166] for

the fusion of fMRI and EEG. A remote sensing application in

which it is natural to work with raw data is pan-sharpening

(explained in Challenge. IV-A.2). Here, acquisition conditions

are favourable since the two sensors (multispectral and pan)

acquire data over the same area, with same angle of view and

simultaneously, and the modalities are commensurable.

Features, at different levels, may accommodate hetero-

geneities across modalities, such as different types of uncer-

tainty and non-commensurability (Section IV). Features may

significantly reduce the number of samples involved, i.e., allow

compression. Example V-A.1 illustrates this point. It also

serves as a conclusion to the discussion on the strategy for

data fusion by showing how different levels of features can be

used for varying data fusion purposes. For further discussion

on features and choosing the right level of data fusion, see,

e.g., [21], [27], [58] (biomedical imaging) and [10], [11]

(HMI).

Example V-A.1: Use of Features in Cosmological Inference

from CMB Observations. In the inference of cosmological

parameters from CMB observations (Example II-C.3), the raw

data consist of detector readouts as well as other auxiliary

information that amounts to several Tera-bytes, or O(1012),
of observations [167]. The scientific products are usually pro-

vided in several levels of multivariate “features”, as follows: (i)

full-sky maps, of CMB and non-CMB emissions, amounting

to roughly O(108) pixels, (ii) CMB power spectrum computed

from the CMB spatial map, at O(103) spectral multipoles, and

(iii) six cosmological parameters that represent the best-fit of

the CMB power spectrum to the ΛCDM model. It is clear

that each level represents a strong compression of the data

w.r.t. the preceding one. Each level of features is useful for a

different type of inference. High-resolution component maps

are the first useful outcome from the component separation

procedure [59]. Apart from providing valuable information

about the sky, they are useful for instance for consistency

checks between instruments, experiments and methods [50],

[59]. Power spectra are useful to compare outcomes of dif-

ferent experiments that measure the CMB, e.g., Planck and

BICEP2/Keck [168], whereas cosmological parameters form

the link, via the ΛCDM model, with datasets that do not

involve astrophysical observations, e.g., high-energy physics

at CERN [56].

Order selection and dimension reduction. Related to the

open issue of choosing the most appropriate strategy of data

fusion is order selection. As in non-multimodal analysis, a

dimension reduction step may be required in order to avoid
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over-fitting the data, as well as a form of compression [9]. In a

data fusion framework, this step must take into consideration

the possibly different representations of the latent variables

across datasets. As an example, a solution that maximally

retains the joint information while also ensuring that the

decomposed sources are independent from each other, in the

context of a “joint ICA”-based approach, is proposed in [117].

Dimension reduction may be performed locally, at each sensor

or modality, or at a central processing unit [9].

B. Link Between Datasets

Data fusion is all about enabling modalities to fully interact

and inform each other. Hence, a key point is choosing an

analytical model that faithfully represents the relationship be-

tween modalities and yields a meaningful combination thereof,

without imposing phantom connections or suppressing existing

ones. The underlying idea of data fusion is that an ensemble of

datasets is “more than the sum of its parts” in the sense that it

contains precious information that is lost if these relations are

ignored. The purpose of properly-defined links is to support

this goal, as motivated by the discussion in Section III. In

order to maximize diversity, we would like links to be able

to exploit the heterogeneity among datasets. Properly-defined

links provide a clear picture of the underlying structure of the

ensemble of the related datasets [147]. Consider, for example,

two datasets, patients × symptoms and patients × diagnosis;

we would like the data fusion model to allow us to uncover

the medical conditions that underlie both symptoms and di-

agnoses [155]. Properly-defined links explain similarities and

differences among datasets and allow better interpretability.

As explained in Section III, one of the first motivations for

linking datasets in joint matrix decomposition scenarios is

resolving the arbitrary ordering of the latent components in

each individual dataset. It is interesting to note that all types

of links eventually alleviate this problem since they provide a

single frame of reference.

Since data fusion generally deals with heterogeneous

datasets, we would like links to be flexible enough to allow

each dataset to remain in its most explanatory form, as

further discussed in Section V-B1. In various scenarios, certain

elements may be present only in a specific dataset whereas

others are shared by two or more. We would like the model

not only to properly express these elaborate interactions but

also to have the capacity to inform us about (non-) existence

of links when this information is not available in advance, a

topic further elaborated in Section V-B2.

