
Multimodal Deep Learning for Robust RGB-D Object Recognition

Andreas Eitel Jost Tobias Springenberg Luciano Spinello Martin Riedmiller Wolfram Burgard

Abstract— Robust object recognition is a crucial ingredient
of many, if not all, real-world robotics applications. This paper
leverages recent progress on Convolutional Neural Networks
(CNNs) and proposes a novel RGB-D architecture for object
recognition. Our architecture is composed of two separate
CNN processing streams – one for each modality – which are
consecutively combined with a late fusion network. We focus
on learning with imperfect sensor data, a typical problem in
real-world robotics tasks. For accurate learning, we introduce
a multi-stage training methodology and two crucial ingredients
for handling depth data with CNNs. The first, an effective
encoding of depth information for CNNs that enables learning
without the need for large depth datasets. The second, a data
augmentation scheme for robust learning with depth images by
corrupting them with realistic noise patterns. We present state-
of-the-art results on the RGB-D object dataset [15] and show
recognition in challenging RGB-D real-world noisy settings.

I. INTRODUCTION

RGB-D object recognition is a challenging task that is at

the core of many applications in robotics, indoor and outdoor.

Nowadays, RGB-D sensors are ubiquitous in many robotic

systems. They are inexpensive, widely supported by open

source software, do not require complicated hardware and

provide unique sensing capabilities. Compared to RGB data,

which provides information about appearance and texture,

depth data contains additional information about object shape

and it is invariant to lighting or color variations.

In this paper, we propose a new method for object

recognition from RGB-D data. In particular, we focus on

making recognition robust to imperfect sensor data. A sce-

nario typical for many robotics tasks. Our approach builds

on recent advances from the machine learning and computer

vision community. Specifically, we extend classical convolu-

tional neural network networks (CNNs), which have recently

been shown to be remarkably successful for recognition

on RGB images [13], to the domain of RGB-D data. Our

architecture, which is depicted in Fig. 1, consists of two

convolutional network streams operating on color and depth

information respectively. The network automatically learns

to combine these two processing streams in a late fusion

approach. This architecture bears similarity to other recent

multi-stream approaches [21], [23], [11]. Training of the

individual stream networks as well as the combined archi-

tecture follows a stage-wise approach. We start by separately

training the networks for each modality, followed by a third

training stage in which the two streams are jointly fine-

tuned, together with a fusion network that performs the final
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Fig. 1: Two-stream convolutional neural network for RGB-

D object recognition. The input of the network is an RGB

and depth image pair of size 227 × 227 × 3. Each stream

(blue, green) consists of five convolutional layers and two

fully connected layers. Both streams converge in one fully

connected layer and a softmax classifier (gray).

classification. We initialize both the RGB and depth stream

network with weights from a network pre-trained on the

ImageNet dataset [19]. While initializing an RGB network

from a pre-trained ImageNet network is straight-forward,

using such a network for processing depth data is not. Ideally,

one would want to directly train a network for recognition

from depth data without pre-training on a different modality

which, however, is infeasible due to lack of large scale

labeled depth datasets. Due to this lack of labeled training

data, a pre-training phase for the depth-modality – leveraging

RGB data – becomes of key importance. We therefore

propose a depth data encoding to enable re-use of CNNs

trained on ImageNet for recognition from depth data. The

intuition – proved experimentally – is to simply encode

a depth image as a rendered RGB image, spreading the

information contained in the depth data over all three RGB

channels and then using a standard (pre-trained) CNN for

recongition.

In real-world environments, objects are often subject to

occlusions and sensor noise. In this paper, we propose a data

augmentation technique for depth data that can be used for

robust training. We augment the available training examples

by corrupting the depth data with missing data patterns

sampled from real-world environments. Using these two

techniques, our system can both learn robust depth features

and implicitly weight the importance of the two modalities.



We tested our method to support our claims: first, we

report on RGB-D recognition accuracy, then on robustness

with respect to real-world noise. For the first, we show that

our work outperforms the current state of the art on the

RGB-D Object dataset of Lai et al. [15]. For the second, we

show that our data augmentation approach improves object

recognition accuracy in a challenging real-world and noisy

environment using the RGB-D Scenes dataset [16].

