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ABSTRACT Continuous detection of social interactions from wearable sensor data streams has a range
of potential applications in domains including health and social care, security, and assistive technology.
We contribute an annotated, multimodal dataset capturing such interactions using video, audio, GPS
and inertial sensing. We present methods for automatic detection and temporal segmentation of focused
interactions using support vector machines and recurrent neural networks with features extracted from both
audio and video streams. Focused interaction occurs when co-present individuals, having mutual focus
of attention, interact by first establishing face-to-face engagement and direct conversation. We describe
an evaluation protocol including framewise, extended framewise and event-based measures and provide
empirical evidence that fusion of visual face track scores with audio voice activity scores provides an
effective combination. The methods, contributed dataset and protocol together provide a benchmark for
future research on this problem. The dataset is available at https://doi.org/10.15132/10000134.

INDEX TERMS Social interaction, egocentric sensing, multimodal analysis, temporal segmentation.

I. INTRODUCTION

We consider automatic detection of social interactions by
analysis of wearable sensor data. Specifically, we address the
problem of identifying periods during which the wearer of
the sensors, the subject, is involved in focused interaction.
To support work in this area, we provide an annotated,
multimodal dataset, an evaluation protocol, and results from
methods that sequentially parse audio-visual streams to serve
as a baseline for future research.

Focused interaction occurs when two or more co-present
individuals, having mutual focus of attention, interact by
establishing face-to-face engagement and direct conversa-
tion [1]. Face-to-face engagement is often not maintained
throughout the entirety of a focused interaction; for example
a group of people talking while in conversation will typically
look at each other only intermittently. This concept of fo-
cused interaction is more specific than that of social interac-

tion which can be considered to occur whenever individuals
communicate and interact with one another whether or not
they are physically co-present, e.g. by telephone [2]. In par-
ticular, the category focused interaction excludes unfocused
interactions in which individuals, though co-present, do not

establish a direct engagement and conversation [1]. Individ-
uals in an unfocused interaction are aware of each others’
presence but establish only indirect engagement which might
involve brief eye contact, or facial expressions for example.

Automatic identification of a subject’s focused interactions
has various potential applications such as in behaviour under-
standing for health and social care [3], [4], evidence manage-
ment for security and law enforcement (video ’badges’) [5]–
[7], and as a precursor to more fine-grained analysis of inter-
actions. In order to facilitate and encourage research on this
problem we provide a multimodal dataset that includes one-
to-one interactions as well as group interactions, in a range
of indoor and outdoor scenarios. All focused interactions
and unfocused interactions are annotated. We present results
on this dataset for one particular task, that of sequential
recognition of focused interactions based on audio and visual
data streams. Figure 1 shows video frames from four of the
focused interactions in the dataset. These examples highlight
the variability of viewpoint, location, and illumination, and
the fact that interaction partners are not always in the field of
view. Audio cues will be especially important in such cases.

This paper extends our preliminary system for discriminat-
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(a) in view, outdoors

(b) in view, indoors

(c) not in view, outdoors

(d) not in view, outdoors at night

FIGURE 1: Video frames from four focused interactions.

ing interactions while walking and not walking using audio-
visual features [8]. We report results for detecting focused
interactions using more data, temporal filtering, and Long
Short-Term Memory (LSTM) recurrent neural networks as
well as Support Vector Machines (SVMs) using audio-only,
video-only, and audio-visual features. Furthermore, we com-
pare directly with an implementation of a related system
outlined by Hayden [9]. It is not an aim of this paper to
propose novel algorithms for sub-tasks such as face detec-
tion, face tracking and voice activity detection per se; rather
we investigate their integration to form an effective system.
Additionally, we characterise performance in detail using
frame-wise, extended frame-wise and event-based measures.
The proposed methods, the contributed dataset and the eval-
uation protocol together provide a benchmark for detection
and analysis of focused interactions in ego-centric data. The
dataset should also be useful for investigating tasks such as
location and person association.

II. RELATED WORK

Audio is an integral part of social interaction as voice activity
is prevalent during such interaction. Voice Activity Detection
(VAD) is widely researched in audio signal processing and
useful for several applications such as audio conferencing,
speech encoding, speech recognition, and speaker recogni-
tion [10], [11]. VAD methods detect voice activity (primarily
speech) from a noisy audio signal [12]–[14]. In real-world
videos, VAD is a challenging task as the associated audio sig-
nals are usually degraded due to noise from the surroundings.