As stated in Section II, the raison d’être of multimodal

data fusion is the paradigm that certain natural processes

and phenomena express themselves under completely different

physical guises. Due to the often complex nature of the driving

phenomena, it is likely that datasets will be related via more

than one type of diversity; e.g., time, space, and frequency.

Therefore, links should be designed such that they support

a relationship via several types of diversity simultaneously,

whenever applicable. Models based on multilinear relation-

ships, as well as those that admit multiple types of links

simultaneously, seem to better support this aim.

1) “Soft” and “Hard” Links Between Datasets: One type

of decision that has to be made is whether each dataset

will have its own set of individual parameters, disjoint of

the others, or not. In the first case, none of the parameters

that define each dataset’s model are shared by any other

dataset. As a result, additional information is required to define

the link. In such cases, the link is often defined as some

correspondence between datasets that can be interpreted as

similarity, smoothness or continuity [169]. Therefore, we call

such links “soft”. In the second case, datasets explicitly share

certain factor matrices or latent variables. For the sake of our

discussion, we call such links “hard” [145].

“Hard” links between datasets. We have already seen shared

factor matrices in numerous examples in Section III. Naturally,

data fusion methods that are based on stacking data in a

single tensor fall within this category. Such are PARAFAC

(Section III-C2), generalized singular value decomposition

(GSVD) [170] and its higher-order generalization [171],

the higher-order SVD (HOSVD) [172], and more. In joint

ICA [173] and group ICA [174], [175], several ICA problems

share a mixing matrix or source subspace, respectively, by

concatenating the observation matrices in rows or columns.

Simultaneous factor analysis (FA) [152] and simultaneous

component analysis (SCA)-based methods [98], [176]–[179]

deal with multiway data that have at least one shared mode,

but do not stack it in a single tensor (Section III-C2) due

to various complicating factors, such as those mentioned in

Section IV. Linked tensor ICA [154] has one factor matrix

shared by all decompositions. In Bayesian group FA [180] and

its tensor generalization [142], [181], as well as in collective

matrix factorization (CMF) [164], several matrices or tensors

share all but one factor matrix. In fusion of hyperspectral and

multispectral images (Example II-C.1), the joint factor is a ma-

trix that reflects the (desired, unknown) high-resolution image

before spatial and spectral degradation [182]–[185]. In group

non-negative matrix factorization (NMF), shared columns of

the feature matrix reflect task-related variations [186]. The

generalized linked-mode framework for multiway data [8]

allows flexible links across datasets by shared (sub-) factors,

as do other flexible tensor-based data fusion models such

as coupled matrix and tensor factorization (CMTF) [99] and

its probabilistic extension generalized coupled tensor factor-

ization (GCTF) [161], linked multiway component analysis

(LMWCA) [65] and structured data fusion (SDF) [16]. In the

fusion of astrophysical observations of the CMB from different

experiments (Example II-C.3), the link may be established

by a joint distribution of the ensemble of samples from all

datasets. In this case, the fusion is based on the assumption that

the random processes from which all samples are generated

are controlled by the same underlying cosmological parame-

ters [50]. A shared random variable is used also in [187] to

extract a common source of variability from measurements in

multiple sensors using diffusion operators [187].

“Soft” links between datasets. Prevalent types of “soft” links

are statistical dependence, as in IVA (Example III-D.1); co-

variations, as in CCA [1] and its extension to more than

two matrices, multiset CCA (MCCA) [3], [58], [110], [118],

and parallel ICA [188]; and “similarity”, in the sense of
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minimizing some distance measure between corresponding

elements, as in soft non-negative matrix co-factorization [189]

and joint matrix and tensor decompositions with flexible

coupling [145]. For audio-visual data fusion, a dictionary

learning model where each atom consists of an audio and video

component has been proposed in [144]. A graphical model in

which audio and video shifts are linearly related in far-field

conditions is proposed in [24]. Generalized linked-mode for

multiway data [8] and LMWCA [65] mention explicitly that

they can be defined both with “soft” or “hard” links.

