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Abstract— Due to the need of practical application, multiple 

sensors are often used for data acquisition, so as to realize the 

multimodal description of the same object. How to effectively fuse 

multimodal data has become a challenge problem in different 

scenarios including remote sensing. Non-sparse multi-kernel 

learning has won many successful applications in multimodal data 

fusion due to the full utilization of multiple kernels. Most existing 

models assume that the non-sparse combination of multiple 

kernels is infinitely close to a strict binary label matrix during the 

training process. However, this assumption is very strict so that 

label fitting has very little freedom. To address this issue, in this 

study, we develop a novel non-sparse multi-kernel model for 

multimodal data fusion. To be specific, we introduce a label 

softening strategy to soften the binary label matrix which provides 

more freedom for label fitting. Additionally, we introduce a 

regularized term based on manifold learning to anti over fitting 

problems caused by label softening. Experimental results on one 

synthetic dataset, several UCI multimodal datasets and one 

multimodal remoting sensor dataset demonstrate the promising 

performance of the proposed model. 

Index Terms—Semantic-based multimodal fusion, multi-kernel 

learning, label softening, manifold learning, remote sensing. 

I. INTRODUCTION 

oday, with the development of advanced sensors, 

multimodal data is becoming easier to obtain. Multimodal 

data refers to the data obtained from different fields or 

views for the same object, and each field or view describing 

these data is called a modality [1-2]. For example, in the field of 

remote sensing [45], full-color images and multispectral 

images are two modalities than can both be used for earth 

observation. In general, different modalities of the same object 

tend to contain complementary information about the 

description of that object [3]. However, different modalities 

may lead to significant gaps in performance when methods and 
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algorithms are designed and developed separately. Therefore, 

how to effectively mine and fuse information extracted from 

different modalities is still a great challenging task.  

Multi-kernel learning as one of the commonly used data 

fusion methods has been successfully applied in many 

scenarios [4-5]. To mine enough patterns from training samples, 

it uses a set of predefined kernels and learns an optimal linear or 

non-linear combination of them. Typically, when multi-kernel 

learning is used for classification tasks, it aims to learn a 

transformation matrix that can transform the combination of 

kernels into a binary label matrix. Previous studies showed that 

transforming the combination of kernels into a strict binary 

label matrix often failed to learn a very discriminant 

transformation matrix [6-7]. This because such label fitting is 

very strict and has very little freedom. To address this problem, 

in this study, a label softening strategy is introduced to relax the 

binary label matrix. With this strategy, the margins between 

different classes are enlarged so that label fitting becomes freer. 

That is to say, transforming the combination of kernels into a 

soft binary label matrix can help learn a discriminant 

transformation matrix due to the larger class margins, hence 

improve classification performance. However, more freedom 

of label fitting may bring overfitting problems. To address 

overfitting, a regularized term derived from manifold learning 

is used to control the training process [8]. The basic idea is that 

samples in the same class should be kept as close as possible 

when they are transformed into the label space by multi-kernel 

techniques. Based on label softening strategy and the manifold 

regularized term, we develop a novel Non-Sparse Multi-Kernel 

Learning model with Regularized Label Softening 

(NS-RLS-MKL) for multimodal data fusion. The contributions 

can be summarized as follows. 

⚫ A label softening strategy is introduced to soften the 

binary label matrix which provides more freedom for 

label fitting.  

⚫ A regularized term based on manifold learning is 

introduced to solve over fitting problems caused by 

label softening. 

The rest is organized as follows. In Section II, we briefly 

review several multimodal data fusion methods. In Section III, 

we give detailed information about the proposed model 

including the objective function, optimization, and algorithm 

steps. In Section IV, extensive experiments are conducted to 

evaluate the performance of the proposed model and in the last 

section, we conclude the whole study.  
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II. RELATED WORK AND BACKGROUND CONCEPTS 

Multimodal data fusion methods can be roughly divided into 

three categories, stage-based fusion, feature-based fusion, and 

semantic-based fusion. In this study, we focus on 

semantic-based fusion. Therefore, in following, we will 

summarize some works related to semantic-based multimodal 

data fusion. 

A. Semantic-based multimodal fusion 

The semantic-based multimodal fusion is to understand the 

data meaning of each modal and the relationship between 

features from different modalities and use the way of human 

thinking to abstract the semantic meaning of different 

modalities to complete multi-modal data fusion. Typically, the 

existing semantic-based multimodal fusion methods can be 

divided into three categories: co-training based, multi-kernel 

learning based, and subspace learning based. 

(1) Co-training  

Co-training methods [9-11] maximize the synergistic degree 

of the multi-modal data by alternate training. Co-training is one 

of the earliest strategies to solve the problem of multi-modal 

data fusion. In co-training, three assumptions are often required: 

1) sufficiency: each modal itself has sufficient data to complete 

the corresponding analysis task; 2) compatibility: the objective 

function based on multiple modalities of symbiotic 

characteristics can predict the same class labels with a high 

probability; 3) conditional independence: given the specific 

class label, the modalities are conditionally independent. In 

practice, the restriction of conditional independence is too 

strong to satisfy, so some corresponding weak restrictions are 

proposed. Co-training is based on single-modal learning, and is 

widely used in the semi-supervised learning fields. For example, 

multi-modal data is used to iteratively learn multiple classifiers, 

and the obtained classifiers are applied to each other's unlabeled 

data classification prediction. Typical multi-modal co-training 

methods include: Co-EM models based on expectation 

maximization, support vector machine models based on 

Co-EM [12], the co-training regression model CoREG [13] and 

so on. 