Social interaction detection has been investigated using
computer vision. Much of this is from a third-person perspec-
tive [15]–[17] but there is also work on detection and analysis
of interaction from a first-person perspective using wearable
cameras. Egocentric video is relatively unconstrained in na-
ture as it is recorded from a non-static camera worn on the
head or body of a person [18]. In contrast with most third-
person perspective video in which the focus of attention is
usually well captured within the camera’s field of view, in
first-person perspective video the focus of attention may not
always lie in the field of view and the viewpoint varies a lot.
Moreover, life-logging style video is captured in varied en-
vironments in both indoor and outdoor locations (e.g. parks,
restaurants, offices, cars, tourist attractions), at day or night,
and in varied weather conditions. These characteristics often
make automatic analysis of egocentric video more challeng-
ing. Methods developed for third-person perspective video
are often not directly applicable. Analysis of egocentric sen-
sor data has gained the attention of researchers for tasks such
as object recognition [19], [20], activity recognition [21],
temporal segmentation [22], [23], video summarisation for
life-logging [18], person-to-person (person-to-group) inter-
action recognition [24]–[26] and person-to-object interaction
recognition [21], [27]. Audio-visual feature fusion has been
used for applications such as speaker localisation and event
detection in social gatherings using videos captured in highly
controlled indoor settings [28], [29], social interaction detec-
tion in nursing homes using surveillance-type camera videos
[30] and scene change detection in life-logging videos [31].
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Methods have been proposed to detect groups of in-
dividuals interacting with each other or with the camera
wearer [24], [26]. Fathi et al. [24] presented the first study
detecting different types of social interaction in egocentric
video and performed evaluation on data captured at a theme
park (see Table 1). They used a multi-label hidden condi-
tional random field model to detect discussion, monologue
and dialogue based on estimates of faces’ locations and
orientations. Building on earlier work that used the concept
of F-formation in the analysis of third-person perspective
videos captured from static cameras [16], [32], Alleto et

al. [25] applied that concept to detecting social groups in
ego-centric video using the Ego-Group dataset (Table 1).
They designed a pairwise feature vector that describes spatial
relationships between two people based on distances and
orientations. A correlation clustering algorithm was used to
merge people into socially related groups and a structural
SVM-based method was used to learn the weight of each
component of the clustering vector depending on the social
situation. Aghaei et al. [26] proposed a method for detecting
social interaction in low frame-rate photo streams (UB social
interaction dataset - not publicly available). They trained an
LSTM recurrent neural network to detect social interaction
based on estimates of the distance of an individual from the
camera wearer and their relative orientation. They further ex-
tended this work [26] to social style characterisation [33], in
which distance, orientation and facial emotion [34] were used
for social interaction detection; facial emotion and environ-
mental (dimensionality-reduced VGG-NET) features were
used to classify an interaction as formal or informal. These
existing social interaction detection methods [24], [26], [33]
processed data offline and considered short video clips or
photo streams captured from constrained perspectives that
always contained people. In this paper we process long,
continuous sequences in which conversational partners are
not always in the field-of-view during interaction.

SVM classifiers are often used for human activity recogni-
tion based on spatio-temporal features [35], [36]. Recurrent
Neural Networks (RNNs) can represent and make use of
arbitrarily lengthy historical data and are able to exhibit
dynamic temporal behaviour. They have also been used with
some success for human activity recognition [26], [33], [37]–
[39]. For example, Hammerla et al. [37] used RNNs to
recognise activities from wearable device data, Abebe and
Cavallaro [38] used LSTM-RNN for egocentric ambulatory
human activities recognition from pre-segmented video clips
of individual activities, and DeepSense [39] integrated Con-
volutional Neural Networks (CNN) and RNN for solving
both the regression and classification oriented online mobile
sensing problems. By analysing the performance of both
SVM and LSTM-RNN with audio, visual, and audio-visual
features, we aim to obtain a deeper understanding of our
application and dataset, and to provide more comprehensive
benchmarking for future research.

III. FOCUSED INTERACTION DATASET

A. RELATED DATASETS

The number of annotated datasets publicly available for
research that capture social interactions using first-person
cameras and other body-worn sensors is limited. Several
datasets have been captured for related purposes such as
engagement detection [40] and object interaction [20]. Here
we report those datasets acquired with similar aims in mind to
ours (summarised in Table 1). The UT Ego dataset contains
recording of daily activities which include interactions with
friends [19]. However, only 4 of 10 videos without audio have
been made available with people anonymised by blurring
their faces for privacy reasons. The UB Social Interaction
dataset contains photo streams without audio captured at
2 frames per minute using a narrative camera [26]. Their
duration varied from 5 to 20 minutes (10 to 40 frames) and
each stream always contained at least one individual either
interacting or not interacting with the camera wearer. The
Ego Group dataset contains multiple short photo streams
without audio totaling 2900 frames (116 secs) that capture
multiple people interacting as social groups in different sit-
uations: in a laboratory, at coffee break, in a conference
room and in an outdoor setting [17]. The First-Person Social
Interaction dataset contains day-long videos of multiple peo-
ples’ experience of visiting a theme park [24]. These videos
are labelled for three different types of social interaction
(dialogue, discussion and monologue) and for activities such
as walking, waiting, gathering, sitting, buying something, and
eating. However, these activities and interactions occurred in
a relatively unusual setting; our everyday scenarios are sig-
nificantly different from activities performed in a theme park.
Moreover, this dataset has focused or unfocused interaction
throughout its entirety as the camera wearer was always
accompanied by a partner. In everyday scenarios, we are not
necessarily accompanied throughout the day. We meet and
interact with certain people often in some particular locations
(e.g. breakfast with family, greeting colleagues at workplace)
but these interactions do not last all day long.

We contribute a Focused Interaction dataset that, unlike
existing datasets, continuously captures various interactions
interspersed naturally with periods of no interaction, in real-
world unconstrained scenarios and in varying environmental
conditions (e.g. indoor/outdoor, day/night) using video, au-
dio, inertial sensing, and GPS.