Although the partition into “soft” and “hard” links is

conceptually appealing and simplifies our presentation, the

following reservation is in order. In practice, when it comes

to writing the optimization problem, models with “soft” links

are often reformulated using shared variables. In the models

that we have just mentioned, shared variables are, for ex-

ample, cross-correlation or cross-cumulants when statistical

(in)dependence and co-variation are concerned, or a shared

latent variable in regression models. The reformulated models

often take the form of (approximate) (coupled) matrix or

tensor factorizations. We mention [111], [190], [191] as just

a few examples; further discussion is beyond the scope of

this paper. The bottom line is that the distinction between

“soft” and “hard” links is often immaterial. The implication is

that models with “soft” links can sometimes neatly fit within

optimization frameworks that assume shared variables, for

example SDF [16].

2) Shared vs. Unshared Elements: The idea that datasets

have both shared (common) and unshared (individual,

modality-specific) elements w.r.t. the others can be found in

numerous models. It can be formulated mathematically by

defining certain columns of a factor matrix or sub-elements

of a latent variable as shared while others are unshared.

Models that admit this formulation include incomplete mode

PARAFAC [69, Section 5.1.2] (Figure 2b), group NMF [186],

LMWCA [192] and SDF [16]. In the extraction of a common

source of variability from heterogeneous sensors [187], it is

hidden random variables that are either shared or unshared.

Another example is Bayesian group FA [180] and its tensor

extensions [142], [181], where a dedicated factor matrix de-

termines which of the factors in a common pool are active

within each dataset.

The more fundamental challenge, however, is to identify the

shared and unshared elements from the data itself, without a

priori assignment of individual and shared variables. Bayesian

linked tensor ICA [154] holds a modality-specific factor matrix

of optimally-determined weights that can eliminate a source

from some modalities while keeping it in others. In [170],

Alter et al. propose GSVD to infer, from two genome-scale

expression datasets, shared and individual processes. Ponna-

palli et al. [171] extend this GSVD-based approach to more

than two datasets. Shared and unshared processes in genomic

and metabolomic data may also be revealed by a proper

rotation of the components resulting from SCA. The proposed

approach, called distinctive and common components with

simultaneous-component analysis (DISCO-SCA) [177], [193],

[194], may outperform GSVD in certain scenarios and can be

straightforwardly generalized to more than two datasets. A

comparative study of GSVD, DISCO-SCA and other methods

that can identify shared and unshared processes underlying

multiset data can be found in [179]. HOSVD [195] can

differentiate between shared and unshared phenomena in DNA

analysis from multiple experiments [172]. As a last example,

in CMTF [196], model constraints may be defined in the form

of sparse weights such that unshared components have norms

equal or close to zero in one of the datasets.

C. Analytical Framework

Certain data fusion approaches rely on existing theoretical

analytical frameworks that have originally been devised for

non-fusion applications, at least not explicitly. Such are ICA

and algebraic-based methods such as PARAFAC, generalized

eigenvalue decomposition (GEVD), GSVD and HOSVD, as

will be elaborated below. These methods have been around

for a while and there is a large body of works that has

been dedicated to their computation. Data fusion approaches

that rely on these well-established, widely-known methods are

often more easily accepted and integrated within the research

communities. However, these approaches may not be able to

exploit the full range of diversity in the data, and thus, more

advanced data fusion methods may be preferred. Below, we

briefly review some of the analytical approaches that have been

proposed for data fusion.

Well-known matrix and tensor factorizations can be used

for data fusion. In [170], Alter et al. use GSVD for the

comparison of genetic data from two different organisms.

In [172], HOSVD is proposed for the analysis of data from

different studies. In the presence of two datasets, or in a noise-

free scenario, many matrix- and tensor-based methods can

be reformulated as GEVD [197]. This holds for various BSS

closed-form solutions [198], CCA [199, Chapter 12] and its

multi-set extension [3], [110], joint BSS [111], and coupled

tensor decompositions [200]. As explained in Section V-B1,

algebraic (possibly approximate) solutions to models with

“soft” links often exist.

Certain data fusion methods concatenate or re-organize data

such that it can be analysed by a classical ICA algorithm.