Original co-training methods cannot test the reliability of 

class labels obtained from each modality, but in practice even 

very few samples of incorrect labels may greatly deteriorate the 

performance of the learned model.  

To solve this problem, some scholars have proposed a robust 

co-training strategy, in which Canonical Correlation Analysis 

(CCA) is incorporated into the co-training process to check the 

prediction results of unlabeled data [14]. Yu et al. proposed an 

improved co-training method based on Bayesian undirected 

graph model, which can query <instance, modality> pairs to 

improve the performance of learning results [15]. Zhao et al. 

integrated K-means clustering and linear discriminant analysis 

into the co-training process, and the discriminant subspace of 

another modality is found through the labeled samples from 

automatic learning of one modality [16]. 

(2) Multi-kernel learning  

Multi-kernel learning is one of the commonly used 

kernel-based machine learning strategies. It uses a set of 

predefined kernel functions to learn an optimized linear or 

nonlinear combination based on kernel function to complete the 

analysis of specific data tasks. The kernel is a hypothesis based 

on data, which may be a concept of similarity, a classifier, or a 

regressor. According to [17], there are two ways of multi-kernel 

learning: 1) different kernels correspond to different similarity 

concepts, and the learning function selects the best kernel 

calculation results or integrates the calculation results of all 

kernels. This multi-kernel learning uses all modal data to 

complete the training of each kernel, which is not suitable for 

multi-modal fusion learning; 2) different kernels are trained by 

using different modal data, so the integration of all kernel 

learning results is equivalent to the fusion of all modal 

information. Existing multi-kernel result integration algorithms 

can be divided into three categories: linear, nonlinear and 

data-dependent integration [18-20].  

The main reason why multi-kernel learning is used in 

multi-modal analysis is that different kernels naturally 

correspond to different modalities in multi-kernel learning, and 

proper integration of each kernel can improve the performance 

of learning results. For example, Poria et al. applied 

multi-kernel learning to multi-modal emotion recognition and 

semantic analysis [21], and obtained better results than single 

kernel modal fusion by using different kernels for semantic, 

video and text modal features. In [22], the authors applied 

multi-kernel learning to face recognition, and proposed a 

classification learning algorithm based on multi-kernel sparse 

representation. The algorithm performs sparse coding and 

dictionary learning in multi-core space at the same time, and 

obtains the optimal weight of the kernel through possible kernel 

combination and sparse coefficient calculation. 

(3) Subspace learning  

Multimodal data fusion algorithms based on subspace 

learning assume that all modal data can be projected into the 

same semantic shared subspace, and data mining tasks such as 

clustering and classification can be completed in the subspace. 

Usually, the feature dimension of multi-modal shared subspace 

is smaller than any one of the dimensions of modal data, so the 

dimension disaster problem of multimodal data can be solved to 

a certain extent through low dimensional learning of shared 

subspace. In the existing papers, the earliest multi-modal 

shared subspace learning algorithm uses Canonical Correlation 

Analysis (CCA) to maximize the correlation between two 

modalities, obtains the maximum correlation subspace, and 

outputs the projection matrix corresponding to each modality 

[23]. Based on this, Pereira et al [24] proposed the 

corresponding nonlinear improved algorithm, namely 

multi-modal shared subspace learning algorithm based on 

kernel CCA (KCCA). The algorithm first maps the data points 

to the high-dimensional data space through nonlinear 

transformation, and then uses linear CCA to complete the 

subspace learning. Both CCA and KCCA are unsupervised 

learning algorithms. In [25], a method of multi-modal 

discriminant analysis (FDA) is proposed to find more effective 

projection matrix by using labeled information and make the 

modal data more relevant. 

Another effective multi-modal subspace learning algorithm 

is the algorithm based on matrix decomposition [26-27]. In the 

single modal data analysis, matrix decomposition decomposes 

the original data into basis matrix and potential feature 

representation, and can use the matrix to explain the potential 

elements learned. Therefore, we can complete different data 
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learning tasks through each regularly decomposed matrix. With 