B. SENSORS

We carried out initial feasibility trials with four differ-
ent wearable camera set-ups: an Edesix VB-300 camera2

with shirt pocket mount, a head-mounted GoPro Hero 4, a
shoulder-mounted GoPro Hero 4, and Vuzix M100 smart
glasses3. All these camera set-ups captured video from an
ego-centric perspective. The M100 and VB-300 often failed
to capture the focus of interest due to narrow field of view

2Edesix VB-300: https://www.edesix.com/products/vb-300, last ac-
cessed: 10062018.

3Vuzix M100: https://www.vuzix.com/products/m100-smart-glasses, last
accessed: 10062018
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TABLE 1: Related egocentric datasets concerned with social interaction. Key: NS - not specified; RES - frame resolution;
Vfps - video frame rate.

Dataset name Camera Mount
Video

released

Audio

released

Blurred

faces
RES Vfps Annotation Description

UT Ego
Dataseta [19]

Looxcie
camera

Around
ear

4/10
videos

× X 320× 480 15
Objects of interest (OI)
or not, binary mask for
regions with OI

Continuous videos that capture daily
activities such as eating, shopping,
attending a lecture, driving, and
cooking.

UB Social
Interaction
Datasetb [26]

Narrative
camera

Body
X

(images)
× × 512× 385 2fpm

Bounding boxes
around faces in each
frame

Multiple short photo streams always
containing one or more individuals at
times involved in interaction with the
camera wearer.

Ego Group
Datasetc [17]

NS NS X × × 960× 540 NS
Group number
assigned to each
person in a frame

Multiple short video clips that always
contain people, capturing social groups
in four situations: laboratory, coffee
break, conference room and outdoor
scenario.

First-Person
Social
Interaction
Datasetd [24]

GoPro
Head
cap

X X × 1280×720 30
Activity type, social
interaction type

Continuous videos captured at a theme
park containing activities (walking,
waiting, sitting, buying, eating, etc) and
social interactions labeled as dialogue,
discussion and monologue.

Focused

Interaction

Datasete

GoPro
Hero4

Shoulder X
Voice

activity
×

1920×

1080
25

Focused, unfocused
and no interaction
along with person ID

Continuous videos captured at various
locations (indoor, outdoor, day & night
time, office, campus). Focused and
unfocused interactions with multiple
people interspersed with periods of no
interaction.

aUT Ego Dataset: http://vision.cs.utexas.edu/projects/egocentric_data/UT_Egocentric_Dataset.html (last accessed: 10-06-2018)
bUB Social Interaction Dataset: http://www.ub.edu/cvub/dataset/egosocialstyle/ (last accessed: 19-06-2018).
cEgo Group Dataset: http://giuseppeserra.com/content/egocentric-vision-detecting-social-relationships (last accessed: 10-06-2018)
dFirst Person Social Interaction Dataset: http://ai.stanford.edu/~alireza/Disney/ (last accessed: 10-06-2018)
eFocused Interaction Dataset: https://doi.org/10.15132/10000134

and had unwanted jitter motion when the camera wearer
was walking due to semi-rigid mounts and lack of optical
stablisation. GoPro, on the other hand, comes with an inbuilt
optical stabilisation which compensates for the unwanted
camera motions, and has a wider field-of-view. The recorded
video quality of GoPro is better than the M100 and VB-300
as it captures sharp videos with high resolution. A head-
mount enabled capturing head motion along with the body
motion but its appearance was bulky making the camera
wearer uncomfortable both in terms of the added load on the
head and unnecessary attention from passers-by. A shoulder-
mount captured only the body motion but it was less ob-
structive to the camera wearer and preferred in terms of
comfort and ease of use. Due to the wide-angle of the GoPro,
even with the shoulder-mount, the subject’s focus of interest
was captured most of the time. For these reasons we used a
shoulder-mounted GoPro Hero 4 to capture audio and video.
We also used a smartphone (placed in the camera wearer’s
right-hand trouser pocket) to capture GPS, accelerometer and
gyroscope data. The Androsensor4 android app was installed
on the smartphone logging sensory data to a csv file on the
SD card.

C. DATASET COLLECTION PROCEDURE

We obtained ethical approval to record at a range of indoor
and outdoor locations on campus. Written consent was ob-
tained from each conversational partner. No children were

4Androsensor: https://play.google.com/store/apps/details?id=com.
fivasim.androsensor (last accessed: 10062018)

recorded, either intentionally or unintentionally. The subject
wore a badge stating that recording was being undertaken for
research purposes. Conversational partners were not given
any specific instructions to restrict their movement; they were
simply asked to have routine interactions.

At the beginning of each recording session, the AndroSen-
sor app and the camera record buttons were turned on. Since
these devices started recording at slightly different times, the
data streams from the two devices were not synchronised.
A synchronisation pulse was therefore generated with a clap
action performed by the subject while holding the smart-
phone in the hand and in front of the camera. This pulse
can be used for alignment if data from both devices are to be
used. The smartphone was then placed in the subject’s trouser
pocket. The subject then walked around, meeting conversa-
tional partners at various indoor and outdoor locations. The
AndroSensor app and the camera were left on continuously
throughout each session.