Such is the case in joint ICA [173] and group ICA [174],

[175]. These models can thus be solved using any existing

ICA approach [63].

Guo et al. [201] propose a tensor extension to group

ICA [174], [175] and to tensor ICA [104] that can accom-

modate different group structures. Parallel ICA [188] and

IVA [108]–[111] (Example III-D.1) jointly solve several sep-

arate ICA problems by exploiting co-variations or statistical

dependence, respectively. CCA [1], its extension to multiple

datasets [3], as well as one of the approaches to LMWCA [65],

search for maximal correlation, or other second-order-based

relationships, between variables.

Certain methods minimize the Euclidean distance (Frobenius

norm) between model and data. In the presence of additive

white Gaussian noise, this amounts to maximum likelihood

(ML). Further considerations associated with this choice of

norm are given in [16, Section II]. This type of optimization

is used in group NMF [186], coupled NMF [182], certain
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SCA-based methods [98], [176]–[178], and numerous cou-

pled tensor decompositions, see e.g., [16], [99], [124] and

references therein. In some cases, it may be better to tailor

loss functions individually to each dataset, and use norms

other than Frobenius [8], [153]. Such is the case in the GCTF

framework [156], [161], for example. An ML framework can

accommodate datasets with different noise patterns. Such are

flexible simultaneous FA [152] and ML-based SCA [153],

[155]. ML underlies certain noiseless stochastic models, e.g.,

SOS-IVA [202] and JISA [119]–[121].

Regression provides another solution to data fusion. Regres-

sion searches for latent factors that best explain the covariance

between two sets of observations. We mention PLS [62], [203]

and its multilinear extensions N -way PLS [62], [150] and

higher-order PLS (HOPLS) [141].

Bayesian group FA [180], its tensor extension [142], [181],

coupled matrix and tensor decompositions with flexible cou-

pling [145], and certain methods for the fusion of hyperspectral

and multispectral images [183], [184], rely on a Bayesian

framework for the decomposition. Certain tensor extensions

of ICA rely on a probabilistic Bayesian framework [154].

In [185], fusion of hyperspectral and multispectral images is

achieved via dictionary learning and sparse coding. This is

also the underlying technique of [144] for learning bimodal

structure in audio-visual data. Beal et al. [24], [204] use

probabilistic generative models, also termed graphical mod-

els, in order to fuse audio and video models into a single

probabilistic graphical model. Lederman and Talmon [187] use

an alternating-diffusion method for manifold learning that

extracts a common source of variability from measurements in

multiple sensors, where all sensors observe the same physical

phenomenon but have different sensor-specific effects. Com-

bining labelled and unlabelled data via co-training is described

in [205]. A survey of techniques for multi-view machine

learning can be found in [206]. A multimodal deep-learning

method for information retrieval from bi-modal data consisting

of images and text is described in [207].

D. Structured Data Fusion: A General Mathematical Frame-

work

In the preceding sections, we mentioned a large number

of data fusion models. However, it is clear that no list of

existing solutions, comprehensive as it might be, can cover

the practically endless number of current, future and potential

datasets, problems and tasks. Indeed, the purpose of this paper

is not in promoting specific models or methods. Instead, and

building upon [8]–[14], [16], [152], [163], [164] and others,

we wish to provide a deeper and broader understanding of

the concepts and ideas that underlie data fusion. As such,

in the model design front, our goal is providing guidelines

and insights that may apply also to datasets, problems and

tasks that do not necessarily conform to any of the specific

examples, solutions, and mathematical frameworks that we

mention. The concept of diversity, presented in Section III,

is one such example. In the same vein, we now present a

general mathematical framework that will allow us to give a

more concrete meaning to some of the model design concepts

that have been discussed. Although this formulation is given in

terms of matrices and higher-order arrays, also known as ten-

sors, the underlying ideas behind “structured data fusion” [16],

such as flexibility and modularity, are not limited to these. The

mathematical formulation that we use is only a concretization

of a more general idea, applied to datasets that admit certain

types of decompositions.

We now present a formulation proposed by Sorber et al. [16],

followed by a few examples for motivation and clarification.