II. RELATED WORK

Our approach is related to a large body of work on both

convolutional neural networks (CNNs) for object recognition

as well as applications of computer vision techniques to

the problem of recognition from RGB-D data. Although a

comprehensive review of the literature on CNNs and object

recognition is out of the scope of this paper, we will briefly

highlight connections and differences between our approach

and existing work with a focus on recent literature.

Among the many successful algorithms for RGB-D object

recognition a large portion still relies on hand designed

features such as SIFT in combination with multiple shape

features on the depth channel [15], [14]. However, following

their success in many computer vision problems, unsuper-

vised feature learning methods have recently been extended

to RGB-D recognition settings. Blum et al. [3] proposed an

RGB-D descriptor that relies on a K-Means based feature

learning approach. More recently Bo et al. [5] proposed

hierarchical matching pursuit (HMP), a hierarchical sparse-

coding method that can learn features from multiple channel

input. A different approach pursued by Socher et al. [22] re-

lies on combining convolutional filters with a recursive neural

network (a specialized form of recurrent neural network) as

the recognition architecture. Asif et al. [1] report improved

recognition performance using a cascade of Random Forest

classifiers that are fused in a hierarchical manner. Finally,

in recent independent work Schwarz et al. [20] proposed to

use features extracted from CNNs pre-trained on ImageNet

for RGB-D object recognition. While they also make use

of a two-stream network they do not fine-tune the CNN

for RGB-D recognition, but rather just use the pre-trained

network as is. Interestingly, they also discovered that simple

colorization methods for depth are competitive to more

involved preprocessing techniques. In contrast to their work,

ours achieves higher accuracy by training our fusion CNN

end-to-end: mapping from raw pixels to object classes in a

supervised manner (with pre-training on a related recognition

task). The features learned in our CNN are therefore by

construction discriminative for the task at hand. Using CNNs

trained for object recognition has a long history in computer

vision and machine learning. While they have been known

to yield good results on supervised image classification tasks

such as MNIST for a long time [17], recently they were

not only shown to outperform classical methods in large

scale image classification tasks [13], object detection [9]

and semantic segmentation [8] but also to produce features

that transfer between tasks [7], [2]. This recent success story

has been made possible through optimized implementations

for high-performance computing systems, as well as the

availability of large amounts of labeled image data through,

e.g., the ImageNet dataset [19].

While the majority of work in deep learning has focused

on 2D images, recent research has also been directed towards

using depth information for improving scene labeling and

object detection [6], [10]. Among them, the work most

similar to ours is the one on object detection by Gupta

et al. [10] who introduces a generalized method of the

R-CNN detector [9] that can be applied to depth data.

Specifically, they use large CNNs already trained on RGB

images to also extract features from depth data, encoding

depth information into three channels (HHA encoding).

Specifically, they encode for each pixel the height above

ground, the horizontal disparity and the pixelwise angle

between a surface normal and the gravity direction. Our

fusion network architecture shares similarities with their

work in the usage of pre-trained networks on RGB images.

Our method differs in both the encoding of depth into color

image data and in the fusion approach taken to combine

information from both modalities. For the encoding step, we

propose an encoding method for depth images (’colorizing’

depth) that does not rely on complicated preprocessing and

results in improved performance when compared to the

HHA encoding. To accomplish sensor fusion we introduce

additional layers to our CNN pipeline (see Fig. 1) allowing us

to automatically learn a fusion strategy for the recognition

task – in contrast to simply training a linear classifier on

top of features extracted from both modalities. Multi-stream

architectures have also been used for tasks such as action

recognition [21], detection [11] and image retrieval [23]. An

interesting recent overview of different network architectures

for fusing depth and image information is given in Saxena

et al. [18]. There, the authors compared different models

for multimodal learning: (1) early fusion, in which the input

image is concatenated to the existing image RGB channels

and processed alongside; (2) an approach we denote as

late fusion, where features are trained separately for each

modality and then merged at higher layers; (3) combining

early and late fusion; concluding that late fusion (2) and the

combined approach perform best for the problem of grasp

detection. Compared to their work, our model is similar to the

late fusion approach but widely differs in training – Saxena

et al. [18] use a layer-wise unsupervised training approach –

and scale (the size of both their networks and input images

is an order of magnitude smaller than in our settings).