D. DATASET DETAILS

Table 2 details characteristics of the collected focused inter-
action dataset. This dataset contains 377 minutes (including
566,000 video frames) of multimodal recording including
periods in which the wearer is engaged in focused inter-
actions, unfocused interactions, and no interaction. Exper-
iments in this paper use only video and audio data; data
from the other sensors was recorded so that it might be
incorporated in future studies. In order to introduce diversity
in the dataset, recordings were captured while visiting 18
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TABLE 2: Details of the dataset. Key: CP - conversational
partner; FOV - field of view; fps - frames per second.

Description Value

Total number of sessions 19
Total duration of sessions 377.37 mins

Minimum session length 6.37 mins

Maximum session length 51.83 mins

Focused interaction duration (CP in FOV) 239.77 mins

Focused interaction duration (CP not in FOV) 49.68 mins

Unfocused and no interaction duration 87.92 mins

Number of subjects (camera wearers) 1
Total number of CPs 17
Total number of locations 18
Total number of focused interaction instances 145
Video frame rate 25 fps

Video resolution 1920× 1080

Audio sampling rate 48 kHz

different indoor and outdoor locations at different times of
the day and night, and in different environmental conditions
(e.g. sunny or cloudy, with background noise from nearby
people and cars). Videos were recorded at 25 fps with 1080p
resolution and 48 KHz audio sampling rate. In total, 19
separate sessions were recorded. The duration of sessions
varied and depended on the will of the subject to record
scenarios in which they felt comfortable. The shortest session
was 6 mins and included one focused interaction. The longest
session was 52 mins and included 16 focused interactions.
In total, there are 240 mins of focused interactions in which
conversational partners are in the field-of-view most of the
time (e.g., Figure 1(a) and (b)); their positions and face
orientations vary significantly. There are 50 mins of focused
interactions in which the conversational partners are not in
the field-of-view (e.g. while walking as in Figure 1(c) and
(d)). The remaining 88 mins contain either unfocused or no
interaction. Variations in background and face orientation as
exemplified in Figure 1 present a challenge to face detectors
and trackers.

E. DATASET ANNOTATION

Annotation was performed by the subject; having been in-
volved directly in all interactions we believe the subject is
the best person to judge when interactions begin and end. A
sample video was also annotated by an independent observer
for calibration purposes. The subject used the ELAN tool5

to label all focused and unfocused interactions. This entailed
marking the points in time at which a person joins or leaves
an interaction. Additionally, transitions between stationary
interactions and interactions while walking were marked.
Anonymised IDs for people involved in each focused inter-
action were also provided.

IV. METHODS

We perform sequential processing of both audio and video
streams simultaneously to obtain audio-visual feature vectors

5ELAN: https://tla.mpi.nl/tools/tla-tools/elan/, last accessed: 10062018.

(see Figure 2) upon which our models are trained for online
detection of focused interaction in continuous data streams.

A. VISUAL FEATURE EXTRACTION

We use a Histogram of Oriented Gradient (HOG)-based face
detector in each frame [41]. Given the relatively uncon-
strained nature of egocentric video, some false face detec-
tions and missed detections are inevitable. Therefore, we
use Kanade-Lucas-Tomasi (KLT) point tracking to refine
face detection results. KLT tracking is more precise than
alternatives such as mean-shift face tracking because it tracks
multiple corner features which provides a certain robustness
against tracking failures [42]. As soon as a face is detected,
tracking is initiated to track points on the face in subsequent
frames. The points to be tracked are refreshed by getting
input from the face detector every tenth frame. If the face
detector outputs a face bounding box that overlaps with the
tracker bounding box, the points are updated and tracking
continues. Alternatively, the track is terminated if no face is
detected at the same position as that of the tracker or if all
points that were tracked are lost.

The KLT tracker returns confidence scores for the point
tracks. These scores are computed based on the similarity
of the neighborhood of a tracked point in the current frame
with its neighbourhood in the previous frame. We compute a
face tracker score (denoted as T ) by summing the confidence
scores of all points tracked on a face [8]. In the absence of
a track this score is zero whereas in the presence of a track
it takes the value obtained by accumulating the confidence
scores. It depends on the number of points tracked per face
(and is certainly no larger than the number of pixels in the
face detection box). The track score is high if lots of face
points are tracked with confidence. Where multiple faces
are tracked, only the face with the longest track duration
is selected for inclusion in the current feature set as short
duration tracks often correspond to false detections or brief
unfocused interactions (e.g., walking past another person).
Although our approach gave reliable face tracks, it is worth
mentioning that a library such as OpenPose6 can also be
useful for solving this problem.

In addition to track score, we experimented with two
other visual features extracted from the face track of longest
duration. These were the face detection score (F ) returned by
the frame-wise face detector and the height (H) of the tracked
face bounding box. Clearly height carries information about
the distance of the tracked face from the subject.

B. VOICE ACTIVITY DETECTION

We utilise the method and implementation of Segbroeck
et al. [13] for Voice Activity Detection (VAD). It combines
four types of discriminative audio features to detect voice ac-
tivity in noisy real-world environments, specifically, spectral
shape, spectro-temporal modulations, harmonicity (presence
of pitch harmonics) and long-term spectral variability. The

6https://github.com/CMU-Perceptual-Computing-Lab/openpose
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FIGURE 2: Overview of audio and visual feature extraction, temporal windowing and feature fusion. (Best viewed in colour.)

resulting VAD scores (denoted as V ) range from 0 to 1; a
score at 0 indicates no voice activity while a score close
to 1 indicates with high confidence the occurrence of voice
activity.

