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Alzheimer’s dementia (AD) entails negative psychological, social, and economic

consequences not only for the patients but also for their families, relatives, and society

in general. Despite the significance of this phenomenon and the importance for an early

diagnosis, there are still limitations. Specifically, the main limitation is pertinent to the way

the modalities of speech and transcripts are combined in a single neural network. Existing

research works add/concatenate the image and text representations, employ majority

voting approaches or average the predictions after training many textual and speech

models separately. To address these limitations, in this article we present some new

methods to detect AD patients and predict the Mini-Mental State Examination (MMSE)

scores in an end-to-end trainable manner consisting of a combination of BERT, Vision

Transformer, Co-Attention, Multimodal Shifting Gate, and a variant of the self-attention

mechanism. Specifically, we convert audio to Log-Mel spectrograms, their delta, and

delta-delta (acceleration values). First, we pass each transcript and image through a

BERT model and Vision Transformer, respectively, adding a co-attention layer at the top,

which generates image and word attention simultaneously. Secondly, we propose an

architecture, which integrates multimodal information to a BERT model via a Multimodal

Shifting Gate. Finally, we introduce an approach to capture both the inter- and intra-

modal interactions by concatenating the textual and visual representations and utilizing a

self-attention mechanism, which includes a gate model. Experiments conducted on the

ADReSS Challenge dataset indicate that our introduced models demonstrate valuable

advantages over existing research initiatives achieving competitive results in both the

AD classification and MMSE regression task. Specifically, our best performing model

attains an accuracy of 90.00% and a Root Mean Squared Error (RMSE) of 3.61 in

the AD classification task and MMSE regression task, respectively, achieving a new

state-of-the-art performance in the MMSE regression task.

Keywords: dementia, BERT, Log-Mel spectrogram, Vision Transformer, co-attention, Multimodal Shifting Gate,

self-attention
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1. INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia
and may contribute to 60–70% of cases. According to the World
Health Organization, approximately 55 million people suffer
from dementia nowadays, while this number is going to present
a surge in the upcoming years reaching up to 78 million and
139 million people in 2030 and 2050, respectively (World Health
Organization, 2021). Due to the fact that Alzheimer’s disease is a
neurodegenerative disease, meaning that the symptoms become
worse over time, the early diagnosis seems to be imperative for
promoting early and optimal management. In addition, dementia
is inextricably linked with difficulties in speech, since dementia
affects how a person can use language and communicate
(Alzheimer’s Society, 2021). For this reason, current research
works have moved their interest toward dementia identification
from spontaneous speech, in order to save money and time.

Several research works have been proposed aiming to detect
AD patients and predict their Mini-Mental State Examination
(MMSE) scores using the modalities of both speech and
transcripts. However, the majority of them have introduced
label fusion and majority-voting or average approaches (Sarawgi
et al., 2020; Chen et al., 2021; Syed et al., 2021). Specifically,
regarding the AD classification task they train several textual and
acoustic models and they make the final prediction of the given
transcript based on the class, which received the most votes by
the individual models. With regards to the MMSE regression
task, they simply average the predictions of the individual
models. Concurrently, they extract a large number of features
corresponding to the textual and acoustic modalities and some
of them train traditional machine learning algorithms, such as
Logistic Regression, XGBoost, etc. The main limitation of feature
extraction is the fact that it demands some level of domain
expertise rendering it a time-consuming procedure. Thus, it is
evident that these approaches are not time-efficient, since a lot
of models must be trained and tested separately. At the same
time, these approaches do not exploit the interaction between
the two modalities. Moreover, research initiatives introducing
multimodal models use the add and concatenation operation
treating in this way equally the two modalities (Zhu et al., 2021).
Another limitation of this approach has to do with the fact
that one modality may override the other one with a negative
impact on the classification performance. In addition, although
transformers have achieved new state-of-the-art results in many
domains, their potential has not been fully exploited yet to a
high degree. Specifically, research works have exploited mainly
pretrained transformer networks corresponding to the textual
modality, such as BERT, RoBERTa, XLNet, etc.

In order to tackle the aforementioned limitations, we employ
transformer-based networks, which can capture effectively the
interaction between the different modalities and control the
importance of each modality toward the final prediction.
Compared with recent deep ensemble learning methods, which
need to train models individually and then fuse the results of
the classifiers, the proposed neural networks in this article can
be trained in an end-to-end trainable manner. First, we extract
Log-Mel spectrograms, their delta, and delta-delta (acceleration

values) and construct an image per audio file consisting of
three channels. Next, we introduce a neural network consisting
of BERT and Vision Transformer (ViT) for extracting textual
and visual embeddings, respectively, and add a co-attention
mechanism over the respective embeddings, which can attend
at the different modalities at the same time. In addition,
we introduce an architecture, which integrates multimodal
information into a BERT model via an Attention Gate called
Multimodal Shifting Gate. To be more precise, we propose
three variations of this architecture, where we inject (a) textual
and visual, (b) textual and acoustic, and (c) textual, visual, and
acoustic information into the BERT model. Finally, we propose
an architecture, which can learn both the inter- and intra-modal
interactions, i.e., image-image, text-text, text-image, and image-
text, and show that it achieves state-of-the art results. Therefore,
compared with prior works, our methods provide important
advantages, since they can learn more representative features
regarding the different modalities and require also less time
for training.

Our main contributions can be summarized as follows:

• We conduct extensive experiments for detecting AD patients
(AD classification task) and predicting the MMSE scores
(MMSE regression task).

• We propose a multimodal model consisting of BERT, ViT, and
a Co-Attention mechanism.

• We introduce an architecture, which incorporates a
Multimodal Shifting Gate aiming to control the importance of
text, acoustic, and visual representations. The conjunction of
the textual, acoustic, and visual embeddings is fed to a BERT
model.

• We propose an architecture aiming to model the inter- and
intra-modal interactions of multimodal data.

• We achieve competitive results with state-of-the-art
approaches on the ADReSS Challenge dataset both in
the AD classification and MMSE regression task.

• Our best performing model achieves a new state-of-the-art
result in the MMSE regression task.

2. RELATED WORK

2.1. Unimodal Approaches
Chlasta and Wolk (2021) proposed a unimodal approach
to detect AD patients only from speech. First, the authors
used VGGish (Hershey et al., 2017) as a feature extractor
followed by Principal Component Analysis (PCA). Finally, the
authors trained support vector machines, linear support vector
machines, perceptron, multi-layer perceptron classifier, and a k-
NN classifier. Secondly, the authors introduced a convolutional
neural network to detect AD patients using raw audio data
and claimed that this approach outperformed the performance
obtained via the traditional machine learning classifiers trained
on VGGish features.

Meghanani et al. (2021a) introduced three deep neural
networks, in order to explore the effectiveness of log-Mel
spectrograms and MFCC features toward the detection of AD
patients and the prediction of their MMSE scores. Specifically,
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they employed a convolutional neural network (CNN) followed
by a long-short term memory network (CNN-LSTM), a pre-
trained ResNet18 followed by LSTM, and a pyramidal Bi-LSTM
followed by a CNN. Findings suggested that the incorporation
of the log-Mel spectrograms and MFCCs features in deep neural
networks are effective for detecting AD patients and predicting
the MMSE scores.

Bertini et al. (2022) proposed an approach to detect AD
patients using only speech data. More specifically, the authors
extracted the log-Mel spectrogram for the audio files and trained
an autoencoder, namely auDeep (Freitag et al., 2017). The
authors passed the latent vector into a multilayer perceptron for
classifying people into AD patients or non-AD ones.