III. MULTIMODAL ARCHITECTURE FOR RGB-D OBJECT

RECOGNITION

An overview of the architecture is given in Fig. 1. Our

network consists of two streams (top-blue and bottom-green

part in the figure) – processing RGB and depth data inde-

pendently – which are combined in a late fusion approach.

Each stream consists of a deep CNN that has been pre-

trained for object classification on the ImageNet database

(we use the CaffeNet [12] implementation of the CNN from

Krizhevsky et al. [13]). The key reason behind starting from



Fig. 2: Different approaches for color encoding of depth images. From left to right: RGB, depth-gray, surface normals [5],

HHA [10], our method.
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Fig. 3: CNNs require a fixed size input. Instead of the widely

used image warping approach (middle), our method (bottom)

preserves shape information and ratio of the objects. We

rescale the longer side and create additional image context,

by tiling the pixels at the border of the longer side, e.g., 1.

We assume that the depth image is already transformed to

three channels using our colorization method.

a pre-trained network is to enable training a large CNN

with millions of parameters using the limited training data

available from the Washington RGB-D Object dataset (see,

e.g., Yosinski et al. [25] for a recent discussion). We first

pre-process data from both modalities to fully leverage the

ImageNet pre-training. Then, we train our multimodal CNN

in a stage-wise manner. We fine-tune the parameters of each

individual stream network for classification of the target data

and proceed with the final training stage in which we jointly

train the parameters of the fusion network. The different steps

will be outlined in the following sections.

A. Input preprocessing

To fully leverage the power of CNNs pre-trained on

ImageNet, we pre-process the RGB and depth input data

such that it is compatible with the kind of original ImageNet

input. Specifically, we use the reference implementation

of the CaffeNet [12] that expects 227 × 227 pixel RGB

images as input which are typically randomly cropped from

larger 256 × 256 RGB images (see implementation details

on data augmentation). The first processing step consists

of scaling the images to the appropriate image size. The

simplest approach to achieve this is to use image warping by

directly rescaling the original image to the required image

dimensions, disregarding the original object ratio. This is

depicted in Fig. 3 (middle). We found in our experiments that

this process is detrimental to object recognition performance

– an effect that we attribute to a loss of shape information

(see also Section IV-C). We therefore devise a different

preprocessing approach: we scale the longest side of the

original image to 256 pixels, resulting in a 256 × N or an N

× 256 sized image. We then tile the borders of the longest

side along the axis of the shorter side. The resulting RGB

or depth image shows an artificial context around the object

borders (see Fig. 3). The same scaling operation is applied

to both RGB and depth images.

While the RGB images can be directly used as inputs

for the CNNs after this processing step, the rescaled depth

data requires additional steps. To realize this, recall that a

network trained on ImageNet has been trained to recognize

objects in images that follow a specific input distribution

(that of natural camera images) that is incompatible with

data coming from a depth sensor – which essentially encodes

distance of objects from the sensor. Nonetheless, by looking

at a typical depth image from a household object scene (c.f.,

Fig. 4) one can conclude that many features that qualitatively

appear in RGB images – such as edges, corners, shaded

regions – are also visible in, e.g., a grayscale rendering of

depth data. This realization has previously led to the idea of

simply using a rendered version of the recorded depth data

as an input for CNNs trained on ImageNet [10]. We compare

different such encoding strategies for rendering depth to

images in our experiments. The two most prevalent such

encodings are (1) rendering of depth data into grayscale and

replicating the grayscale values to the three channels required

as network input; (2) using surface normals where each

dimension of a normal vector corresponds to one channel in

the resulting image. A more involved method, called HHA

encoding [10], encodes in the three channels the height above

ground, horizontal disparity and the pixelwise angle between

a surface normal and the gravity direction.