C. AUDIO-VISUAL FEATURE FUSION

Visual and audio features are obtained at different sampling
rates; visual features are updated once every video frame, i.e.
at 25 Hz, whereas VAD scores are computed every 10 ms,
i.e. at 100Hz, given an input audio stream with sampling rate
of 8 kHz (the default setting proposed by [13]). The captured
audio stream is down-sampled from 48 kHz to 8 kHz for
input to the VAD algorithm. In order to fuse these features
we resample the audio features. Specifically, we average four
consecutive VAD scores, with a step size of four, to get the
score at the same rate as that of the video features.

In order to fuse the different audio and video features, each
feature is normalised to have zero-mean and unit variance
based on estimates of its mean and variance obtained from
training data. The features are then concatenated to form a
feature vector for each frame.

D. TEMPORAL SEGMENTATION OF FOCUSED

INTERACTION

The task to be performed is to sequentially process the input
audio-visual data stream in order to identify temporal seg-
ments corresponding to periods of focused interaction. One
way to formulate a solution is to classify each frame as either
belonging or not belonging to a focused interaction. We tried
two methods to achieve this binary classification of frames:
(i) classification using a Support Vector Machine (SVM)
based on features extracted from a fixed-length temporal
window, and (ii) classification using a recurrent neural net-

work with Long Short-Term Memory (LSTM-RNN) based
on relevant information remembered from features extracted
from frames up until the current frame.

1) Sliding window SVM classification

We train linear SVMs on feature vectors which are the
concatenation of the audio and video features extracted from
each of M consecutive frames. The goal is to assign to each
such temporal window the class label of the last frame of
that window. We choose to predict the label for the last
frame (rather than the middle frame) in order to obtain a low
latency method; this is however more challenging and likely
to increase fragmentation errors. Windows are extracted with
a stride of S frames resulting in a classification at every Hth

frame (Figure 2). We used the Matlab implementation of L2-
regularised SVM (calibrated) with dual solver.

2) LSTM-RNN classification

In order to train an LSTM-RNN, we construct batches of
size k = 4 as in [37]. A training set consists of multiple
videos of various durations. We begin by selecting k training
videos at random. Audio-visual feature vectors are extracted
from temporal windows of length M at the beginning of
these videos and form the first training batch, b1. Subsequent
batches are formed by moving the temporal windows forward
in time by M frames for each new batch. Whenever the end
of a video is reached, it is replaced by another video selected
at random from those not yet used for training in the current
epoch. This batch formation process continues until batches
have been formed across all the training data; training on all
these batches constitutes an epoch.

Whenever the end of a video is reached and replaced by
another video from which windows begin to be processed,
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FIGURE 3: Batch formation for LSTM-RNN training from
multiple videos. Feature vectors are extracted from temporal
windows of length M . The windows move by M frames at
each new batch to form bi. Dk denotes the kth training video.

the state of the LSTM is reset; this avoids learning across the
discontinuous transition from one video to another. Training
an RNN on a long sequence can result in it essentially mem-
orizing the whole sequence. The method described above
avoids this by resetting the state of the RNN at the end of
a video. At the start of RNN training we used a learning rate
of 0.1 and decreased this by a factor of 10 in each epoch. The
network typically reached convergence after 3 epochs. The
batch formation process is illustrated in Figure 3.

3) Temporal filtering

Directly thresholding classifier output at a predefined thresh-
old can result in classification errors due to the short-term
fluctuations in the output. We experiment with applying a
temporal median filter (with empirically selected window
size of 145 frames) to smooth such fluctuations.

E. BASELINE METHOD

We implemented the method of [9] as faithfully as the level
of detail provided in that thesis allowed. Note that the dataset
used in [9] has not been made available. This method is
similar in that it uses both audio and video features and is
motivated by continuous life-logging in real-world scenarios.
In contrast, methods such as [25], [26] used only visual
features, were designed for evaluation on short photo streams
or video clips always containing people, and rely on face
tracks being present during interaction [26] or emphasise
analysis of groups of several people interacting [25].

Face presence, size, and head pose features were obtained
using the method of Zhu and Ramanan [43]. Head pose
estimation returned head orientation quantised to 15 degree
intervals in the range -90 degrees to +90 degrees. The audio
stream was divided into intervals such that each interval
contained audio samples equivalent to one video frame. For
each interval, basic energy statistics [44] were computed
such as mean, standard deviation, average absolute difference
(between the sample values in each interval) and the 10-
binned distribution of the sample values in each interval. For
the 10-binned distribution, the range (maximum-minimum)
of the whole audio stream was first computed and then
divided into equal bins. These visual and audio features were
normalised and temporal segmentation of focused interaction

was performed as detailed in Sec. IV-D using an SVM with a
linear kernel.

V. EVALUATION PROTOCOL

We perform 6-fold cross-validation to estimate expected per-
formance. Since sessions are of varying duration it is not
possible to have exactly equal numbers of frames in each fold
without breaking up sessions arbitrarily into smaller parts.
Instead sessions are assigned to folds in such a way as to
obtain folds of approximately equal total size (c. 60 mins).
We use standard framewise, extended framewise, and event
measures.