Model of an individual dataset: Consider an ensemble of M

datasets, collected in M arrays (tensors) T (m) ∈ C
I1×···×INm ,

m = 1, . . . ,M , where Nm = 1, 2, 3, . . . implies a vector, a

matrix or a higher-order tensor, respectively. In order to allow

maximal flexibility in the model associated with each of these

datasets, [16] define several layers of underlying structures. A

first layer is an ordered set of V variables z = {z1, . . . , zV },

where each variable may be anything from a scalar to a higher-

order tensor, real or complex (recall (1)). A second layer is

an ordered set of F factors X (z) = {x1(zi1), . . . , xF (ziF )}
that are driven by the V variables z. Each factor xf (zif ) is a

mapping of the if th variable to a tensor. In a third layer, each

dataset T (m) is associated with a decomposition model M(m)

that approximates it. Function M(m)(X (z)) maps a subgroup

of the factors X (z) to a tensor. Figure 3 illustrates these layers.

For simplicity, each dataset T (m) is associated with a tensor

model M(m) of the same order and size. This is not evident:

the order Nm and dimensions I1 × · · · × INm
of the model

tensor, as used in the analysis, may differ from those that

most naturally represent the acquired data, as well as from the

natural way to visualize the samples. As a first example, raw

EEG data is a time series in several electrodes, i.e., electrode ×
time. However, it has been proposed to augment this data using

a third type of diversity, electrode × time × frequency [101]–

[103]. In this case, the EEG data will be stacked in a third-

order tensor. On the other hand, data that is naturally visualized

in 2D or 3D arrays such as images does not necessarily admit

any useful (multi-) linear relationships among its pixels or

voxels. Hence, in the analysis, image data are often vectorized

into 1D arrays. Further discussion of how to choose the right

array structure for data analysis can be found, e.g., in [8], [64],

[65], [106] and references therein.

Link between datasets: In the structured data fusion (SDF)

formulation, a link between datasets can be established if their

models share at least one factor or variable. This corresponds

to the “hard” links, mentioned in Section V-B1. However, this

does not exclude other types of interaction between datasets:

“soft” links may be established by reformulating “soft” links

using shared parameters, as explained in Section V-B1, and

possibly via regularization terms.

The following examples provide a more concrete meaning

to the mathematical formulation that we have just laid out.

Consider two matrix datasets, patients × diagnosis and patients

× symptoms. A latent variable may be the syndrome that

underlies both diagnoses and symptoms factors. The link is

established via the shared “patients” mode [155]. As a second

example, certain properties of a communication system in a

coupled CPD framework may be expressed using a factor

with a Vandermonde structure [124]. This can be implemented
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in SDF with zf a vector of p scalars and xf (zf ) a p × q

Vandermonde matrix constructed thereof. Further examples

for factor structures that can be reformulated in SDF include

orthogonality, Toeplitz structure, non-negativity, as well as

fixed and known entries. Constraints such as sparsity and

smoothness within factors may be implemented using regu-

larization terms. Tensor decompositions that can be reformu-

lated as M(m)(X (z)) include rank-1 decompositions (CPD,

PARAFAC), decompositions into rank≥1 terms, Tucker, BTD,

PARAFAC2 [70], and many others. These options, as well

as other alternatives for latent variables, factors and models

for each dataset, are mentioned in Section III. For further

explanations about implementation, see [16], [208].

Loss/objective function, regularization and penalty terms:

The next step is to fit the model to the data. Depending

on the analytical framework that we choose (Section V-C),

each dataset or the whole ensemble is attributed with a

loss/objective function D(m)(·, ·), between observed and mod-

elled data [153], [156], [161]. An individual loss/objective

function allows flexibility both in the analytical framework

applied to each dataset, and in the individual types of uncer-

tainty (Challenge IV-B.1). The loss/objective function may be

complemented by various penalty or regularization terms, in

order to impose constraints that are not expressed by the other

optimization functionals. Regularization terms may impose

certain types of sparsity, non-negativity [196], similarity [145],

[189], or coherence [209], to name a few.

Missing values: In order not to take account of unknown data

entries in the optimization procedure, these values are masked.

This is done via an entry-wise (Hadamard) product (denoted

as ⊛) of the data tensor T (m) with a binary tensor B(m) of the

same size; see e.g., [16], [160] and references therein. Missing

values are discussed in Challenge IV-B.4.