Meghanani et al. (2021b) introduced some approaches to
detect AD patients and predict the MMSE scores using only text
data. Specifically, the authors proposed a Convolutional Neural
Network (CNN) and fastText-based classifiers. Regarding the AD
classification task, they fitted 21 models and the outputs were
combined by a majority voting scheme for final classification. In
terms of theMMSE regression task, the outputs of these bootstrap
models were averaged for calculating the final MMSE score.

2.2. Multimodal Approaches
Chen et al. (2021) extracted a set of acoustic features, including
GeMAPS, eGeMAPS (Eyben et al., 2015), etc., and a set of
linguistic features, namely LIWC and BERT features. They
fused the two modalities using early, late, and ensemble fusion
strategies. A Logistic Regression classifier was exploited for
classifying subjects in AD patients or not. Results suggested that
average fusion of predicted class probabilities of the 10 best
performing models achieved the highest accuracy accounting
for 81.69%.

A similar approach was proposed by Syed et al. (2020), where
the authors extracted a set of acoustic features, i.e., Prosody,
Voice Quality, ComParE, IS10-Paling, etc., and a set of linguistic
features using transformer-based networks, including BERT,
RoBERTa, and their distilled versions. They categorized people
into AD patients or not by training a Support Vector Machine
(SVM) and a Logistic Regression (LR) classifier. The authors used
label fusion from the top performing models and stated that the
label fusion of the 10 best performing textual models achieved
an accuracy of 85.42%. For predicting the MMSE scores, the
authors used support vector machines based regression (SVR)
and a partial least squares regressor (PLSR). They achieved
a Root Mean Squared Error (RMSE) score equal to 4.30 by
averaging the predictions of the MMSE scores from the top-10
performing models.

Similarly, Pompili et al. (2020) exploited an early fusion
approach, in order to obtain a single feature vector consisting
of acoustic and textual features, and eventually trained an SVM
classifier with linear kernel. In order to extract acoustic features,
they used i-vectors and x-vectors, while for extracting the textual
features they employed a BERT model. Results showed that
the early fusion increased the classification results obtained by
training unimodal models, achieving an accuracy of 81.25%.

Sarawgi et al. (2020) proposed three individual acoustic and
textual models, namely disfluency, interventions, and acoustic.

For classifying subjects into AD and non-AD patients, the
authors exploited the outputs of the individual models via
different kinds of ensemble methods, namely hard, soft, and
learnt ensemble. Regarding the hard ensemble, it corresponded
to a majority vote of the predictions made by the individual
models, while the soft ensemble corresponded to a weighted
sum of the class probabilities. In terms of the learnt ensemble,
the authors used a Logistic Regression to learn the weights in
contrast to the soft ensemble, where the confidence of eachmodel
was treated equally. Results suggested that the hard ensemble
was the best performing approach achieving an accuracy of
83.00%. For predicting the MMSE scores, the authors averaged
the predictions of the individual models.

Also, Cummins et al. (2020) introduced a fusion approach
for predicting AD patients. For the audio modality, the
authors proposed a bag-of-audio-words approach, a siamese
network trained with Log-Mel spectrograms, and an end-to-end
convolutional neural network trained with raw audio waveforms.
In terms of the textual modality, the authors used the GloVe
embeddings and trained a bi-directional Hierarchical Attention
Network (bi-HANN), a bi-directional LSTM (bi-LSTM), and a
bi-directional LSTM with an attention mechanism (bi-LSTM-
Att). After employing several acoustic and textual individual
models, they stated that an accuracy of 85.20% was obtained via a
majority vote of the three best performing models, two of which
are acousticmodels and the one corresponds to the textualmodel.
Regarding the MMSE regression task, the best result of RMSE
equal to 4.65 was achieved via a weighted average (fusion) of
three approaches.

Martinc and Pollak (2020) also introduced an early fusion
approach between different types of audio and textual features
to detect AD patients and predict the MMSE scores. The authors
trained four distinct classification algorithms, namely XGBoost,
Random Forest, SVMwith linear kernel, and Logistic Regression.
Results suggested that Logistic Regression and SVMs with linear
kernels were proved better than XGBoost and Random Forest
models. Also, the readability of the transcript and the duration
of the audio files were proved to be two of the best features.

Shah et al. (2021) used also an ensemble method to predict AD
patients. Specifically, after training acoustic and languagemodels,
they chose the three best performing acoustic models and the
best performing language model. Then, the authors computed
a final prediction by taking a linear weighted combination of
the individual model predictions. The authors claimed that the
weighted majority vote approach enhanced the performance
of the individual models achieving an accuracy of 81.00%.
Regarding the MMSE regression task, the authors computed an
unweighted averaging of the best language and acoustic model
predictions for MMSE scores.

Syed et al. (2021) proposed several acoustic and language
individual models. Specifically, they extracted both handcrafted
features and embeddings via BERT, RoBERTa, VGGish, YAMNet,
etc. After applying feature aggregation techniques, they trained
and tested a Logistic Regression and Support Vector Machine
classifier for differentiating AD from non-AD patients. For fusing
the two modalities, the authors applied a majority voting based
label fusion strategy, where each model made a decision on

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2022 | Volume 14 | Article 830943

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ilias and Askounis Multimodal Models for AD Prediction

whether it considered the subject to be healthy or suffering
from Alzheimer’s dementia. Results showed that the multimodal
fusion did not achieve better performance than the unimodal
models. Regarding the MMSE regression task, the authors used
SVR and PLSR and fused the two modalities by applying
average-based fusion.

Mittal et al. (2021) applied a late fusion strategy, where the
output probabilities of the individual textual and acoustic models
were combined in a weighted manner, and a threshold was
fixed for classifying the persons into AD and healthy control
(HC). Results indicated that the proposed approach achieved
comparable results to the state-of-the-art ones.

Pappagari et al. (2021) proposed several acoustic and language
models and fused the two modalities by using the output
probabilities of the individual models as the inputs to a Logistic
Regression classifier for obtaining a final prediction. Regarding
the acoustic models, they used an end-to-end classifier by fine-
tuning an x-vector model and trained a Logistic Regression and
XGBoost classifier using features extracted via several open-
source libraries. Regarding the language models, they fine-
tuned a BERT model. Findings suggested that the fusion of the
two modalities yielded an accuracy of 84.51%. Regarding the
MMSE regression task, the linguistic approach by fine-tuning
a BERT model obtained the lowest RMSE score accounting for
3.85.

Similarly, Pappagari et al. (2020) extracted a set of acoustic and
linguistic features. In order to fuse the two modalities and obtain
the predictions on the test set, they employed the scores from the
whole training subset to train a final fusion GBR model that was
used to perform the fusion of scores coming from the acoustic
and transcript-based models for the challenge evaluation. Results
showed that the fusion of acoustic and language models achieved
the highest accuracy accounting for 75.00%. With regards to the
MMSE regression task the authors averaged the scores from the
different models.

On the other hand, Rohanian et al. (2020) extracted
a set of textual and acoustic features and proposed a
multimodal model with a gating mechanism (Srivastava
et al., 2015). Specifically, their introduced model consisted
of two branches of Bi-LSTM, one branch for each modality.
The outputs of the respective branches were fed into a
gating mechanism, so as to control the influence of each
modality toward the final classification. Results indicated that
the incorporation of the gating mechanism enhanced the
classification performance yielding an accuracy of 79.20%
and an RMSE score of 4.54 on the ADReSS Challenge test
set. Similarly, Rohanian et al. (2021) replaced the branch
of BiLSTMs corresponding to the textual modality with
BERT. Results showed that BiLSTM outperformed BERT
and the authors speculated that this may be attributable
to the fact that BERT is very large in comparison to the
LSTMmodels.