people's attention to the problem pf multimodal data fusion, 

more and more multimodal data fusion algorithms based on 

joint matrix factorization have been offered [28-29].In the 

existing matrix factorization algorithms, Nonnegative Matrix 

Factorization (NMF) uses the idea of combining parts to form a 

whole to reconstructs each data record through the linear 

combination of nonnegative basis matrix, which is in line with 

the physiological and psychological perception process of 

human brain. Now it has been widely used in the potential 

feature learning of data [30]. For example: The multi-modal 

nonnegative matrix decomposition method MultiNMF is 

proposed in [31]. It uses the combined nonnegative matrix 

decomposition learning to obtain the shared characteristics of 

multimodal data. In addition, the regularization strategy is also 

introduced in the MultiNMF algorithm to make the results of 

different modal learning comparable and ensure the consistent 

cross-modal sharing characteristics. MMNMF(Multi-Manifold 

NMF) [32], another multimodal fusion algorithm based on 

NMF, integrates the uniform manifold structure and the 

uniform correlation matrix to normalize the multi-manifold 

structure in the process of non-negative matrix decomposition, 

so as to ensure the local geometric structure of each modal 

space in the process of multimodal learning, and obtain more 

accurate modal fusion features. In addition, some scholars have 

learned the shared subspace of multimodal data based on 

Gaussian process [33-34], spectral embedding [35] and 

undirected graph model [43-44] and achieved good results. 

B. Background Concepts 

Since the proposed model NS-RLS-MKL is derived from 

kernel ridge regression, in this section, we will give some 

background concepts.  

By introducing the reproducing kernel Hilbert space, the 

original Ridge regression can be updated into its kernel version, 

that is [36], 
2 2

2
min +

F −
A

X A Y A  (1) 

where 
1 2[ ( ), ( ),..., ( )]

N dT

N
R 

    = X x x x  in which ( )
i

 x  

is the mapping of i
x  in the reproducing kernel Hilbert space. 

Like Ridge regression, the solution to kernel Ridge regression 

can be deduced as 
* 1( )T

d   −= +A X X I X Y  (2) 

We know that the dimension of the reproducing kernel Hilbert 

space is infinite. Therefore, it is usually infeasible to find the 

mapping function  . Therefore, instead of directly optimizing 

(1), an alternative method is to optimize its dual problem, that 

is, 

22

1

1
min

2 2
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i F
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
A
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where 
i

  is the training error of sample i
x . By introducing 

Lagrangian multipliers, the corresponding Lagrangian function 

of the dual problem is 

22

1
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where 
i

  is the Lagrangian multipliers. With the 

Karush-Kuhn-Tucker (KKT) and by setting 

( , , ) / 0
i i

J    =A A , ( , , ) / 0
i i i

J     =A , and 

( , , ) / 0
i i i

J     =A , we have  

/T

 =A X α  (5) 

=ξ α  (6) 

 − +X A Y ξ  (7) 

By substituting (5) and (6) into (7), we have 
* 1( )T

N   −= +α X X I Y  (8) 

Therefore, by substituting (8) into (5), we have 
* 1( )T T

N    −= +A X X X I Y  (9) 

By defining a Mercer kernel matrix K , we have 
T N N

R 
= K X X  (10) 

Therefore, for an unseen sample x , its prediction can be 

expressed as 
1

1

1

( ) ( ) ( ) ( )

( , )

... ( )

( , )

T T

N

T

N

N

f

K

K
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

−

−

= = +

 
 = + 
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x x A x X X X I Y

x x

K I Y

x x

 (11) 

where K  denotes the kernel function. By substituting (5) to (1), 

we find that the loss function in the reproducing kernel Hilbert 

space can be formulated as 
2

F
−Kα Y , where K  is a Mercer 

kernel matrix. Therefore, because of the diversity of kernels, 

we can redesign the representation of K  to achieve 

multi-kernel learning. 

III. NS-RLS-MKL 

In this section, we first define the objective function of our 

proposed model NS-RLS-MKL. Then we deduce the solution 

to the objective function and list the detailed algorithm steps.  

A. Non-Sparse Multi-Kernel Regression 

Multi-Kernel learning attempts to obtain better mapping 

performance by combining different kernel functions or 

kernel functions with different kernel parameters. There are 

many ways to combine kernel functions, among which the 

linear combination is the most used. Suppose that we have M 

different kernel functions, z
K  represents the z-th one, 

1 z Z  , then a linear combination of these kernel 

functions can be expressed as  

1

=
Z

z z

z

K 
=

 K  (12) 

where z
  is the combination coefficient. How to learn z

  

can determine the utilization of pattern information 
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contained in different kernels. For example, if l1-norm is 

imposed on the learning of 
z

 , we will have a sparse 

distribution of 
z

 , which means only most of discriminant 

kernels will be used. If lp-norm (p>1) is imposed, we will 

have s non-sparse distribution of 
z

 , which means pattern 

information contained in all kernels will be used. Typically, 

we have a basic assumption that all kernels contain 

complementary patterns. It is important to use and fuse such 

complementary information effectively. Therefore, in this 

study, we use lp-norm (p>1) to impose on the learning of 
z

  

to generate non-sparse distribution so that the 

complementary information contained in each kernel can be 

fully exploited. Thus, the multi-kernel regression with the 

lp-norm regularization can be formulated as  
2

2

1

1

min +

s.t ( ) 1, >1

Z

z z F
z F

Z
p

z

z

p

 



=

=

−







A
K A Y A

 (13) 

 