The whole optimization problem: Given these elements, SDF

may be written as the optimization problem

min
z

M
∑

m=1

ωm

2
D(m)

(

M(m)(X (z)) , T (m)
)

B(m)

+ regularization terms , (14)

where D(m)(·, ·)B(m) implies D(m)(B(m)
⊛·,B(m)

⊛·). Scalars

ωm denote weights, reflecting the relative importance of

the loss/objective functions in the ensemble. Scenarios in

which weights are useful are discussed in Section IV-B. The

optimization problem (14) implements the overall analytical

framework associated with the model. Eq. (14) is a slight

generalization of the original SDF formulation [16, Eq. (1)],

in which the loss/objective function is a weighted Frobenius

norm, D(m)(M(m), T (m))B(m) = ‖B(m)
⊛(M(m)−T (m))‖2F .

Numerical and computational advantages associated with the

Frobenius norm in the context of SDF are discussed in [16,

Section II]. An illustration of SDF is given in Figure 3.

As noted by [16], a large number of the existing data fusion

models can be reformulated in terms of SDF, or some variation

thereof. However, an even more interesting insight is that each

step in the design of (14) is independent of the others: to a

large extent, the choice of constraints, assumptions, types of

links, loss/objective functions, and other parameters, can be

Factors Factorizations DatasetsVariables

x1(z1)

x2(z2)

x3(z3)

M(1)

M(2)

≈

z1

z2

z3

⊥

+

⊥

+

≈ T (2)⊥ +

T (1)

Fig. 3: Schematic illustration of structured data fusion. For

example, vector z1, upper triangular matrix z2, and full matrix

z3 are transformed, using mappings x1, x2 and x3, into a

Toeplitz, orthogonal, and nonnegative matrix, respectively. The

resulting factors are then used to jointly factorize two coupled

datasets. Figure and caption reproduced from [16, Figure 1].

done disjointly. In other words, SDF is a modular approach

to data fusion. These insights have led to the key observation

that in fact, a large number of existing data fusion models can

be regarded as composed of a rather small number of building

blocks [16]. In other words, if all admissible combinations are

considered, then the number of potential analytical data fusion

models is significantly larger than what is currently available

in the literature [8].

The modular perspective on data fusion offers several ben-

efits. First, a major challenge in data fusion is its augmented

complexity due to the increased number of degrees of freedom.

The modular approach to data fusion answers this challenge by

reformulating the problem in a small set of disjoint simpler

components that can be separately analysed, optimized and

coded. Second, the modular approach, in which the prob-

lem is factorized into smaller stand-alone elements, allows

a broader view that makes it is easier to come up with new

combinations of the basic building blocks, thus leading to new

mathematical models, algorithms and concepts [8], [16], [163],

[164]. Third, modularity of the formulation makes it easier

to adapt it to computational challenges such as large-scale

data [16], [65], [162], [210], [211]. Fourth, in Section I–II,

we have emphasized the importance of exploratory research

in data fusion. The modularity of the design is particularly

helpful in that, making it straightforward to come up with

new exploratory variations, to test and compare alternatives

with minimal effort [16]. Modularity allows to easily diagnose

which elements in the model are particularly useful, need to be

modified, replaced or fine-tuned, without having to undo the

whole derivation, coding or analysis. The latter also facilitates

the validation stage, see Section V-E for further discussion.

E. Validation

Despite accumulating empirical evidence of the benefits

of data fusion, there is still very little theoretical validation

and quantitative measure of its gain [11], [99]. Choosing an

appropriate model is a widely open question, and approximate

and highly simplified models are often preferred. Therefore,

a validation step is indispensable. The following points are

of particular interest: (i) Lower bounds on the best achievable

error: how far are we from the best possible result (for a given
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dataset, task, goal, and model)? (ii) Theoretical results on

the reliability and practical usefulness of the method: can we

prove that the model is identifiable? Is the solution unique? Is

the output physically meaningful? Are the results sufficiently

interpretable? IVA (Example III-D.1) and coupled tensor

decompositions (Example III-D.2) are two of the models for

which there now exists a comprehensive theoretical analysis

that answers this type of questions.