Edwards et al. (2020) introduced a different approach
by transcribing the segment text into phoneme written
pronunciation using CMUDict (Weide, 2005) and training
several text classifiers on these representations with FastText
obtaining the highest classification performance. Regarding

the acoustic modality, after extracting several features and
applying feature selection techniques, the authors stated that
the ComParE2016 feature set is the best among the proposed
acoustic feature sets. Finally, they claimed that the combination
of phonemes and audio features achieved an accuracy of 79.17%.

Koo et al. (2020) introduced a novel architecture consisting of
attention, CNN, BiLSTM, and dense layers. The authors extracted
several features from the textual and acoustic modalities and they
incorporated them in the introduced architecture. Specifically,
for the audio modality, they extracted features using the
openSMILE v2.3 toolkit (Eyben et al., 2010) and employed
also the VGGish. Regarding the textual modality, they used
handcrafted features, transformer-based embeddings, and GloVe
embeddings. They trained several models using different sets
of features and stated that the auditory information led to
some performance degradation compared to the textual one. A
majority vote on the predictions made by five individual neural
networks achieved an accuracy of 81.25%. In terms of the MMSE
regression task, the final prediction was taken as the median
value. The lowest RMSE score was equal to 3.75 and was achieved
by using both acoustic and textual modalities.

Zhu et al. (2021) employed both acoustic and language models
and introduced multimodal approaches. Regarding the acoustic
models, they exploited YAMNet, MobileNet, and Speech BERT.
In terms of the language models, they employed BERT and
Longformer. With regards to the multimodal models, the authors
added or concatenated the textual and acoustic representations,
thus treating equally each modality. Results suggested that the
concatenation of the representations obtained by BERT and
Speech BERT achieved the highest accuracy accounting for
82.92%.

Mahajan and Baths (2021) introduced a novel architecture
consisting of CNN, BiLSTM, Attention, and Dense layers. The
authors concatenated the acoustic and language embeddings
obtained via branches of the proposed architecture and
used a dense layer with two units to differentiate AD
from non-AD patients. Finally, the authors stated that the
proposed architecture reached accuracy up to 72.92% on
the test set.

Balagopalan et al. (2021) compared the performance of
traditional machine learning classifiers with the performance
obtained by pre-trained transformer models, namely BERT.
More specifically, the authors extracted a large number of
features, i.e., lexicosyntactic, semantic, and acoustic features and
applied feature selection by choosing top-k number of features,
based on ANOVA F-value between label and features. Four
conventional machine learning models, namely Support Vector
Machine, Neural Network, Random Forest, and Naive Bayes,
were trained with the respective sets of features. Next, the authors
trained a BERT model and stated that BERT outperformed the
feature-based approaches in terms of all the evaluation metrics.

Farzana and Parde (2020) introduced some approaches
to predict MMSE scores using textual and acoustic features.
More specifically, the authors extracted lexicosyntactic features
weighted via tf-idf, psycholinguistic features, discourse-based
features, and acoustic features (MFCCs). The authors trained
a Support Vector Regressor for predicting the MMSE scores.
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Results indicated that a selection of verbal and non-verbal cues
achieved the lowest RMSE score.

2.3. Related Work Review Findings
From the aforementioned research works it is evident that
existing research initiatives use mainly early or late fusion
and ensemble strategies, in order to detect AD patients and
predict the MMSE scores. Furthermore, they use the add or
the concatenation operation for fusing the representations of
the different modalities. Thus, research works fail to model the
interactions between the different modalities and control the
influence of each one of them toward the final prediction.

Therefore, our work differs significantly from the
aforementioned research works, since we (a) exploit BERT
and ViT for extracting the textual and visual representations,
respectively, and employ a co-attention layer at the top of the
proposed architecture, (b) introduce an architecture, which
injects visual and acoustic information to a BERT model via an
Attention Gate, which controls the importance of the different
modalities, and (c) introduce an architecture, which includes a
variant of the self-attention mechanism and aims to capture the
inter- and intra-modal interactions.

3. MATERIALS AND METHODS

3.1. Dataset
We use the ADReSS Challenge dataset (Luz et al., 2020) for
conducting our experiments. We choose this dataset, since it
has been selected in a way so as to minimize various kinds of
biases in the prediction task. Specifically, it is balanced for gender
and age. Concurrently, it aims to mitigate common biases often
overlooked in evaluations of AD detection methods, including
repeated occurrences of speech from the same participant, which
is common in longitudinal datasets, and variations in audio
quality. Moreover, in contrast to other datasets, it is balanced,
since it includes 78 AD and 78 non-AD patients. The ADReSS
Challenge dataset has been split into a train and a test set. The
train set consists of 108 people, where 54 people are AD patients
and 54 people are non-AD ones. The test set comprises 48 people,
where 24 people are AD patients and 24 people are non-AD ones.

3.2. Tasks
3.2.1. AD Classification Task
Let a labeled dataset consist of transcripts and their
corresponding audio files belonging to AD patients and
non-AD ones. Transcripts belonging to AD subjects are given
the label 1, while transcripts belonging to the non-AD patients
are given the label 0. The task is to identify, if a transcript along
with its audio file belongs to a person suffering from dementia,
or to a person belonging to the healthy control group (binary
classification problem).

3.2.2. MMSE Regression Task
Let a dataset consist of transcripts and their corresponding
audio files belonging to AD patients and non-AD ones. Each
transcript along with the audio file has been assigned with a

MMSE score ranging from 0 to 30, where a MMSE score of 25–
30 is considered as normal, a MMSE score of 21–24 as mild,
a MMSE score of 10–20 as moderate, and a MMSE score less
than 10 as severe impairment (Rohanian et al., 2020). Given the
transcript and the audio file, the task is to predict theMMSE score
(regression problem).

3.3. Predictive Models
In this section, we present the proposed predictive models for
detecting dementia using speech and transcripts. We use the
python library PyLangAcq (Lee et al., 2016) for having access
to the manual transcripts, since the dataset has been created
using the CHAT (MacWhinney, 2000) coding system. Moreover,
we employ the Python library librosa (McFee et al., 2021) for
converting the audio files to Log-Mel spectrograms, their delta,
and delta-delta (acceleration values). For all the experiments
conducted, we use 224 Mel bands, hop length equal to 1,024, and
a Hanning window. Each image is resized to (224× 224) pixels.

3.3.1. BERT + ViT + Co-attention
We pass the transcripts through a BERT model (Vaswani et al.,
2017; Devlin et al., 2019) and the corresponding images through a
ViT model (Dosovitskiy et al., 2020). Then, we use a co-attention
mechanism (Lu et al., 2016; Shu et al., 2019) over the outputs of
the aforementioned models, since it can help learn the attention
weights of transcripts and image patches concurrently.

Formally, let C ∈ R
d×N and S ∈ R

d×T be the outputs of
the BERT and ViT pretrained models, respectively. Following
the methodology proposed by Lu et al. (2016), given the

output of the BERT
(

C ∈ R
d×N

)

and the output of the ViT
(

S ∈ R
d×T

)

, where d denotes the hidden size of the model, N

and T the sequence length of the transcripts and image patches,
respectively, the affinity matrix F ∈ R

N×T is calculated using the
equation presented below:

F = tanh
(

CTWlS
)

(1)

where Wl ∈ R
d×d is a matrix of learnable parameters. Next, this

affinity matrix is considered as a feature and we learn to predict
the transcript and image attention maps via the following,

Hs = tanh (WsS+ (WcC) F) (2)

Hc = tanh
(

WcC + (WsS) F
T
)

(3)

where Ws,Wc ∈ R
k×d are matrices of learnable parameters.