We propose a fourth, effective and computationally inex-

pensive, encoding of depth to color images, which we found

to outperform the HHA encoding for object recognition. Our

method first normalizes all depth values to lie between 0

and 255. Then, we apply a jet colormap on the given image

that transforms the input from a single to a three channel

image (colorizing the depth). For each pixel (i, j) in the

depth image d of size W ×H , we map the distance to color

values ranging from red (near) over green to blue (far), essen-



tially distributing the depth information over all three RGB

channels. Edges in these three channels often correspond to

interesting object boundaries. Since the network is designed

for RGB images, the colorization procedure provides enough

common structure between a depth and an RGB image

to learn suitable feature representations (see Fig. 2 for a

comparison between different depth preprocessing methods).

B. Network training

Let D = {(x1,d1,y1), . . . , (xN ,dN ,yN )} be the labeled

data available for training our multimodal CNN; with xi,di

denoting the RGB and pre-processed depth image respec-

tively and yi corresponding to the image label in one-hot

encoding – i.e., yi ∈ R
M is a vector of dimensionality M (the

number of labels) with yik = 1 for the position k denoting

the image label. We train our model using a three-stage

approach, first training the two stream networks individually

followed by a joint fine-tuning stage.

1) Training the stream networks: We first proceed by

training the two individual stream networks (c.f., the blue and

green streams in Fig. 1). Let gI(xi; θI) be the representation

extracted from the last fully connected layer (fc7) of the Caf-

feNet – with parameters θI – when applied to an RGB image

xi. Analogously, let gD(di; θD) be the representation for the

depth image. We will assume that all parameters θI and θD

(the network weights and biases) are initialized by copying

the parameters of a CaffeNet trained on the ImageNet dataset.

We can then train an individual stream network by placing

a randomly initialized softmax classification layer on top of

fD and f I and minimizing the negative log likelihood L of

the training data. That is, for the depth image stream network

we solve

min
WD,θD

N
∑

i=1

L
(

softmax
(

WDgD(di; θD)
)

, yi
)

, (1)

where WD are the weights of the softmax layer map-

ping from g(·) to R
M , the softmax function is given by

softmax(z) = exp(z)/‖z‖1 and the loss is computed as

L(s, y) = −
∑

k

yk log sk. Training the RGB stream network

then can be performed by an analogous optimization. After

training, the resulting networks can be used to perform

separate classification of each modality.

2) Training the fusion network: Once the two individ-

ual stream networks are trained we discard their softmax

weights, concatenate their – now fine-tuned – last layer

responses gI(xi; θI) and gD(di; θD) and feed them through

an additional fusion stream f([gI(xi; θI), gD(di; θD)]; θF )
with parameters θF . This fusion network again ends in a

softmax classification layer. The complete setup is depicted

in Fig. 1, where the two fc7 layers (blue and green) are

concatenated and merge into the fusion network (here the

inner product layer fc1-fus depicted in gray). Analogous

to Eq. (1) the fusion network can therefore be trained by

jointly optimizing all parameters to minimize the negative

object

boundaries

noise

occlusion

Fig. 4: Kitchen scene in the RGB-D Scenes dataset showing

objects subjected to noise and occlusions.
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Fig. 5: We create synthetic training data by inducing artificial

patterns of missing depth information in the encoded image.

log likelihood

min
W

f ,θI ,θD,θF

N
∑

i=1

L
(

softmax
(

Wff([gI ,gD]; θF )
)

, yi
)

,

(2)

where gI = gI(xi; θI), gD = gD(di; θD). Note that in

this stage training can also be performed by optimizing only

the weights of the fusion network (effectively keeping the

weights from the individual stream training intact).

C. Robust classification from depth images

Finally, we are interested in using our approach in real

world robotics scenarios. Robots are supposed to perform

object recognition in cluttered scenes where the perceived

sensor data is subject to changing external conditions (such

as lighting) and sensor noise. Depth sensors are especially

affected by a non-negligible amount of noise in such setups.