A. STANDARD FRAMEWISE MEASURES

At a chosen operating point (obtained by thresholding the
output at 0.5 for both SVM and LSTM), precision - P , recall
- R (true positive rate), F1-score - F and fall-out - O (false
positive rate) are computed from the confusion matrix. We
plot the Receiver Operating Characteristic (ROC) curve and
compute the Area Under the Curve (AUC). We also report
the Equal Error Rate (EER).

B. EXTENDED FRAMEWISE MEASURES

Extended framewise measures are computed by first dividing
the ground-truth and predicted label streams into segments
such that a new segment is marked whenever a change occurs
in either stream. False positive segments are categorised
as insertion errors, merge errors (joining two true positive
segments), overfill at start errors (a detection starts too early),
and overfill at end errors (a detection ends too late). Extended
framewise measures corresponding to these categories can
then be defined as the proportion of negative frames in each
category [45]:

ir =
If
N
, mr =

Mf

N
, oα =

Oα
f

N
, oω =

Oω
f

N
(1)

where If , Mf , Oα
f and Oω

f are the numbers of frames in
the insertion, merge, overfill at start, and overfill at end
categories, and N is the total number of negative labels, i.e.,
N = If +Mf + Oα

f + Oω
f + TN . Similarly, false negative

errors are categorised as deletion errors, fragmentation errors
(between two true positive segments), underfill at start errors
(a detection starts too late), and underfill at end errors (a
detection ends too early). The corresponding extended frame-
wise measures for false negatives are:

dr =
Df

P
, fr =

Ff

P
, uα =

Uα
f

P
, uω =

Uω
f

P
(2)

where Df , Ff , Uα
f and Uω

f are the number of frames in the
deletion, fragmentation, underfill at start and underfill at end

categories, and P is the total number of positive labels, i.e.,
P = Df + Ff + Uα

f + Uω
f + TP .

C. EVENT MEASURES

An event is a contiguous segment of positive frames, in
either the ground-truth labelling or in the predicted labelling.
Ground-truth and prediction events can be categorised with
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FIGURE 4: (a) Event-based annotation of the ground-truth and predicted label streams. (b) Event Analysis Diagram (EAD).
(Adapted from [45])

respect to one another, as insertions (I), deletions (D), frag-
mentations (F ), merges (M ), fragmented merges (FM ), or
correct matches (C), as illustrated by the schematic in Fig-
ure 4(a). These event-based measures can be visually sum-
marised in an Event Analysis Diagram (EAD) (Figure 4(b)).

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. QUALITATIVE EXAMPLE

Audio and video data complement each other. There are
times during focsued interaction when visual cues are miss-
ing (e.g. when walking side-by-side) or audio cues are miss-
ing (e.g. when pausing for thought). Fusion of visual and
audio cues facilitates detection of such interaction.

Figure 5(a) shows an example tracker score sequence.
Representative frames from that video are shown and labelled
(i) - (x). Correct face tracks occur between (iii) to (v) and
from (ix) to (x). The true face tracks have greater duration
than the false ones, as tends to be the case more generally.
At (v), KLT loses track as the person moves out of view but
shortly afterwards a new track is generated once the person
moves back into view. Likewise, at (x) the track is lost due to
full face occlusion but is recovered once the face is detected
again after a short while.

Figure 5 (b) shows estimated VAD scores. Voice activity
from nearby people is picked up by the detector at (i). At (ii),
a focused interaction begins and voice activity is detected
but no face is detected until (iii) due to motion blur and
distance of the participant from the camera. Another focused
interaction begins at (viii); although there is no face present in
the field-of-view of the camera at this point, voice activity is
detected. Note that even when the tracker is lost at (v) and (x),
voice activity is still detected. Due to environmental noise
(recording on a windy day), voice activity is falsely detected
between (vi) and (viii) albeit with relatively low scores. Au-
tomatic doors opening and closing and environmental noise
influenced the VAD scores before (i).

B. SINGLE-FRAME CLASS-CONDITIONAL DENSITIES

If the temporal window is set to a single frame (M = 1)
and the feature set is restricted to VAD and track scores,
the resulting two-dimensional feature space can be easily
visualised. Figure 6 shows plots of class-conditional densities
in this case, estimated from the entire Focused Interaction
dataset. The density for the positive class is bimodal, reflect-
ing the natural ebb and flow of conversations occuring during
focused interactions with pauses and turn-taking between the
subject and conversational partners more distant from the
sensor. The negative class density shows a spread of track and
VAD scores with a clear peak at low VAD and track score.

C. STANDARD EVALUATION

We report results using several different combinations of
feature sets and classifiers. The term TV-SVM denotes the
use of an SVM classifier with tracker (T) and VAD (V)
scores, for example, whereas FHTV-LSTM denotes an RNN
classifier with the complete feature set. F and H denote face
detection and face height scores, respectively (Sec. IV-A). We
refer to the method described in Sec. IV-E as either Vid_MIT
(visual feature-based), Aud_MIT (audio feature-based) or
Vid_Aud_MIT (audio-visual feature-based).