The attention probabilities for each word in the transcripts and
each image patch are calculated through the softmax function as
follows,

as = softmax
(

wT
hsH

s
)

(4)

ac = softmax
(

wT
hcH

c
)

(5)
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FIGURE 1 | BERT + ViT + Co-Attention.

where as ∈ R
1×T and ac ∈ R

1×N . whs,whc ∈ R
k×1 are the weight

parameters. Based on the above attention weights, the attention
vectors for text and image representations are obtained via the
following equations:

ŝ =
T
∑

i=1

asi s
i, ĉ =

N
∑

j=1

acj c
j (6)

where ŝ ∈ R
1×d and ĉ ∈ R

1×d.
Finally, these two vectors are concatenated.

Regarding the AD detection problem described in section

3.2.1, the resulting vector
(

p ∈ R
1×2d

)

is passed to a dense layer

with 128 units and a ReLU activation function followed by a
dense layer consisting of two units.

Regarding the MMSE prediction problem described in

section 3.2.2, the resulting vector
(

p ∈ R
1×2d

)

is passed to a

dense layer with 128 units and a ReLU activation function
followed by a dense layer consisting of one unit with a ReLU
activation function.

The proposed architecture is illustrated in Figure 1.

3.3.2. Multimodal BERT
In this section, we introduce a similar methodology to the one
adopted by Wang et al. (2019), Jin and Aletras (2020, 2021),
and Rahman et al. (2020). First, we pass each transcript through
a BERT model obtaining a text representation X ∈ R

N×d.
Similarly, we pass each image through a ViT model and get the

output of the ViT model (zL0 ∈ R
1×d). Then, we repeat the

vector zL0 N times, in order that the text and image representation
matrices have the same size. Regarding the acoustic modality,
we use the Python library openSMILE (Eyben et al., 2010) for
extracting the eGeMAPSv02 feature set per audio file. We obtain
a vector of 88d per audio file, where we project the respective

vector to a 256d vector and repeat itN times. Let e(i), h
(i)
α , and h

(i)
v

denote word, acoustic, and image representation for the i-th word
in a sequence. Next, we concatenate the representations (text-
image and text-audio) using two attention gating mechanisms as
described via the equations below:

w(i)
v = σ

(

Whv[h
(i)
v ; e(i)]+ bv

)

(7)

w(i)
α = σ

(

Whα[h
(i)
α ; e(i)]+ bα

)

(8)

where σ denotes the sigmoid activation function, Whv,Whα are

two weight matrices, and w
(i)
v ,w

(i)
α correspond to the visual and

acoustic gates, respectively. bv and bα are the scalar biases.

Next, we calculate a non-verbal shift vector h
(i)
m by multiplying

the visual embeddings with the visual gate and the acoustic
embeddings with the acoustic gate.

h(i)m = w(i)
v ·

(

Wvh
(i)
v

)

+ w(i)
α ·

(

Wαh
(i)
α

)

+ b(i)m (9)

Frontiers in Aging Neuroscience | www.frontiersin.org 6 March 2022 | Volume 14 | Article 830943

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ilias and Askounis Multimodal Models for AD Prediction

where Wa and Wv are weight matrices for acoustic and visual

information, respectively. b
(i)
m is the bias vector.

Next, we apply the Multimodal Shifting component aiming
to dynamically shift the word representations by integrating the

non-verbal shift vector h
(i)
m into the original word embedding.

e(i)m = e(i) + αh(i)m (10)

α = min

(

||e(i)||2
||h(i)m ||2

β , 1

)

, (11)

where β is a hyperparameter. Then, we apply a layer
normalization (Ba et al., 2016) and dropout layer (Srivastava

et al., 2014) to e
(i)
m . Finally, the combined embeddings are fed to a

BERT model.
Regarding the AD detection problem described in section

3.2.1, the CLS token constituting the output of the BERT model
is passed through a dense layer with 128 units and a ReLU
activation function followed by a dense layer with two units,
which gives the final output.

Regarding the MMSE prediction problem described in
section 3.2.2, the CLS token constituting the output of the BERT
model is passed through a dense layer with 128 units and a ReLU
activation function followed by a dense layer with one unit and a
ReLU activation function.

We experiment with injecting acoustic information
(Multimodal BERT - eGeMAPS), visual information
(Multimodal BERT - ViT), and both acoustic and visual
information (Multimodal BERT - eGeMAPS + ViT).

The architecture (Multimodal BERT - eGeMAPS + ViT) is
illustrated in Figure 2.

3.3.3. BERT + ViT + Gated Self-Attention
Similar to the aforementioned introduced models, we pass each
transcript through a BERT model and each image through a ViT
model. Let X ∈ R

N×d and Y ∈ R
T×d be the outputs of the BERT

and ViT pretrainedmodels, respectively. In this section, ourmain
aim is to model the intra-modal and inter-modal interactions at
the same time (i.e., X → X, Y → Y , and X ↔ Y). Thus, we
adopt the methodology introduced by Yu et al. (2019).

After having obtained X ∈ R
N×d and Y ∈ R

T×d, which
correspond to the text and image representations, respectively,
we concatenate these two representations as follows:

Z = [X;Y] (12)

Next, Z ∈ R
m×d, where m = N + T, is considered the query Q,

key K, and value V , as follows:

Q = Z,K = Z,V = Z (13)

Next, we adopt the gating model introduced by Yu et al. (2019)
as follows:

M = σ
(

FCg
(

FC
g
q (Q) ⊙ FC

g

k (K)
))

(14)

where FC
g
q, FC

g

k
∈ R

d×dg , FCg ∈ R
dg×2 are three fully-connected

layers, and dg denotes the dimensionality of the projected space.
⊙ denotes the element-wise product function and σ the sigmoid
function. In addition, M ∈ R

m×2 corresponds to the two masks
Mq ∈ R

m andMk ∈ R
m for the features Q and V , respectively.

Next, the two masksM and K are tiled to M̃q, M̃k ∈ R
m×d and

then used for computing the attention map as following:

Ag = softmax

(

(

Q⊙ M̃q

) (

K ⊙ M̃k

)T

√
d

)

(15)

H = AgV (16)

Then, the output H is passed through a global average pooling
layer followed by a dense layer with 128 units and a ReLU
activation function.

Regarding the AD detection problem described in section
3.2.1, we use a dense layer with two units, which gives the final
output.

Regarding the MMSE prediction problem described in
section 3.2.2, we use a dense layer with one unit and a ReLU
activation function.

The proposed architecture is illustrated in Figure 3.

4. EXPERIMENTS

4.1. Comparison With State-of-the-Art
Approaches
We compare our introduced models with research works
proposing either unimodal or multimodal approaches. These
research works have been selected due to the fact that they
conduct their experiments on the ADReSS Challenge test
set. These research works are reported in Tables 1–3. More
specifically, Table 1 refers to research works using multimodal
approaches,Table 2 refers to research works proposing unimodal
approaches using only text, and Table 3 refers to research works
proposing unimodal approaches using only speech.

4.2. Experimental Setup
4.2.1. Training and Evaluation—Implementation

Details
In terms of the MMSE regression task, the ADReSS Challenge
train set includes the MMSE scores for all the people except one.
Thus, we remove this person from the train set in the MMSE

regression task.
We follow a similar training strategy to the one adopted

by Zhu et al. (2021). Firstly, we divide the train set provided
by the Challenge into a train and a validation set (65–35%).
Next, we train the proposed architectures five times with an
Adam optimizer and a learning rate of 1e-5. Regarding the AD
detection problem described in section 3.2.1, we minimize the
cross-entropy loss function, whereas with regards to the MMSE

prediction problem described in section 3.2.2, we minimize
the RMSE. We apply ReduceLROnPlateau, where we reduce
the learning rate by a factor of 0.1, if the validation loss has
stopped decreasing for three consecutive epochs. Also, we apply
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FIGURE 2 | Multimodal BERT - eGeMAPS + ViT.
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FIGURE 3 | BERT + ViT + Gated Self-Attention.