This is mainly due to the fact that reflective properties of ma-

terials as well as their coating, often result in missing depth

information. An example of noisy depth data is depicted in

Fig. 4. In contrast to the relatively clean training data from

the Washington RGB-D Object dataset, the depicted scene

contains considerable amounts of missing depth values and

partial occlusions (the black pixels in the figure). To achieve

robustness against such unpredictable factors, we propose a

new data augmentation scheme that generates new, noised

training examples for training and is tailored specifically to

robust classification from depth data.

Our approach utilizes the observation that noise in depth

data often shows a characteristic pattern and appears at

object boundaries or object surfaces. Concretely, we sampled



a representative set of noise patterns P = {P1, . . . , PK}
that occur when recording typical indoor scenes through a

Kinect sensor. For sampling the noise patterns we used the

RGB-D SLAM dataset [24]. First, we extract 33,000 random

noise patches of size 256 × 256 from different sequences at

varying positions and divide them into five groups, based on

the number of missing depth readings they contain. Those

noise patches are 2D binary masks patterns. We randomly

sample pairs of noise patches from two different groups that

are randomly added or subtracted and optionally inverted to

produce a final noise mask pattern. We repeat this process

until we have collected K = 50, 000 noise patterns in total.

Examples of the resulting noise patterns and their application

to training examples are shown in Fig. 5.

Training the depth network with artificial noise patterns

then proceeds by minimizing the objective from Equation

Eq. (1) in which each depth sample di is randomly replaced

with a noised variant with probability 50%. Formally,

di =

{

di if p = 1

Pk ◦ di else
with

p ∼ B{0.5}

k ∼ U{1,K},
(3)

where ◦ denotes the Hadamard product, B the Bernoulli

distribution and U the discrete uniform distribution.

IV. EXPERIMENTS

We evaluate our multimodal network architecture on the

Washington RGB-D Object Dataset [15] which consists of

household objects belonging to 51 different classes. As an

additional experiment – to evaluate the robustness of our

approach for classification in real-world environments – we

considered classification of objects from the RGB-D Scenes

dataset whose class distribution partially overlaps with the

RGB-D Object Dataset.

A. Experimental setup

All experiments were performed using the publicly avail-

able Caffe framework [12]. As described previously we use

the CaffeNet as the basis for our fusion network. It consists

of five convolutional layers (with max-pooling after the first,

second and fifth convolution layer) followed by two fully

connected layers and a softmax classification layer. Rectified

linear units are used in all but the final classification layer.

We initialized both stream networks with the weights and

biases of the first eight layers from this pre-trained network,

discarding the softmax layer. We then proceeded with our

stage-wise training. In the first stage (training the RGB and

depth streams independently) the parameters of all layers

were adapted using a fixed learning rate schedule (with initial

learning rate of 0.01 that is reduced to 0.001 after 20K

iterations and training is stopped after 30K iterations). In

the second stage (training the fusion network, 20k iterations,

mini-batch size of 50) we experimented with fine-tuning all

weights but found that fixing the individual stream networks

(by setting their learning rate to zero) and only training the

fusion part of the network resulted in the best performance.

The number of training iterations were chosen based on

the validation performance on a training validation split in

TABLE I: Comparisons of our fusion network with other

approaches reported for the RGB-D dataset. Results are

recognition accuracy in percent. Our multi-modal CNN out-

performs all the previous approaches.