B. Regularized Label Softening 

When the non-sparse multi-kernel regression model 

shown in (12) is applied for multi-class classification tasks, 

Y  must be a strict binary label matrix. Previous studies 

showed that excessively fitting a strict binary label matrix 

cannot learn a discriminant model. To solve this problem, 

similar to [37], we introduce two matrices D  and M  to soften 

the label matrix Y  so as to enlarge the margins between 

classes. The softening process is formulated as 

= +Y Y D M  (14) 

where  denotes the Hadamard operator, D  and M  are 

defined as follows,  

1   if  1

1  if  0 

ij

ij

ij

y
d

y
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 (15) 
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C
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m
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i N j C m
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 
 
  

= = 

M
 (16) 

After label softening, the original multi-kernel regression 

model in (12) can be updated as 
2

2

1

1

min ( + ) +

s.t ( ) 1, >1

Z

z z F
z F

Z
p

z

z

p

 
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=

=

−







A
K A Y D M A

 (17) 

Although label softening can enlarge the class margins 

and hence improve classification performance, the 

overfitting will occur owning to the freedom of fitting. 

Therefore, overfitting should also be suppressed in the 

pursuit of more discriminative models. To this end, based on 

manifold learning, we use a regularized term to control data 

fitting. This regularized term is designed permitted on an 

assumption that samples in the same class should be kept as 

close as possible when they are transformed into the label 

space. To specify this regularized term, we first construct an 

undirected graph to capture the relationships between 

samples, which is defined as 
2

 

   ,  are in the same class 

0                                         otherwise

i j

i jij
eg 

−
−


= 


x x

x x  (18) 

where   is the kernel width. From the above equation, we 

see that if two samples are in the same class, the closer the 

distance, the bigger the weight. If they are in different 

classes, the weight is 0. Therefore, when samples are 

transformed into label space, we can use the following 

objective to insure our assumption,  
2

min ( ) ( )
i j ijFf

ij

f f g− x x  (19) 

where ( )
i

f x  is the decision function in the multi-kernel 

feature space that can be expressed as ( )
1

,
Z

z z i

z


=

 K x x A . 

Thus, the manifold regularized term can be changed into 
2

1 1

min ( ) ( ) =

min tr( )

i j ijF
ij

Z Z
T

z z z z

z z

f f g

 
= =

−

 

A

A

x x

A K L K A

 (20) 

where L  is the Laplace matrix that can be computed by 

= −L T G , Z  is a diagonal matrix in which each element 

can be computed by ii ij

j

t g=  . By substituting (20) into 

(17), we have our final non-sparse multi-kernel regression 

model,  
2

2

2
1

1 1

1

min ( + ) +

            + tr

s.t ( ) 1, >1

Z
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C. Optimization 

Regarding our final objective, there are three model 

parameters, i.e., m
 , A  and M  should be optimized. The 

following three theorems are proposed for handling such 

optimization problem. 

Theorem 1: When z
  and M  are fixed, the objective 

function converges to its minimum if only if 
1=( ) ( + )T T T

N
  −+ +A K K K LK I K Y D M , where 

1

=
Z

z z

z


=

 K K  
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Proof: When 
z

  and M  are fixed, suppose that 

1

=
Z

z z

z


=

 K K , then the optimization problem becomes 

( )

2

2

( ) min ( + )

                   + + tr

F

T
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J
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A KA Y D M

A A KLKA
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By setting the derivative partial of ( )J A  w.r.t A  to 0, that is,  

1
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So, the proof of Theorem 1 is achieved. 

Theorem 2: When 
z

  and A  are fixed, the objective 

function converges to its minimum if only if 

=max( ,0)M D E , where 
1

Z

z z

z


=

 = − 
 
E K A Y . 

Proof: When 
z

  and A  are fixed, suppose that 

1

=
Z

z z

z


=

  − 
 
 K A Y E , then the optimization problem 

becomes 
2

2
( ) min

s.t 0
ij

J

m

= −


M

M E D M
 (24) 

 

We have the fact that the squared l2-norm of matrix can be 

decoupled element by element. Therefore, the optimization 

problem in (23) can be decomposed into N C  

subproblems. Regarding element ij
m  of M , the 

corresponding subproblem can be expressed as 
2

2
( ) min

s.t 0

ij ij ij ij

ij

J m e d m

m

= −


M  (25) 

where ij
e  and ij

d  denote the i-th row and j-th column element 

in matrices E  and M . Owning to 
2( ) 1

ij
d = , so 

2 2( ) ( )
ij ij ij ij ij ij

e d m d m e− = −  holds. Additionally, due to 

0
ij

m  , we have = max( ,0)
ij ij ij

m d e . Therefore, regarding 

M , we have its finally solution as follows, 

=max( ,0)M D Ε  (26) 

Theorem 3: When M  and A  are fixed, the objective 

function converges to its minimum if only if 
22 -1

1 1

'

' 1

=( ) ( ( ) )

pZ
T Tp p p

z z z

z

 + +

=
A K A A K A . 