EarlyStopping and stop training, if the validation loss has stopped
decreasing for six consecutive epochs. We test the proposed
models using the test set provided by the Challenge. We average
the results obtained by the five repetitions. All models have
been created using the PyTorch library (Paszke et al., 2019). We
have used the Vision Transformer (with fixed-size patches of
resolution 16× 16) and the BERT base uncased version from the
Transformers library (Wolf et al., 2020). The input to the BERT
and ViT model is the output of the BERT tokenizer and ViT
feature extractor, respectively, as defined by the Transformers
library. All experiments are conducted on a single Tesla P100-
PCIE-16GB GPU.

4.2.2. Hyperparameters
Regarding BERT+ViT+Co-Attention, we set k equal to 40. We
use dropout after the output of the co-attention layer with a rate
of 0.4, and a dropout layer after the dense layer consisting of
128 units with a rate of 0.2. Regarding (Multimodal BERT -

eGeMAPS), we set β = 0.01. In terms of (Multimodal BERT

- ViT), we set β = 0.001. Regarding (Multimodal BERT -

eGeMAPS +ViT), we set β = 0.01.With regards to the following
models: (Multimodal BERT - eGeMAPS), (Multimodal BERT

- ViT), and (Multimodal BERT - eGeMAPS + ViT), we apply
dropout with a rate of 0.4 at the output of (10) and freeze the
weights of the first BERTmodel. Also, we use a dropout layer after
the output of the second BERT model with a rate of 0.2. With
regards to BERT+ViT+Gated Self-Attention, we set dg = 64.

We use dropout after the global average pooling layer with a rate
of 0.3. For all the experiments conducted, the hidden size of BERT
and ViT denoted by d is equal to 768. Moreover, N = 512, since
we pad each transcript to a maximum number of 512 tokens. T is
equal to 197. Thus,m is equal to 709.

4.2.3. Evaluation Metrics
Regarding the AD detection problem described in section 3.2.1,
Accuracy, Precision, Recall, F1-Score, and Specificity have been
used for evaluating the results of the introduced architectures.
These metrics have been computed by regarding the dementia
class as the positive one. We report the average and standard
deviation of these metrics over five runs.

With regards to the MMSE prediction problem described
in section 3.2.2, the RMSE has been used for evaluating the
results of the introduced architectures. We report the average
and standard deviation of the RMSE scores across five runs. The
RMSE is the metric used in the baseline paper provided by the
ADReSS challenge.

5. RESULTS

5.1. AD Classification Task
The results of the proposed models mentioned in section 3.3 for
the AD classification task are reported in Table 4. In addition, in
this table we compare the results of our introduced models with
research works proposing multimodal approaches, unimodal
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TABLE 1 | Overview of the multimodal state-of-the-art approaches, which are later compared with our work.

References Architecture Features/methodology Task

Cummins et al. (2020) Fusion Maj./W-avg (3-best) Bag-of-Audio-Words, zero-frequency filtered (ZFF) signals, and

BiLSTM-Attention network

AD/MMSE

Rohanian et al. (2020) LSTM with Gating (Acoustic + Lexical + Dis) Acoustic, Linguistic Features, Bi-LSTM, gating mechanism AD/MMSE

Edwards et al. (2020) System 3: Phonemes and Audio Phoneme written pronunciation using CMUDict + acoustic features AD

Pompili et al. (2020) Fusion of System Fusion of x-vectors with linguistic features, train SVM AD

Koo et al. (2020) Bimodal Network (Ensembled Output) Ensemble (top-5 bimodal networks) AD/MMSE

Martinc and Pollak (2020) GFI, NUW, Duration, Character 4-grams, Suffixes, POS tag, UD Feature extraction, Logistic Regression Classifier AD

Pappagari et al. (2020) Acoustic & Transcript Fusion of the acoustic (x-vectors) and transcript (BERT) model scores AD

Pappagari et al. (2020) Acoustic+silence & Transcript Average the scores from the different models, four silence features MMSE

Zhu et al. (2021) Dual BERT Concatenation of the representations obtained by BERT and Speech

BERT

AD

Mahajan and Baths (2021) Model C Neural network consisting of CNN, BiLSTM, Attention, GRU, and Dense

layers

AD

Shah et al. (2021) Majority vote (NLP + Acoustic) Final prediction by taking a linear weighted combination of the individual

model predictions

AD

Shah et al. (2021) Random Forest (NLP) + gradient boosting (acoustic) Language/fluency/n-gram features, MFCC and delta coefficients,

Dimensionality Reduction Techniques

MMSE

Syed et al. (2021) Audio + Text Majority level approach of six models, averaging-based fusion AD/MMSE

Sarawgi et al. (2020) Ensemble Majority voting approach, average the predictions AD/MMSE

Syed et al. (2020) Attempt 4 Label fusion from the top-5 performing models from audio and text

modalities (top-5 from each modality), average value of predictions of

individual models

AD/MMSE

Farzana and Parde (2020) SELECTED-FEATURE For selecting the features, a Random Forest regression model was

trained. The authors retained only features having mean decrease impurity

(MDI) values exceeding a predefined threshold

MMSE
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TABLE 2 | Overview of the unimodal state-of-the-art approaches using only text, which are later compared with our work.

References Architecture Features/methodology Task

Cummins et al. (2020) bi-LSTM-Att GloVe 100d as pretrained weights, maximum word number for each

transcript is 200, Bi-LSTM with attention

AD/MMSE

Rohanian et al. (2020) LSTM (Lexical + Dis) GloVe features of 100d, disfluency markers (self-repair), Bi-LSTM AD/MMSE

Edwards et al. (2020) System 2: Phonemes The authors transcribed the segment text into phoneme written

pronunciation using CMUDict. FastText was trained on the phoneme

representation

AD

Pompili et al. (2020) Sentence Embedding Sentence embeddings are computed by averaging the second to twelfth

hidden layers of each word., train SVM

AD

Koo et al. (2020) Transformer-XL The authors extracted textual features using Transformer-XL and trained a

neural network consisting of CNN, Attention, Bi-LSTM, and Dense Layers.

AD/MMSE

Pappagari et al. (2020) Transcript The authors train a BERT model. AD/MMSE

Zhu et al. (2021) Longformer Training of Longformer AD

Mahajan and Baths (2021) Model A0 Neural network consisting of CNN, LSTM, and Dense layers AD

Shah et al. (2021) Logistic Regression (NLP) Language and fluency features, n-gram features, Dimensionality

Reduction Techniques

AD

Shah et al. (2021) Random Forest (NLP) Language and fluency features, n-gram features, Dimensionality

Reduction Techniques

MMSE

Syed et al. (2021) Text (fusion) Fusion of top-3 performing models from the textual modality AD/MMSE

Syed et al. (2020) Attempt 5 Label fusion from the top-10 performing models from text modalities,

average of MMSE score predictions from the top-10 performing models

AD/MMSE

Balagopalan et al. (2021) BERT Training of BERT model AD

Farzana and Parde (2020) n-gram All lexicosyntactic features, SVR training MMSE

Meghanani et al. (2021b) fastText, bi+trigram The authors fit 21 models and the outputs are combined by a majority

voting scheme for final classification. In the regression task, the outputs of

these bootstrap models are averaged to arrive at the final MMSE score

AD/MMSE
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TABLE 3 | Overview of the unimodal state-of-the-art approaches using only speech, which are later compared with our work.

References Architecture Features/methodology Task

Cummins et al. (2020) SiameseNet A deep Siamese neural network consisting of convolutional layers. As an

input, the model used either 8-s or 16-s segments.