Method RGB Depth RGB-D

Nonlinear SVM [15] 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5
HKDES [4] 76.1 ± 2.2 75.7 ± 2.6 84.1 ± 2.2

Kernel Desc. [14] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1
CKM Desc. [3] N/A N/A 86.4 ± 2.3
CNN-RNN [22] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3

Upgraded HMP [5] 82.4 ± 3.1 81.2 ± 2.3 87.5 ± 2.9
CaRFs [1] N/A N/A 88.1 ± 2.4

CNN Features [20] 83.1 ± 2.0 N/A 89.4 ± 1.3

Ours, Fus-CNN (HHA) 84.1 ± 2.7 83.0 ± 2.7 91.0 ± 1.9

Ours, Fus-CNN (jet) 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4

a preliminary experiment. A fixed momentum value of 0.9

and a mini-batch size of 128 was used for all experiments

if not stated otherwise. We also adopted the common data

augmentation practices of randomly cropping 227 × 227

sub-images from the larger 256 × 256 input examples and

perform random horizontal flipping. Training of a single net-

work stream takes ten hours, using a NVIDIA 780 graphics

card.

B. RGB-D Object dataset

The Washington RGB-D Object Dataset consists of 41,877

RGB-D images containing household objects organized into

51 different classes and a total of 300 instances of these

classes which are captured under three different viewpoint

angles. For the evaluation every 5th frame is subsampled. We

evaluate our method on the challenging category recognition

task, using the same ten cross-validation splits as in Lai et

al. [15]. Each split consists of roughly 35,000 training images

and 7,000 images for testing. From each object class one

instance is left out for testing and training is performed on

the remaining 300−51 = 249 instances. At test time the task

of the CNN is to assign the correct class label to a previously

unseen object instance.

Table I shows the average accuracy of our multi-modal

CNN in comparison to the best results reported in the litera-

ture. Our best multi-modal CNN, using the jet-colorization,

(Fus-CNN jet) yields an overall accuracy of 91.3 ± 1.4%
when using RGB and depth (84.1± 2.7% and 83.8± 2.7%
when only the RGB or depth modality is used respectively),

which – to the best of our knowledge – is the highest

accuracy reported for this dataset to date. We also report

results for combining the more computationally intensive

HHA with our network (Fus-CNN HHA). As can be seen

in the table, this did not result in an increased performance.

The depth colorization method slightly outperforms the HHA

fusion network (Fus-CNN HHA) while being computation-

ally cheaper. Overall our experiments show that a pre-

trained CNN can be adapted for recognition from depth data

using our depth colorization method. Apart from the results

reported in the table, we also experimented with different

fusion architectures. Specifically, performance slightly drops

to 91% when the intermediate fusion layer (fc1-fus) is

removed from the network. Adding additional fusion layers
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Fig. 6: Per-class recall of our trained model on all test-splits.

The worst class recall belongs to mushrooms and peaches.

also did not yield an improvement. Finally, Fig. 6 shows the

per-class recall, where roughly half of the objects achieve a

recall of ≈ 99%.

C. Depth domain adaptation for RGB-D Scenes

To test the effectiveness of our depth augmentation

technique in real world scenes, we performed additional

recognition experiments on the more challenging RGB-D

Scenes dataset. This dataset consists of six object classes

(which overlap with the RGB-D Object Dataset) and a large

amount of depth images subjected to noise.

For this experiment we trained two single-stream depth-

only networks using the Object dataset and used the Scenes

dataset for testing. Further, we assume that the groundtruth

bounding box is given in order to report only on recognition

performance. The first “baseline” network is trained by

following the procedure described in Section III-B.1, with the

total number of labels M = 6. The second network is trained

by making use of the depth augmentation outlined in III-C.

The results of this experiment are shown in Table II (middle

and right column) that reports the recognition accuracy for

each object class averaged over all eight video sequences.

As is evident from the table, the adapted network (right

column) trained with data augmentation outperforms the

baseline model for all classes, clearly indicating that addi-

tional domain adaptation is necessary for robust recognition

in real world scenes. However, some classes (e.g., cap, bowl,

soda can) benefit more from noise aware training than others

(e.g., flashlight, coffe mug). The kitchen scene depicted in

Fig. 4 gives a visual intuition for this result. On the one

hand, some objects (e.g., soda cans) often present very noisy

object boundaries and surfaces, thus they show improved

recognition performance using the adapted approach. On

the other hand, small objects (e.g. a flashlight), which are

often captured lying on a table, are either less noisy or

just small, hence susceptible to be completely erased by the

noise from our data augmentation approach. Fig. 7 shows

several exemplary noisy depth images from the test set that

are correctly classified by the domain-adapted network while

the baseline network labels them incorrectly. We also tested

the effect of different input image rescaling techniques –

previously described in Fig. 3 – in this setting. As shown in

the left column of Table II, standard image warping performs

poorly, which supports our intuition that shape information

TABLE II: Comparison of the domain adapted depth network

with the baseline: six-class recognition results (in percent)

on the RGB-D Scenes dataset [16] that contains everyday

objects in real-world environments.