Proof: According to [38], when M  and A  are fixed, the 

final optimization problem of z  becomes 

1 1

1
( ) min ( )

2 2z

Z Z
T pz

z z

z zz

J


 
= =

= + K
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By setting the partial derivative of ( )
z

J   w.r.t 
z

  to 0, we 

have 
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Therefore, we have the following optimality condition, 
2

1 1,2,..., :  ( )T p

z z
z M   +  = = A K A  (29) 

Because 0T

z A K A , according the same argument as in the 

proof of Theorem 1 in [38], the constraint 
1

( ) 1
Z

p

z

z


=

  in (21) 

is at the upper bound, that is to say, 
1

( ) 1
Z

p

z

z


=

=  holds for an 

optimal  . So, 

2 -1

1

'

' 1

( ( ) )

pZ
T p p

z

z

 +

=

=  A K A . Therefore, the proof 

of Theorem 3 is achieved. 

 

D. Algorithm 

The detailed algorithm steps of the proposed model are listed 

in Algorithm1. 

Algorithm 1: NS-RLS-MKL 

Input: Training data 
1{ , }N

i i iy =x , regularized parameters   and 

  

Output: z , A , and M  

Procedure: 
1Transform the label vector 

1 2[ , ,..., ]T

Ny y y  to a binary label 

matrix. 
2Construct the Laplace matrix L  according to the training data. 
3Initialize 

0M（ ） and 
(0)

z . 

4 0t  . 

Repeat 
5 1t t +  

6Using 
1=( ) ( + )T T T

N
  −+ +A K K K LK I K Y D M  to 

update 
( )tA . 

7Using =max( ,0)M D Ε  to update 
( )tM . 

8Using 

22 -1

1 1

'

' 1

=( ) ( ( ) )

pZ
T Tp p p

z z z

z

 + +

=
A K A A K A  to update 

( )t

z  

Until (
2

( ) ( 1)t t

F
−− A A ) 

From Algorithm 1, we find that the time complexity of 

NS-RLS-MKL mainly consists of updating A , updating M  

and updating z . Due to the matrix inversion, the asymptotic 

time complexity of updating A  is 
3( )O N . The asymptotic 

time complexity of updating M  is ( )O N . The asymptotic 

time complexity of updating z  is 
2( )O N . Hence, the final 

asymptotic time complexity of NS-RLS-MKL can be 

approximated to 
3( )O N .  
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IV. EXPERIMENTAL STUDIES 

In this section, a synthetic multimodal dataset and several 

UCI multimodal datasets are introduced for performance 

evaluation. Additionally, to highlight the proposed model, 

several benchmarking models are introduced for comparison.  

A. Datasets 

We generate a 3-modal dataset containing 600 samples 

which is shown in Fig.1. Each modality is derived from Fig.1(a) 

by projecting onto different coordinate planes. This synthetic 

dataset simulates different modalities of data collected by 

different sensors on the same object. 

  
                       (a)                                                     (b) 

  
                              (c)                                                     (d)       

Fig.1 Three-modal synthetic dataset. (a) Orginal data. (b) The first modality 

(Mod-XY). (c) The second modality (Mod-YZ). (d) The three modality 

(Mod-XZ). 

Additionally, 3 UCI multimodal datasets, MF (Multiple 

Features), IS (Image Segmentation) and WTP (Water 

Treatment Plant) are introduced for performance evaluation. 

Table 1 lists the detailed information of these datasets. 
Table I. Introduction of multimodal datasets 

Datasets Modalities 
Description of each 

modality  
#Features Size 

MF 

Mfeat-fou 

Mfeat-fou contains 76 

Fourier coefficients of the 

character shapes 

76 

2000 

Mfeat-fac 
Mfeat-fac contains 216 

profile correlations 
216 

Mfeat-kar 

Mfeat-kar contains 64 

Karhunen-Love 

coefficients 

64 

Mfeat-pix 

Mfeat-pix contains 240 

pixel averages in 2 x 3 

windows 

240 

Mfeat-zer 
Mfeat-zer contains 47 

Zernike moments 
47 

Mfeat-mor 
Mfeat-mor contains 6 

morphological variables 
6 

IS 

Shape 

Shape contains 9 features 

about the shape information 

of the 7 images 

9 

2310 

RGB 

RGB contains 10 features 

about the RGB values of 

the 7 images 

10 

WTP 

Input 

Input contains the first 22 
features describing 

different input conditions 

22 

527 
Output 

Output contains the 

23th-29th features 

describing output demands 

7 

Performance 

input 

Performance input contains 

the 30th-34th features 
5 

describing  

performance input 

demands 

Global 

performance 

input 

Global performance input 

contains the 35th-38th 

features describing  

global performance input 

demands 

4 

B. Settings 

To highlight the classification performance of the proposed 

model, we introduce Ridge as the baseline and MV-L2-SVM 

and MV-TSK-FS as benchmarking models. 

Ridge: It is taken as the baseline. We perform it on each 

modality and record the corresponding classification accuracy. 

The overall accuracy on all modalities is computed by linearly 

combining the accuracy on each modality. The combination 

coefficient can be used as the reciprocal of the training error. 

The regularized parameter in Ridge is determined by 10 

cross-validation (10-CV) from [0.01, 0.02, …, 10]. 