AD

Cummins et al. (2020) BoAW fusion (3-best) MelFrequency Cepstral Coefficient (MFCC), log-Mel, and the COMPARE

acoustic feature set

MMSE

Rohanian et al. (2020) LSTM (Acoustic) Higher-order statistics of COVAREP features. Bi-LSTM training AD/MMSE

Edwards et al. (2020) System 1: Audio LDA posterior probabilities of ComParE2016 features AD

Pompili et al. (2020) x-vectors_SRE The authors use both the SRE and the Voxceleb models for the x-vectors

framework. train SVM

AD

Koo et al. (2020) VGGish The authors used VGGish features and trained a neural network

consisting of Attention Layer, CNN, Bi-LSTM, and Dense Layers.

AD/MMSE

Pappagari et al. (2020) Acoustic + Silence Silency features, x-vector PCA-transformed coefficients, Probabilistic

Linear Discriminant Analysis (PLDA) for detection and Support Vector

Regression (SVR) for MMSE prediction

AD/MMSE

Zhu et al. (2021) YAMNet The input of YAMNet is the Mel spectrogram from audio data with

dimensions of (p, t, 1)

AD

Mahajan and Baths (2021) Model B0 (emobase) GRU taking in audio segment features and finally combining the features

from the speech segments into a common vector

AD

Shah et al. (2021) Majority vote (Acoustic) Acoustic feature extraction across all speech segments, weighted majority

vote classification on segments

AD

Shah et al. (2021) Gradient Boosting (Acoustic) MFCC 1–16 features and their delta coefficients from 26 Mel-bands MMSE

Syed et al. (2021) Audio (fusion) Majority level approach of three acoustic models, averaging-based fusion AD/MMSE

Chlasta and Wolk (2021) DemCNN Convolutional neural network for speech classification using the raw

waveform

AD

Meghanani et al. (2021a) CNN - LSTM (MFCC) 21 models are fitted using the above 21 bootstrap samples and the

outputs are combined by a majority voting scheme for final classification.

AD

Meghanani et al. (2021a) pBLSTM-CNN (log-Mel) Bagging of 21 models by averaging the outputs. MMSE

Farzana and Parde (2020) acoustic-all Mel Frequency Cepstral Coefficients (MFCCs), mean value, variance, etc. MMSE

Syed et al. (2020) Attempt 3 Label fusion from the top-5 performing models from the audio modality,

prediction from the BERT base uncased RangePool

AD/MMSE
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models using only text data, and unimodal approaches using only
speech data.

Regarding our proposed models, one can observe from
Table 4 that BERT+ViT+Gated Self-Attention outperforms all
the introduced models in Accuracy and F1-score by a large
margin of 2.50–11.25% and 3.13–9.59%, respectively. This can
be justified by the fact that the Gated Self-Attention aims to
capture both the intra- and inter-modal interactions. Specifically,
BERT+ViT+Gated Self-Attention outperforms BERT+ViT+Co-
Attention in accuracy by 2.50%, in Recall by 7.5%, and in F1-score
by 3.13%. Despite the fact that BERT+ViT+Co-Attention obtains
a high specificity score accounting for 93.33% outperforming
BERT+ViT+Gated Self-Attention by 2.5%, BERT+ViT+Co-
Attention attains a low F1-score accounting for 86.81%. On
the contrary, BERT+ViT+Gated Self-Attention yields an F1-
score of 89.94% outperforming BERT+ViT+Co-Attention by
3.13%. This means that BERT+ViT+Gated Self-Attention can
detect better the AD patients than BERT+ViT+Co-Attention,
where AD patients are misdiagnosed as non-AD ones. In
addition, although BERT+ViT+Gated Self-Attention obtains
lower results in Precision and Recall by other introduced models,
it surpasses them in F1-score, which constitutes the weighted
average of recall and precision. Regarding the Multimodal
BERT models, one can observe that Multimodal BERT-ViT
outperforms Multimodal BERT-eGeMAPS in accuracy by 0.83%,
in recall by 4.17%, and in F1-score by 1.44%. We speculate
that Multimodal BERT-ViT performs better than Multimodal
BERT-eGeMAPS due to the usage of the Vision Transformer.
Thus, the visual modality obtained via ViT seems to perform
slightly better than the acoustic modality. In addition, we
observe that the injection of both the acoustic and visual
information enhances the performance of the models having
just one modality, be it either the acoustic modality or the
visual one. More specifically, Multimodal BERT-eGeMAPS+ViT
surpasses Multimodal BERT-eGeMAPS and Multimodal BERT-
ViT in accuracy by 2.08 and 1.25%, respectively. In comparison to
the Multimodal BERT-eGeMAPS+ViT, BERT+ViT+Gated Self-
Attention surpasses its performance in accuracy by 9.17%, in
Precision by 14.30%, in F1-score by 7.66%, and in Specificity
by 18.33%. Overall, BERT+ViT+Gated Self-Attention constitutes
our best performing model, since it surpasses all the other
introduced models in F1-score and Accuracy.

In comparison to the multimodal approaches, as one can
easily observe from Table 4, BERT+ViT+Gated Self-Attention
surpasses the state-of-the-art multimodal approaches in Recall
by 1.17–26.67%, in F1-Score by 4.54–20.18%, and in Accuracy
by 0.42–17.08%. These findings confirm our initial hypothesis
that inter- and intra-modal interactions enhance the classification
results obtained by approaches, which predict AD patients
either by using majority voting on predictions of several
individual models or adding/concatenating the text and image
representations. In addition, although our best performingmodel
outperforms Audio+Text (Syed et al., 2021) by a small margin of
0.42% in Accuracy and by a larger margin of 1.67% in Recall,
it is worth mentioning that our proposed approach is more
computational and time-efficient, since the method proposed
by Syed et al. (2021) employs six models and eventually uses a

majority vote approach. In terms of BERT+ViT+Co-Attention,
it outperforms all the research works, except Audio+Text (Syed
et al., 2021), in Accuracy by 2.30–14.58%. Also, it surpasses all
the research works, except Fusion of System (Pompili et al., 2020)
in Precision by 3.36–22.83%. Also, it surpasses all the research
works in F1-score results by 1.41–17.05%, and in Specificity
by 1.66%. It outperforms four research works out of the eight
ones, which report Recall results by 6.67–19.17%. Thus, the
co-attention mechanism can yield better performance than the
results obtained by the research initiatives, since it can attend
to transcripts and images simultaneously. Finally, with regards
to the proposed Multimodal BERT models, it seems that they
are rather complex for our limited dataset. However, results
suggest that Multimodal BERT - eGeMAPS+ViT surpasses six
research works in Accuracy by 1.63–7.91%, five research works
in F1-score by 3.21–12.52%, all the research works in the Recall
score by 1.17–26.67%, and one research work in the Precision
score by 6.57%.

In comparison to the unimodal approaches using only text
data, as one can easily observe from Table 4, the approach
proposed by Syed et al. (2021) outperforms our best performing
model in terms of accuracy, recall, and specificity by 1.67, 2.50,
and 0.84%, respectively. However, our best performing model
outperforms all the other approaches in accuracy by 4.58–
17.10%, in Recall by 5.84–35.01%, in Precision by 2.73–21.87%,
in F1-score by 6.67–26.53%, and in Specificity by 2.83–7.50%.