Class Ours, warp. Ours, no adapt. Ours, adapt.

flashlight 93.4 97.5 96.4
cap 62.1 68.5 77.4

bowl 57.4 66.5 69.8

soda can 64.5 66.6 71.8

cereal box 98.3 96.2 97.6
coffee mug 61.9 79.1 79.8

class avg. 73.6 ± 17.9 79.1 ± 14.5 82.1 ± 12.0

gets lost during preprocessing.

D. Comparison of depth encoding methods

Finally, we conducted experiments to compare the differ-

ent depth encoding methods described in Fig. 2. For rescaling

the images, we use our proposed preprocessing method de-

scribed in Fig. 3 and tested the different depth encoding. Two

scenarios are considered: 1) training from scratch using sin-

gle channel depth images 2) for each encoding method, only

fine-tuning the network by using the procedure described

in Section III-B.1. When training from scratch, the initial

learning rate is set to 0.01, then changed to 0.001 after 40K

iterations thus stopped after 60K iterations. Training with

more iterations did not further improve the accuracy. From

the results, presented in Table III, it is clear that training the

network from scratch – solely on the RGB-D Dataset – is

inferior to fine-tuning. In the latter setting, the results suggest

that the simplest encoding method (depth-gray) performs

considerably worse than the other three methods. Among

these other encodings (which all produce colorized images),

surface normals and HHA encoding require additional image

preprocessing – meanwhile colorizing depth using our depth-

jet encoding has negligible computational overhead. One

potential reason why the HHA encoding underperforms in

this setup is that all objects are captured on a turntable

with the same height above the ground. The height channel

used in the HHA encoding therefore does not encode any

additional information for solving the classification task.

In this experiment, using surface normals yields slightly

better performance than the depth-jet encoding. Therefore,

we tested the fusion architecture on the ten splits of the RGB-

D Object Dataset using the surface normals encoding but this

did not further improve the performance. Specifically, the

recognition accuracy on the test-set was 91.1 ± 1.6 which

is comparable to our reported results in Table I.

V. CONCLUSION

We introduce a novel multimodal neural network archi-

tecture for RGB-D object recognition, which achieves state

of the art performance on the RGB-D Object dataset [15].

Our method consists of a two-stream convolutional neural

network that can learn to fuse information from both RGB

and depth automatically before classification. We make use

of an effective encoding method from depth to image data

that allows us to leverage large CNNs trained for object

recognition on the ImageNet dataset. We present a novel



a) bowl b) cap c) soda can d) coffee mug

Fig. 7: Objects from the RGB-D Scenes test-set for which

the domain adapted CNN predicts the correct label, while

the baseline (no adapt.) CNN fails. Most of these examples

are subject to noise or partial occlusion.

TABLE III: Comparison of different depth encoding methods

on the ten test-splits of the RGB-D Object dataset.

Depth Encoding Accuracy

Depth-gray (single channel), from scratch 80.1 ± 2.6
Depth-gray 82.0 ± 2.8

Surface normals 84.7 ± 2.3

HHA 83.0 ± 2.7
Depth-jet encoding 83.8 ± 2.7

depth data augmentation that aims at improving recognition

in noisy real-world setups, situations typical of many robotics

scenarios. We present extensive experimental results and

confirm that our method is accurate and it is able to learn

rich features from both domains. We also show robust object

recognition in real- world environments and prove that noise-

aware training is effective and improves recognition accuracy

on the RGB-D Scenes dataset [16].
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