We select the window size (M) through experimentation
by varying it and observing SVM performance. The tracker
score exhibits a low frequency behaviour (Figure 5(a)) and
doesn’t require integration of many frames for reliable pre-
diction. On the other hand, the VAD score exhibits large fluc-
tuations with relatively high frequencies during conversation
(Figure 5(b)) and needs the integration of adjacent frames for
reliable prediction. We found that the performance of TV-
SVM remains stable when selecting window sizes between
25 to 50 frames. Therefore, in subsequent experiments we
fixed M to 50. Note that this window duration is sufficient to
span many of the gaps in voice activity that occur and which
result in short intervals of low VAD score.

Table 3 and Figure 7 report framewise measures. From
Figure 7, we observed that the performances of visual-only
methods were comparatively poor with AUCs of 0.80 and
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FIGURE 5: (a) Tracker scores and (b) VAD scores from an example sequence. Video frames at times indicated with vertical
dashed lines are shown in (i)-(x). A focused interaction starts at (iii) and ends at (vi). Another focused interaction starts at (viii).

(a) (b)

FIGURE 6: Class-conditional densities estimated from
tracker and VAD scores at every frame. (a) Density plot for
the positive class (focused interaction). (b) Density plot for
the negative class (no focused interaction). (Best viewed in
colour)

0.72 for FHT-SVM and T-SVM, respectively. The baseline
Vid_MIT AUC (0.65) was the lowest among the different
video-based feature sets and T-LSTM AUC (0.81) was the
highest. Vid_MIT performance was low as it only considers
spatial visual features which are not always present due
to missed face detection. The use of VAD alone (V-SVM)
performed better than the visual-only feature set giving an
AUC of 0.89 suggesting voice activity provides a strong cue
for the presence or absence of a focused interaction. The
baseline Aud_MIT, on the other hand, poorly performed with
an AUC of 0.51 due to the use of only basic statistical fea-
tures compared to VAD that incorporated spectro-temporal

behaviour of the human voice. The features in Aud_MIT
give the representation of sound in the audio stream and
are not capable of differentiating between human voice and
environmental noise (sounds from the background).

The best focused interaction detection results were
achieved using audio-video fusion: FHTV-SVM and TV-
SVM had AUCs of 0.94 and 0.93, respectively and FHTV-
LSTM and TV-LSTM had AUCs of 0.93 and 0.94. This
suggests that audio-visual fusion is beneficial for focused in-
teraction detection. The baseline Vid_Aud_MIT AUC (0.62)
was the lowest because of the poor performance of the
audio and visual features used in the method. The F1-scores
reinforce this with the best F1 of 0.94 obtained by TV-
SVM, followed by FHTV-SVM, FHTV-LSTM, TV-LSTM
and V-SVM with F1-scores of 0.93, 0.93, 0.93 and 0.91,
respectively. Audio and visual features such as VAD and face
track scores complement each other and together provide an
effective feature set; addition of face detection score and face
height did not help. The presence of a reliable face track and
voice activity together provide strong evidence for a focused
interaction. The lowest EER for a visual-only feature set was
0.20 for T-LSTM, for audio-only it was 0.18 for both V-
SVM and V-LSTM, and for audio-visual it was 0.13 for both
TV-SVM and TV-LSTM. This shows that EER with the TV
feature set is lower by 5% and 7% than with V and T alone.

We compared results obtained using the SVM and LSTM
methods (as detailed in Sec. IV-D). The LSTM method
did not yield any significant improvement over the SVM.
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FIGURE 7: ROC curves for (a) visual, (b) audio, and (c) audio-visual features.

TABLE 3: Framewise classification measures pooled over validation folds. Key: P - precision; R - recall; F - F1-score; O -
fall-out; AUC - area under curve; EER - equal error rate.

Feature set type Method P R F O AUC EER

Vid_MIT (baseline) 0.7753 0.9119 0.8380 0.8775 0.6508 0.3832
Visual only FHT-SVM 0.7937 0.8257 0.8094 0.7120 0.8038 0.2276

T-SVM 0.7781 0.8483 0.8117 0.8022 0.7215 0.3265
T-LSTM 0.8679 0.8260 0.8465 0.4140 0.8124 0.2042

Aud_MIT (baseline) 0.7685 1.0000 0.8691 1.0000 0.5109 0.5211
Audio only V-SVM 0.9101 0.9139 0.9120 0.2996 0.8899 0.1768

V-LSTM 0.9320 0.8391 0.8831 0.2016 0.8425 0.1784

Vid-Aud_MIT (baseline) 0.7925 0.9077 0.8462 0.7888 0.6188 0.4498
FHTV-SVM 0.9376 0.9275 0.9325 0.2049 0.9358 0.1303

Visual + Audio FHTV-LSTM 0.9412 0.9066 0.9236 0.1864 0.9270 0.1382
TV-SVM 0.9351 0.9387 0.9353 0.2155 0.9332 0.1296
TV-LSTM 0.9486 0.9061 0.9269 0.1618 0.9389 0.1259

The AUCs for FHTV-LSTM and TV-LSTM were 0.93 and
0.94, and their F1-scores were 0.92 and 0.93, respectively.
Comparing these values and the ROC curves in Figure 7 with
those of FHTV-SVM and TV-SVM, we can conclude that
the results from these two classifiers are similar. Considering
the successful TV feature set, we observe by visualising the
predicted stream against ground-truth stream that the errors
in SVM-based methods mainly occur due to the fluctuating
response of the predicted stream at focused interaction labels.
This is because of the varying response of the features
at focused interaction (e.g. varying point trackers due to
movements during conversation, highs and lows of voice).
The LSTM-based method, on the other hand, overcame
such fluctuating responses but resulted in delayed detections.
The extended measures (discussed below) further helped in
analysing these errors.