In comparison to the unimodal approaches using only speech
data, as one can easily observe from Table 4, BERT+ViT+Gated
Self-Attention outperforms the research initiatives in terms of
Precision, Recall, F1-score, and Accuracy. More specifically,
BERT+ViT+Gated Self-Attention surpasses the research works
in Precision by 8.87–36.70%, in Recall by 5.84–51.17%, in F1-
score by 19.14–38.94%, and in Accuracy by 8.75–35.83%. In
addition, BERT+ViT+Co-Attention surpasses the research works
in Precision by 10.83–38.66%, in F1-score by 16.01–35.81%, and
in Accuracy by 6.25–33.33%. Additionally, Multimodal BERT -
eGeMAPS, Multimodal BERT - ViT, and Multimodal BERT -
eGeMAPS + ViT outperform all the research initiatives except
(Syed et al., 2021) in terms of the accuracy score by a margin of
5.83–24.58%, 6.66–25.41%, and 7.91–26.66%, respectively.

It is obvious that the unimodal approaches exploiting
only speech data achieve low evaluation results in
comparison with unimodal approaches employing text data or
multimodal models.

5.2. MMSE Regression Task
The results of the proposed models mentioned in section 3.3 for
the MMSE regression task are reported in Table 5. In addition, in
this table we compare the results of our introduced models with
research works proposing multimodal approaches, unimodal
models using only text data, and unimodal approaches using only
speech data.

Regarding our proposed models, one can observe from
Table 5 that BERT + ViT + Gated Self-Attention obtains
the lowest RMSE score accounting for 3.61 followed by
BERT + ViT + Co-Attention, whose RMSE score is equal to
4.20. Regarding Multimodal BERT - eGeMAPS, Multimodal
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TABLE 4 | AD Classification Task: Performance comparison among proposed models and state-of-the-art approaches on the ADReSS Challenge test set.

Architecture Precision Recall F1-score Accuracy Specificity

State-of-the-art approaches (Multimodal)

Cummins et al. (2020) - - 85.40 85.20 -

Rohanian et al. (2020) - - - 79.20 -

Edwards et al. (2020) 81.82 75.00 78.26 79.17 -

Pompili et al. (2020) 94.12 66.67 78.05 81.25 -

Koo et al. (2020) 89.47 70.83 79.07 81.25 -

Martinc and Pollak (2020) - - - 77.08 -

Pappagari et al. (2020) 70.00 88.00 78.00 75.00 -

Zhu et al. (2021) 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86 82.92 ± 1.56 -

Mahajan and Baths (2021) 78.94 62.50 69.76 72.92 -

Shah et al. (2021) - - - 83.00 -

Syed et al. (2021) - 87.50 - 89.58 91.67

Sarawgi et al. (2020) 83.00 83.00 83.00 83.00 -

Syed et al. (2020) - - - 79.17 -

State-of-the-art approaches (only Text)

Cummins et al. (2020) - - 81.20 81.30 -

Rohanian et al. (2020) - - - 72.90 -

Edwards et al. (2020) 80.95 70.83 75.56 77.08 -

Pompili et al. (2020) 82.35 58.33 68.29 72.92 -

Koo et al. (2020) 80.00 83.33 81.63 81.25 -

Pappagari et al. (2020) 69.00 83.00 75.00 72.92 -

Zhu et al. (2021) 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55 82.08 ± 2.83 -

Mahajan and Baths (2021) 76.47 54.16 63.41 68.75 -

Shah et al. (2021) - - - 85.00 -

Syed et al. (2021) - 91.67 - 91.67 91.67

Syed et al. (2020) - - - 85.42 -

Balagopalan et al. (2021) 83.89 83.33 83.27 83.32 83.33

Meghanani et al. (2021b) 86.00 79.00 83.00 83.33 88.00

State-of-the-art approaches (only Speech)

Cummins et al. (2020) - - 70.80 70.80 -

Rohanian et al. (2020) - - - 66.60 -

Edwards et al. (2020) 58.62 70.83 64.15 60.42 -

Pompili et al. (2020) 54.17 54.17 54.17 54.17 -

Koo et al. (2020) 78.95 62.50 69.77 72.92 -

Pappagari et al. (2020) 70.00 58.00 63.00 66.70 -

Zhu et al. (2021) 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84 66.20 ± 4.79 -

Mahajan and Baths (2021) 65.21 62.50 63.82 64.58 -

Shah et al. (2021) - - - 65.00 -

Syed et al. (2021) - 83.33 - 81.25 79.17

Chlasta and Wolk (2021) 62.50 62.50 62.50 62.50 62.50

Meghanani et al. (2021a) 82.00 38.00 51.00 64.58 92.00

Syed et al. (2020) - - - 64.58 -

Proposed transformer-based models

BERT+ViT+Co-Attention 92.83 ± 6.39 81.67 ± 2.04 86.81 ± 3.37 87.50 ± 3.49 93.33 ± 6.24

Multimodal BERT -

eGeMAPS

74.51 ± 1.01 87.50 ± 6.45 80.35 ± 2.77 78.75 ± 2.04 70.00 ± 3.12

Multimodal BERT - ViT 73.91 ± 2.40 91.67 ± 2.64 81.79 ± 1.72 79.58 ± 2.04 67.50 ± 4.08

Multimodal BERT -

eGeMAPS+ViT

76.57 ± 3.74 89.17 ± 5.65 82.28 ± 3.49 80.83 ± 3.58 72.50 ± 5.65

BERT+ViT+Gated

Self-Attention

90.87 ± 3.50 89.17 ± 2.04 89.94 ± 1.36 90.00 ± 1.56 90.83 ± 4.08

Reported values are mean ± standard deviation. Results are averaged across five runs. Best results per evaluation metric are in bold.
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BERT - ViT, and Multimodal BERT - eGeMAPS + ViT, it is
obvious that these neural networks are complex for the MMSE
regression task achieving RMSE scores equal to 5.64, 5.50, and
5.62, respectively.

In comparison to the multimodal approaches, as one can
easily observe from Table 5, BERT + ViT + Gated Self-Attention,
which constitutes our best performing model, improves the
RMSE score obtained by the multimodal state-of-the-art
approaches by 0.15–2.40. Regarding BERT +ViT +Co-Attention,

TABLE 5 | MMSE Regression Task: performance comparison among proposed

models and state-of-the-art approaches on the ADReSS Challenge test set.

Architecture RMSE

State-of-the-art approaches (Multimodal)

Cummins et al. (2020) 4.65

Rohanian et al. (2020) 4.54

Koo et al. (2020) 3.77

Pappagari et al. (2020) 5.32

Shah et al. (2021) 6.01

Syed et al. (2021) 4.47

Martinc and Pollak (2020) 5.06

Syed et al. (2020) 4.91

Farzana and Parde (2020) 4.34

State-of-the-art approaches (only Text)

Cummins et al. (2020) 4.66

Rohanian et al. (2020) 4.88

Koo et al. (2020) 4.02

Pappagari et al. (2020) 5.86

Shah et al. (2021) 5.62

Syed et al. (2021) 3.74

Syed et al. (2020) 4.30

Farzana and Parde (2020) 4.61

Meghanani et al. (2021b) 4.87

State-of-the-art approaches (only Speech)

Cummins et al. (2020) 6.45

Rohanian et al. (2020) 5.93

Koo et al. (2020) 5.08

Pappagari et al. (2020) 5.97

Shah et al. (2021) 6.67

Syed et al. (2021) 5.86

Meghanani et al. (2021a) 5.90

Farzana and Parde (2020) 6.42

Syed et al. (2020) 5.18

Proposed Transformer-based models

BERT+ViT+Co-Attention 4.20 ± 0.47

Multimodal BERT -

eGeMAPS

5.64 ± 0.11

Multimodal BERT - ViT 5.50 ± 0.30

Multimodal BERT -

eGeMAPS+ViT

5.62 ± 0.12

BERT+ViT+Gated

Self-Attention

3.61 ± 0.48

Reported values are mean ± standard deviation. Results are averaged across five runs.