MV-L2-SVM: It uses L2-SVM as the basic component and 

view (modality)-consistence as the multimodal learning 

strategy. There are two parameters should be set in advance. 

The kernel width is determined by 10-CV from [s/256, 

s/128, …, 256s], where s is the mean norm of the training data. 

The penalty parameter is determined by 10-CV from [100, 

101, …, 107].  

MV-TSK-FS: It uses the 1-order TSK fuzzy system as the 

basic component and utilizes view (modality)-consistence and 

view-weighting as two multimodal learning strategies. There 

are four parameters should be set in advance. The number of 

fuzzy rules is determined by 10-CV from [5, 10, …, 30]. The 

three regularized parameters are determined by 10-CV from 

[10-3, 10-2, …, 103].  

Regarding the proposed model, we adopt the same kernel 

combination strategy “all-single” used in [1] to combine 

modalities and kernels, as shown in Fig.2. There are three 

parameters should be set in advance. The regularized parameter 

  is determined by 10-CV from [0.01, 0.02, …, 10]. The 

regularized parameter   is determined by 10-CV from [10-3, 

10-2, …, 103]. 

A S S S... S S S...

Kernel 1 Kernel 2 Kernel m...

.........
...

Modality 1 Modality K

A: All features of one modality.

S: Single feature in each modality.

KM: Kernel matrix.

CKM: Combined kernel matrix.

KMKM KM KM KM KM KM KM KM

CKM

A

 
Fig.2 “All-single” kernel and modality combination strategy. 

For all models, we use Accuracy and F1-measure to 

quantificationally evaluate their performance. Accuracy is 

defined as the ratio of the number of corrected classified 

samples to the total number of samples. F1-measure is defined 

as 2×P×R/(P+R), where P=TP/(TP+FP), R=TP/(TP+FN). TP 

represents true positives, FP represents false positives, and FN 

represents false negatives. 
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C. Experimental results 

Table II and Table III show the classification performance in 

terms of Accuracy and F1-measure, respectively. “+” means 
that the performance improvement of NS-RLS-MKL is 

significant at 5% level when comparing with the corresponding 

model. The best performance is marked in bold. Results in the 

parentheses are the standard deviation. It observes that our 

proposed model NS-RLS-MKL wins the best performance both 

in single modality and multiple modalities. In particular, in the 

multimodal case, the Accuracy reaches 1, which is better than 

that of the view weighting strategy used in MV-L2-SVM and 

MV-TSK-FS.  
Table II. Classification performance in terms of Accuracy and corresponding 

standard deviation on synthetic dataset 

Modalities Ridge MV-L2-SVM MV-TSK-FS NS-RLS-MKL 

Mod-XY 0.9756 

(0.0168) 

0.9672(+) 

(0.0221) 

0.9761 

(0.0162) 

0.9983 

(0.0027) 

Mod-YZ 0.6906(+) 

(0.0251) 

0.7089(+) 

(0.0314) 

0.6828(+) 

(0.0384) 

0.8383 

(0.0284) 

Mod-XZ 0.9061(+) 

(0.0169) 

0.8967(+) 

(0.0270) 

0.6794(+) 

(0.0250) 

0.9744 

(0.0146) 

Full 0.9739 

(0.0114) 

0.9406(+) 

(0.0399) 

0.9644(+) 

(0.0200) 

1.0000 

(0) 

 

Table III. Classification performance in terms of F1-measure and 

corresponding standard deviation on synthetic dataset 

Modalities Ridge MV-L2-SVM MV-TSK-FS NS-RLS-MKL 

Mod-XY 0.9640(+) 

(0.0252) 

0.9541(+) 

(0.0311) 

0.9671(+) 

(0.0204) 

0.9977 

(0.0037) 

Mod-YZ 0.6314(+) 

(0.0288) 

0.6623(+) 

(0.0291) 

0.6327(+) 

(0.0457) 

0.7727 

(0.0395) 

Mod-XZ 0.8730(+) 

(0.0235) 

0.8633(+) 

(0.0275) 

0.6238(+) 

(0.0277) 

0.9498 

(0.0160) 

Full 0.9623(+) 

(0.0170) 

0.9161(+) 

(0.0531) 

 

0.9474(+) 

(0.0292) 

1.0000 

(0) 

The advantages of classification performance can also be 

observed from the results on real-life datasets, as shown in 

Table IV and Table V. To be specific, on dataset MF, except the 

modality Mfeat-fac, our proposed model NS-RLS-MKL wins 

the best on all single modality and multiple modalities. On data 

set IS, our proposed model NS-RLS-MKL wins the best on all 

single modality and multiple modalities. Especially, the 

classification performance is improved by 10% compared with 

the baseline. On dataset WTP, except the modality Output and 

modality Global performance input, our proposed model 

NS-RLS-MKL wins the best on all single modality and 

multiple modalities. We also have the similar conclusion when 

F1-measure is adopted as the criterion.  