As supplementary material, we provide example videos
visualising the predicted stream for TV-SVM. These videos
are short clips extracted from a 52 mins long video stream
and highlight the challenges associated with online focused
interaction detection in continuous egocentric videos.

D. EXTENDED EVALUATION

To get further insight into the nature of the temporal seg-
mentations produced by the best performing methods, TV-

SVM and TV-LSTM, we report extended framewise and
event-based measures with and without temporal filtering
(Sec. IV-D3).

Figure 8 reports results for the unfiltered and filtered TV-
SVM. After filtering, the insertion (ir) and fragmentation
(fr) errors were reduced by 3% and 1.7% (see Figure 8(a)
and (b)); TNR and TPR were also improved to 80.2%

and 95.5%, respectively. From the event analysis diagram
(Figure 8(c)), it can be observed that only 21 events were
correctly predicted out of 64 actual events in unfiltered TV-
SVM. A great number of returned events are insertion (1419)
and fragmentation (1071). This is because SVM does not
consider temporal information beyond the temporal window
of M = 50 frames. These returned events were generally
of short duration. As a result, filtering TV-SVM reduced
the insertion returns to 62 and fragmentation returns to 105
(Figure 8(d)). Correct event count also improved to 42 events.

In the case of TV-LSTM, ir and fr were reduced by 2.6%

and 1.4% after filtering (see Figure 9(a) and (b)); TPR and
TNR were improved to 91.9% and 85%, respectively. From
the event analysis diagram (Figure 9(c)), we observe that
fragmentation (999) and insertion (310) returns were high but
not as high as the TV-SVM (unfiltered). Filtering reduced
these errors to 160 and 45, and improved the correct event
count to 35 (Figure 9(d)). The filtered fragmentation events
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(a) TV-SVM (unfiltered) (b) TV-SVM (filtered)

(c) TV-SVM (unfiltered), FM = 2(3.1%), M = 1(1.6%), FM’= 2(0.1%).

(d) TV-SVM (filtered), D = 1(1.6%), M’ = 1(0.5%), FM’ = 3(1.4%).

FIGURE 8: Extended framewise evaluation for (a) TV-SVM (unfiltered) and (b) TV-SVM (filtered). Event-based evaluation
for (c) TV-SVM (unfiltered) and (d) TV-SVM (filtered). Filtering helps in reducing the fragmentation and insertion errors. Best
viewed in colour.

(a) TV-LSTM (unfiltered) (b) TV-LSTM (filtered)

(c) TV-LSTM (unfiltered), FM = 1(1.6%), M = 3(4.7%).

(d) TV-LSTM (filtered), D = 1(1.6%), M’ = 0.8(2.0%), FM’ = 3(1.2%).

FIGURE 9: Extended framewise evaluation for (a) TV-LSTM (unfiltered) and (b) TV-LSTM (filtered). Event-based evaluation
for (c) TV-LSTM (unfiltered) and (d) TV-LSTM (filtered). Filtering helps in reducing the fragmentation and insertion errors.
Best viewed in colour.

for TV-LSTM are higher than TV-SVM (filtered). This was
because some fragmentation events in the case of TV-LSTM
were of long duration; filtering was unable to correct such
errors.

Overall, results from both TV-SVM and TV-LSTM re-
mained comparable even after filtering. This extended evalu-
ation protocol allowed better understanding and visualisation
of the classification errors in sequential data. The analysis
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highlighted additional challenges of this dataset that include
scenarios with background voices (from passing individuals),
relatively long pauses during a conversation especially when
the conversational partner is not facing the camera wearer,
and varied lighting conditions.

VII. CONCLUSION

We have contributed the Focused Interaction dataset cap-
turing everyday interactions from an egocentric perspec-
tive in varying locations and environmental conditions. One
camera wearer performed all the recordings in this dataset.
We presented and evaluated methods for the online de-
tection of focused interaction. In contrast to methods for
detection of social interaction that classify video clips we
perform continuous segmentation. We processed both audio
and visual data streams to obtain audio-visual feature sets.
Temporal segmentation of focused interactions was achieved
via classification using either SVMs or LSTM recurrent
neural networks. Evaluation using various feature sets was
performed in terms of framewise and event-based measures
and comparison was made with a baseline method. It was
shown that integrating audio cues with visual cues improved
the performance of focused interaction detection over the use
of audio or video alone. The SVM-based method gave more
missed-detection intervals of shorter duration compared to
the LSTM-based method which gave longer false-detection
intervals. The proposed method, the new dataset, and the
evaluation protocol provide a benchmark for future research
on focused interaction detection.

In the future, larger data sets with multiple subjects could
be captured to extend the scope of this work and allow testing
of generalisation across subjects. We plan to extend this
work to identify conversational partners and scene-specific
information during interactions in order to enhance assistive
technologies for non-speaking people. Other application do-
mains include behaviour understanding in care settings and
evidence management for law enforcement.
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