Best results are in bold.

it improves the RMSE scores of all the existing research
initiatives, except Bimodal Network (Ensembled Output) (Koo
et al., 2020), by 0.14–1.41. In terms of the Multimodal BERT
- eGeMAPS, Multimodal BERT - ViT, and Multimodal BERT
- eGeMAPS + ViT, it seems that these architectures are rather
complex for the MMSE regression task improving the RMSE
score of only one research work (Shah et al., 2021).

In comparison with the unimodal approaches exploiting only
text data, one can easily observe from Table 5 that BERT + ViT +
Gated Self-Attention performs better than the existing research
initiatives improving the current RMSE score by 0.13-2.25. In
addition, BERT + ViT + Co-Attention achieves comparable
performance to existing research works outperforming all the
existing research works, except Transformer-XL (Koo et al.,
2020) and Text (fusion) (Syed et al., 2021), by 0.10-1.66. Finally,
Multimodal BERT - ViT obtains lower RMSE score than the one
obtained by Pappagari et al. (2020) and Shah et al. (2021).

In comparison with the unimodal approaches using only
speech data, one can observe from Table 5 that BERT + ViT
+ Gated Self-Attention outperforms all the research initiatives
by a large margin of 1.47–3.06. Similarly, BERT + ViT + Co-
Attention obtains lower RMSE score than the scores achieved
by all the research works. Specifically, the performance gain
ranges from 0.48 to 2.47. Finally, Multimodal BERT - eGeMAPS,
Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS
+ ViT outperform all the state-of-the-art approaches, except
Attempt 3 (Syed et al., 2020) and VGGish (Koo et al., 2020),
improving the RMSE score by 0.22–1.03, 0.36–1.17, and 0.24–
1.05, respectively.

It is obvious that the research works exploiting only speech
data obtain higher RMSE scores than the ones exploiting text data
or the combination of text and speech data.

6. DISCUSSION

The detection of dementia from spontaneous speech has
emerged into a hot topic throughout the years due to the
fact that it constitutes a time-effective procedure. Although
dementia detection from speech is a hot topic and item of
interest from several researchers around the world, there are
still significant limitations that need to be addressed. The main
limitation is pertinent to the way the different modalities,
i.e., acoustic, visual, and textual, are combined in a single
neural network. Research works having proposed multimodal
methods tend to train separately acoustic, language, and
visual models and then apply majority vote or average-based
approaches for the AD classification and MMSE regression
task, respectively. In addition, they tend to add or concatenate
the representations obtained by the different modalities, thus
treating equally each modality. Therefore, in this study, we aim
to tackle the aforementioned limitations and propose three
novel architectures, which combine the different modalities
effectively achieving competitive performance to existing
research initiatives.

From the results obtained in this study for the AD
classification task, we found that:
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• Finding 1: The incorporation of a co-attention mechanism,
which can learn the attention weights for words and image
patches simultaneously, outperforms the multimodal research
initiatives except one in terms of the Accuracy score.

• Finding 2: We propose a method to inject visual and
acoustic modalities along with the textual one into a BERT
model via a Multimodal Shifting Gate. We experiment with
injecting only visual information, only acoustic information,
and their combination. Findings state that the injection of
both modalities performs better than the injection of single
modalities.

• Finding 3: We introduce an approach aiming to model both
the inter- and intra-modal interactions at the same time and
show that this approach is the best performing one among the
introduced approaches.

From the results obtained in this study for the MMSE regression
task, we found that:

• Finding 4: The incorporation of the co-attention mechanism
at the top of the pretrained models, i.e., BERT and ViT, obtains
low RMSE improving all the state-of-the-art approaches
except (Koo et al., 2020; Syed et al., 2021).

• Finding 5: Multimodal BERT models do not perform well
to the MMSE regression task. These architectures are rather
complex for the limited dataset used in this study.

• Finding 6: BERT+ViT+Gated Self-Attention improves the
RMSE score in the MMSE regression task by 0.13–3.06
obtaining a new state-of-the-art result. The ability of this
architecture to perform well both in the AD classification task
and in the MMSE regression task establishes the usefulness
of this architecture for the dementia detection problem and
indicates that both the inter- and intra-modal interactions are
important.

Although the unimodal approach proposed by Syed et al.
(2021) outperforms our best performing model in the AD
classification task, our best performing model obtains better
results in the MMSE regression task. In addition, our introduced
model is more computationally and time-effective, since the
approach by Syed et al. (2021) extracts embeddings by employing
transformer networks, applies feature aggregation techniques,
trains traditional machine learning algorithms, and finally applies
a majority voting approach of the top-3 performing models.
Regarding the multimodal approach proposed by Syed et al.
(2021), it achieves lower evaluation results than the unimodal
approach. We speculate that this degradation in performance
is attributable to the fact that the majority-vote approach
does not take the interactions between the different modalities
into consideration.

One limitation of the present methods is the usage of
a dataset with a limited number of samples available. To
be more precise, the ADReSS Challenge dataset consists of
108 people in the train set and 48 people in the test set.
However, as mentioned in section 3.1, in contrast to other
datasets, this dataset has been created in such a way so as
to mitigate different kinds of biases, which could otherwise
influence the validity of the proposed approaches during the

training and evaluation procedure. More specifically, this
dataset is matched for gender and age. Concurrently, the
recordings have been acoustically enhanced for controlling
for variation caused by recording conditions, such as
microphone placement.

7. CONCLUSION AND FUTURE WORK

In this article, we introduced three novel multimodal neural
networks for detecting dementia (AD classification task) and
predicting the MMSE scores (MMSE regression task) from
spontaneous speech. First, we proposed a model consisting of
BERT, ViT, and a co-attention mechanism at the top of the
proposed architecture, which is capable of attending to both the
words and the image patches simultaneously. Results indicated
that the proposed model achieved an accuracy of 87.50% in
the AD classification task outperforming all the research works
proposing multimodal approaches except one. Regarding the
MMSE regression task, our proposed architecture achieved an
RMSE score equal to 4.20. Secondly, we introduced a deep
learning architecture, where we injected information from the
visual and acoustic modalities along with the textual one into a
BERT model and used an attention gate mechanism to control
the importance of eachmodality. Results for the AD classification
task suggested that the injection of both the acoustic and visual
modalities enhanced the performance of the models achieved
when using only either the acoustic or the visual modality along
with the textual one. Finally, we introduced a transformer-based
network, where we concatenated the representations obtained
via BERT and ViT and passed the representation through a self-
attention mechanism incorporating a novel gating mechanism.
Findings showed that this introduced model was the best
performing one on the ADReSS Challenge test set reaching
Accuracy and F1-score up to 90.00 and 89.94%, respectively. In
terms of the MMSE regression task, our best performing model
obtained an RMSE score of 3.61 improving the state-of-the-art
RMSE scores for the regression task of the ADReSS Challenge by
0.13–3.06.

Our introduced approaches have been conducted on the
ADReSS Challenge dataset. This dataset includes a statistically
balanced and acoustically enhanced set of recordings from
spontaneous speech aiming to address the lack of standardization
and consequently embed novel approaches into clinical
practice. Our proposed approaches developed on both the AD
classification and MMSE regression task can be used for the
development of a remote tool or app, which will be capable of
detecting AD patients and predicting the MMSE scores using
spontaneous speech.

In the future, we plan to investigate more methods on how
to combine the different modalities effectively. In addition, due
to the fact that there are datasets, i.e., ADReSSo Challenge (Luz
et al., 2021), where the manual transcripts are not available,
one should apply automatic speech recognition (speech to text)
methods. Therefore, one of our future plans is to apply our
methods on automated transcripts for exploring differences in
performance in comparison to the manual transcripts.
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