Although these questions are not specific to multimodal

data fusion, they take special interpretation in the presence

of multiple datasets. Some of the new questions that arise

are, for instance: (i) What is the mathematical formulation

of “success”, “optimality” and “error”, when heterogeneous

modalities and types of uncertainty are involved? What is the

most appropriate target function and criterion of success? (ii)

How to evaluate performance of exploratory tasks? (iii) How

to design a figure of merit that can inform us how to exploit

the advantages of each modality without suffering from its

drawbacks w.r.t. the other modalities? (iv) How to identify and

process information that is shared by several modalities, and

how to identify and exploit modality-specific information? (v)

How to compare alternative design choices such as of level

of data fusion, order selection, and analytical model within

and across modalities? As an example, theoretical figures of

merit such as the Cramér-Rao lower bound may help answer

some of these questions. However, calculating theoretical error

bounds for all possible alternatives (especially in view of the

modular approach of Section V-D) is a prohibitive task, both

due to the very large number of options, and also since many

models are not mathematically tractable. Rescue may come

from the computational front. As an example, Tensorlab [208],

a MATLAB toolbox that follows the modular principles of

SDF [16] (Section V-D), enables the user to switch between

the numerous combinations arising from multiple choices in

the model design. As such, it allows the user to rapidly

iterate towards a plausible solution for the problem at hand.

Therefore, Tensorlab [208] (or any other computational tool

following the modularity principles) may serve as a verifica-

tion and validation tool, at least in the preliminary stages of

the design.

A class on their own are questions regarding the choice of

modalities and the added value from using multiple modal-

ities in general. (i) Should all available modalities be used,

and/or given equal importance? (ii) How much (information,

diversity, redundancy) does each modality bring in to the total

equations? How to quantify this “extra contribution”? Some

of these questions (and examples of possible answers) have

been brought up within the challenges in Section IV; others

are related to the design of a data fusion model (Section V).

Information theory seems like a natural framework to evaluate

the contribution of various types of diversity, as discussed, e.g.,

in [12]. Uniqueness analysis of (coupled) tensor decomposi-

tions, as well as other forms of error analysis, such as those

mentioned in Section III, quantify the added value of diversity

in terms of the admissible number of uniquely identifiable

components or factors. Attention should be paid, for example,

when modalities are too close to each other: in this case, they

may not really convey new information; in addition, they may

be exposed to similar noise, and thus bias results [9]. Due to

the heterogeneous characteristics of the data, and particularly

in exploratory tasks, the interpretability of the output should

be given special care. Questions related to the representation

of the output of multimodal data analysis are discussed, e.g.,

in [11, Section 8].

VI. CONCLUSION

We enter an era where the abundance of diverse sources

of information makes it practically impossible to ignore the

presence of multiple datasets that are possibly related. It is

very likely that an ensemble of related datasets is “more than

the sum of its parts”, in the sense that it contains precious

information that is lost if these relations are ignored. The

information of interest that is hidden in these datasets is

usually not easily accessible, however. We argue that the road

to this added value must go through first understanding and

identifying the particularities of multimodal and multiset data,

as opposed to other types of aggregated datasets. At the same

time, the joint analysis of multiple datasets “stands on the

shoulders of” single-set analysis. Hence, the development of

methods and techniques for single-set analysis is a cornerstone

for advanced data fusion. In this paper, we have shown that

methods that properly account for the links among datasets

indeed have the potential to achieve gains and benefits that

go far beyond those possible when each dataset is processed

individually. As argued in this paper, the potential impact of

these gains is high, and spans the whole spectrum from solving

theoretical problems that cannot be solved in single-set scenar-

ios, to opening up new opportunities in numerous medical, en-

vironmental, psychological, social and technological domains,

among others. By adopting a data-driven approach, we have

shown that the encountered challenges are ubiquitous, whence

the incentive that both challenges and solutions be discussed

at a level that brings together all involved communities.

ACKNOWLEDGMENT

The authors would like to thank Lieven De Lathauwer, Jean-

François Cardoso, Jocelyn Chanussot, Mauro Dalla Mura,

Noam David, Inbar Fijalkow, Hagit Messer, Gadi Miller, and

Sabine Van Huffel, whose expertise, insightful remarks and

feedback have greatly helped extend the scope of this paper;

and the anonymous reviewers, for their careful reading and

valuable remarks.