Unlike MV-L2-SVM and MV-TSK-FS which both adopt 

weighting learning as their fusion strategy, the proposed model 

combines all modality features and use different kernels to 

mine the complementary pattern information. Moreover, 

non-sparse coefficient can help maintain more enough patterns 

involved in different modalities. Additionally, in our 

multi-classification task, we use label softening strategy to 

enlarge the margins between classes to guarantee promising 

performance and manifold-based regularization to anti 

overfitting problem. That is why our model performs much 

better than Ridge, MV-L2-SVM and MV-TSK-FS. 

 
Table IV. Classification performance in terms of Accuracy and corresponding standard deviation on UCI datasets 

Datasets Modalities Ridge MV-L2-SVM MV-TSK-FS NS-RLS-MKL 

MF 

Mfeat-fac 
0.7958 

(0.0138) 

0.8002 

(0.0111) 

0.7986 

(0.0057) 

0.7855 

(0.0176) 

Mfeat-fou 
0.7590 

(0.0095) 

0.7585 

(0.0142) 

0.7552 

(0.0162) 

0.7655 

(0.0128) 

Mfeat-kar 
0.7798(+) 

(0.0236) 

0.7728(+) 

(0.0156) 

0.7707(+) 

(0.0160) 

0.8368 

(0.0200) 

Mfeat-mor 
0.5812(+) 

(0.0253) 

0.5507(+) 

(0.0188) 

0.5713(+) 

(0.0073) 

0.6748 

(0.0191) 

Mfeat-pix 
0.8107(+) 

(0.0163) 

0.8028(+) 

(0.0217) 

0.8110(+) 

(0.0189) 

0.8425 

(0.0164) 

Mfeat-zer 
0.2488 

(0.0173) 

0.2325 

(0.0131) 

0.2412 

(0.0141) 

0.2673 

(0.0132) 

Full 
0.9210(+) 

(0.0081) 

0.9252(+) 

(0.0060) 

0.9255(+) 

(0.0143) 

0.9512 

(0.0098) 

IS 

Shape 
0.3915(+) 

(0.0235) 

0.3879(+) 

(0.0090) 

0.3973(+) 

(0.0125) 

0.6437 

(0.0166) 

RGB 
0.6730(+) 

(0.0142) 

0.6771(+) 

(0.0161) 

0.6740(+) 

(0.0120) 

0.8162 

(0.0168) 

Full 
0.8232(+) 

(0.0235) 

0.8215(+) 

(0.0170) 

0.8176(+) 

(0.0151) 

0.9341 

(0.0133) 

WTP 

Input 
0.5215 

(0.0505) 

0.5025 

(0.0604) 

0.5329 

(0.0276) 

0.5601 

(0.0442) 

Output 
0.4468(+) 

(0.0408) 

0.4196 

(0.0401) 

0.4449 

(0.0242) 

0.4025 

(0.0260) 

Performance input 
0.4671 

(0.0378) 

0.4620 

(0.0500) 

0.4665 

(0.0347) 

0.4753 

(0.0443) 

Global performance input 
0.3867 

(0.0216) 

0.3753 

(0.0358) 

0.3861 

(0.0209) 

0.3747 

(0.0268) 

Full 
0.5184 

(0.0429) 

0.5253 

(0.0504) 

0.5348 

(0.0342) 

0.5494 

(0.0452) 

 
Table V. Classification performance in terms of F1-measure and corresponding standard deviation on UCI datasets 

 Modalities Ridge MV-L2-SVM MV-TSK-FS  
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MF 

Mfeat-fac 
0.4363 

(0.0355) 

0.4423 

(0.0255) 

0.4158(+) 

(0.0221) 

0.4489 

(0.0453) 

Mfeat-fou 
0.4605 

(0.0401) 

0.4444 

(0.0217) 

0.4294(+) 

(0.0277) 

0.4682 

(0.0427) 

Mfeat-kar 
0.4471(+) 

(0.0356) 

0.4434(+) 

(0.0194) 

0.4342(+) 

(0.0265) 

0.5272 

(0.0370) 

Mfeat-mor 
0.3213(+) 

(0.0313) 

0.3002(+) 

(0.0208) 

0.3144(+) 

(0.0217) 

0.3783 

(0.0265) 

Mfeat-pix 
0.4550(+) 

(0.0384) 

0.4438(+) 

(0.0490) 

0.4568(+) 

(0.0481) 

0.5005 

(0.0514) 

Mfeat-zer 
0.0258(+) 

(0.0010) 

0.0194(+) 

(0.0002) 

0.0223(+) 

(0.0007) 

0.0841 

(0.0087) 

Full 
0.7216(+) 

(0.0257) 

0.7182(+) 

(0.0261) 

0.7331(+) 

(0.0425) 

0.8089 

(0.0231) 

IS 

Shape 
0.1025(+) 

(0.0123) 

0.1315(+) 

(0.0087) 

0.1736(+) 

(0.0056) 

0.2536 

(0.0188) 

RGB 
0.4667(+) 

(0.0236) 

0.4608(+) 

(0.0211) 

0.4655(+) 

(0.0218) 

0.6097 

(0.0314) 

Full 
0.6127(+) 

(0.0446) 

0.6052(+) 

(0.0396) 

0.6022(+) 

(0.0202) 