REFERENCES

[1] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, no. 3/4, pp. 321–377, Dec. 1936.

[2] R. B. Cattell, ““Parallel proportional profiles” and other principles for
determining the choice of factors by rotation,” Psychometrika, vol. 9,
no. 4, pp. 267–283, Dec. 1944.

[3] J. Kettenring, “Canonical analysis of several sets of variables,”
Biometrika, vol. 58, no. 3, pp. 433–451, 1971.

[4] J. D. Carroll and J.-J. Chang, “Analysis of individual differences in
multidimensional scaling via an N -way generalization of “Eckart-
Young” decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319,
Sep. 1970.

[5] R. A. Harshman, “Foundations of the PARAFAC procedure: models
and conditions for an “explanatory” multimodal factor analysis,” UCLA

Working Papers in Phonetics, vol. 16, pp. 1–84, Dec. 1970.



PROCEEDINGS OF THE IEEE, VOL. XX, NO. YY, MONTH 2015 22

[6] L. R. Tucker, Contributions to Mathematical Psychology. New York:
Holt, Rinehardt & Winston, 1964, ch. The extension of factor analysis
to three-dimensional matrices, pp. 109–127.

[7] ——, “Some mathematical notes on three-mode factor analysis,” Psy-

chometrika, vol. 31, no. 3, pp. 279–311, Sep. 1966.

[8] I. Van Mechelen and A. K. Smilde, “A generic linked-mode decom-
position model for data fusion,” Chemom. Intell. Lab. Syst., vol. 104,
no. 1, pp. 83–94, Nov. 2010.

[9] B. Khaleghi, A. Khamis, F. O. Karray, and S. N. Razavi, “Multisensor
data fusion: A review of the state-of-the-art,” Information Fusion,
vol. 14, no. 1, pp. 28–44, Jan. 2013.

[10] S. T. Shivappa, M. M. Trivedi, and B. D. Rao, “Audiovisual information
fusion in human-computer interfaces and intelligent environments: A
survey,” Proc. IEEE, vol. 98, no. 10, pp. 1692–1715, Oct. 2010.

[11] M. Turk, “Multimodal interaction: A review,” Pattern Recognition

Letters, vol. 36, pp. 189–195, Jan. 2014.

[12] F. Bießmann, S. Plis, F. C. Meinecke, T. Eichele, and K. Müller,
“Analysis of multimodal neuroimaging data,” IEEE Rev. Biomed. Eng.,
vol. 4, pp. 26–58, 2011.

[13] T. Stathaki, Image fusion: algorithms and applications. Elsevier, 2008.

[14] H. B. Mitchell, Data fusion: concepts and ideas, 2nd ed. Springer,
2012.

[15] T. Adalı, Z. J. Wang, V. D. Calhoun, T. Eichele, M. J. McKeown,
and D. Van de Ville, Eds., Special Section on Multimodal Biomedical

Imaging: Algorithms and Applications, vol. 15, no. 5. IEEE Trans.
Multimedia, Aug. 2013.

[16] L. Sorber, M. Van Barel, and L. De Lathauwer, “Structured data
fusion,” IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 586–600,
Jun. 2015.

[17] A. R. McIntosh, F. L. Bookstein, J. V. Haxby, and C. L. Grady, “Spatial
pattern analysis of functional brain images using partial least squares,”
NeuroImage, vol. 3, no. 3, pp. 143–157, Jun. 1996.

[18] H. McGurk and J. MacDonald, “Hearing lips and seeing voices,”
Nature, vol. 264, no. 5588, pp. 746–748, Dec. 1976.

[19] D. McLaughlin, “An integrated approach to hydrologic data assim-
ilation: interpolation, smoothing, and filtering,” Adv. Water Resour.,
vol. 25, no. 8–12, pp. 1275–1286, Aug.-Dec. 2002.

[20] H. Boström, S. F. Andler, M. Brohede, R. Johansson, A. Karlsson,
J. van Laere, L. Niklasson, M. Nilsson et al., “On the definition of
information fusion as a field of research,” University of Skövde, School
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