0.8101 

(0.0392) 

WTP 

Input 
0.5386(+) 

(0.0546) 

0.5383(+) 

(0.0461) 

0.5406(+) 

(0.0366) 

0.5858 

(0.0391) 

Output 
0.5429 

(0.0316) 

0.5015 

(0.0458) 

0.5348 

(0.0237) 

0.5500 

(0.0199) 

Performance input 
0.5284 

(0.0262) 

0.5258 

(0.0396) 

0.5396 

(0.0260) 

0.5385 

(0.0364) 

Global performance 

input 

0.5417 

(0.0272) 

0.5229 

(0.0392) 

0.5355 

(0.0235) 

0.5396 

(0.0282) 

Full 
0.5357(+) 

(0.0384) 

0.5251(+) 

(0.0403) 

0.5303(+) 

(0.0321) 

0.5838 

(0.0377) 

 

D. A case study 

To evaluate the application ability of the proposed model 

NS-RLS-MKL in remoting sensor data fusion, we select two 

types of remoting sensor data. One is high resolution dataset 

NWPUVHR (Northwestern Poly-Technique University and 

Very-high-resolution Remote Sensing Images) [39] and 

another is low resolution dataset UCMLU (University of 

California Merced Land Use) [40], as shown in Fig.3.  

Modality-1: high resolution 

 
Tennis court 

 
Warehouse 

 
Golf field 

 
Baseball field 

Modality-2: low resolution 

 
Tennis court 

 
Warehouse 

 
Golf field 

 
Baseball field 

Fig.3 Samples of multimodal dataset 

We select 1000 samples including four classes from each 

modality in our case study. We use our previous deep feature 

extractor [41] to extract 1024 deep features from each remoting 

sensor image. Then we use the embedded-based feature 

selection method [42] to select 15 features from the 1024 deep 

features from each modality for NS-RLS-MKL. Table VI and 

Table VII list the final classification performance in terms of 

Accuracy and F1-measure. 

From the results, it observes that NS-RLS-MKL always 

performs the best among the comparison models and baseline. 

From Fig.3, we see that the high-resolution remoting sensor 

images provide very detailed information (local information) 

while the low-resolution remoting sensor images provide rough 

information (global information). In our proposed model, we 

combine them and use different kernels associating with 

non-spare kernel coefficient to mine the complementary pattern 

information from local information and global information. 

However, unlike our proposed model, the comparison ones 

only determine which modality is more important and assign a 

bigger weight to the important one. Such combination strategy 

does not fully utilize the deep correlation across different 

modalities.  
Table VI. Classification performance in terms of Accuracy and corresponding 

standard deviation on remoting sensor data 

Modalities Ridge MV-L2-SVM MV-TSK-FS NS-RLS-MKL 

High 

resolution 

0.9024 

(0.0036) 

0.8965(+) 

(0.024) 

0.9024 

(0.0063) 

0.9123 

(0.0018) 

Low 

resolution 

0.7784 

(0.0078) 

0.7432(+) 

(0.0024) 

0.7641 

(0.0021) 

0.7896 

(0.0101) 

Full 0.9139(+) 

(0.0014) 

0.9009(+) 

(0.0099) 

0.9130(+) 

(0.0110) 

0.9325 

(0.0074) 

 
Table VII. Classification performance in terms of F1-measure and 

corresponding standard deviation on remoting sensor data 

Modalities Ridge MV-L2-SVM MV-TSK-FS NS-RLS-MKL 

High 

resolution 

0.8748(+) 

(0.0280) 

0.8852(+) 

(0.0181) 

0.8957 

(0.0029) 

0.9028 

(0.0069) 

Low 

resolution 

0.7401 

(0.0098) 

0.7369(+) 

(0.0078) 

0.7489 

(0.0038) 

0.7698 

(0.0058) 

Full 0.9157 

(0.0140) 

0.9087(+) 

(0.0057) 

 

0.9068(+) 

(0.0036) 

0.9258 

(0.0074) 

 

V. CONCLUSIONS 

How to effectively fuse different modal data and mine the 

hidden value of data through the complementary information 

between modalities is the main concern of big data research at 
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the present stage. In this study, we proposed a novel 

multi-kernel model for multimodal data fusion based 

non-sparse multi-kernel learning. In classification scenarios, 

we introduce a positive matrix to soften the binary label matrix 

so that the margins between classes are enlarged as much as 

possible. Therefore, the label fitting becomes freer. Even the 

free label fitting may cause overfitting, by using the 

manifold-based regularization, this problem is solved to the 

maximum extent possible. Additionally, our proposed model is 

derived from non-sparse multi-kernel learning, which is better 

suited for multimodal data fusion than sparse based. We 

generate a synthetic multimodal dataset and introduce several 

real-life multimodal datasets to demonstrate the advantages of 

the proposed model. The comparison results with baseline and 

other multimodal models show that our model performs better.  

However, our model also faces a challenge that when the 

dimension of the input feature space is very high, it will 

consume a lot of memory spaces to store the kernels. In our 

future work, we will develop more effective optimization 

method to solve this problem. 
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