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Humans express their emotions in a variety of ways, which inspires research on multimodal fusion-based emotion recognition
that utilizes diferent modalities to achieve information complementation. However, extracting deep emotional features from
diferent modalities and fusing them remain a challenging task. It is essential to exploit the advantages of diferent extraction and
fusion approaches to capture the emotional information contained within and across modalities. In this paper, we present a novel
multimodal emotion recognition framework called multimodal emotion recognition based on cascaded multichannel and hi-
erarchical fusion (CMC-HF), where visual, speech, and text signals are simultaneously utilized as multimodal inputs. First, three
cascaded channels based on deep learning technology perform feature extraction for the three modalities separately to enhance
deeper information extraction ability within each modality and improve recognition performance. Second, an improved hi-
erarchical fusion module is introduced to promote intermodality interactions of three modalities and further improve recognition
and classifcation accuracy. Finally, to validate the efectiveness of the designed CMC-HFmodel, some experiments are conducted
to evaluate two benchmark datasets, IEMOCAP and CMU-MOSI.Te results show that we achieved an almost 2%∼3.2% increase
in accuracy of the four classes for the IEMOCAP dataset as well as an improvement of 0.9%∼2.5% in the average class accuracy for
the CMU-MOSI dataset when compared to the existing state-of-the-art methods. Te ablation experimental results indicate that
the cascaded feature extraction method and the hierarchical fusion method make a signifcant contribution to multimodal
emotion recognition, suggesting that the three modalities contain deeper information interactions of both intermodality and
intramodality. Hence, the proposed model has better overall performance and achieves higher recognition efciency and
better robustness.

1. Introduction

Emotion recognition is one of the key components of hu-
man-computer interaction systems, which have a wide range
of applications. At the same time, people are increasingly
expecting interactive robots to have similar understanding
capabilities and rich emotions as humans, thus putting
forward higher requirements for human-computer inter-
action technology. However, because of the complex emo-
tional characteristics of speakers, humans express emotions
in a variety of ways, including language and facial expres-
sions; therefore, it is not enough for existing service robots to
mechanically rely on one modality for human-computer
interaction, and a lack of understanding of semantic context
and ignoring diferent pieces of emotional information

contained in other diferent modes result in a less intelligent
recognition process [1]. Emotion recognition remains a
challenging task in human-computer interaction, as the
speaker’s emotional information is always refected in dif-
ferent modalities. Comprehensively, considering multiple
data modalities such as text, speech, and facial expression
images can efectively improve the performance of emotion
recognition.

Te emotion recognition system usually consists of four
consecutive modules: data processing, data encoders (fea-
ture extraction), feature fusion, and classifcation modules.
Te core issue of emotion recognition lies in how to ade-
quately extract the information within a single modality and
how to efectively fuse cross-modality information. In recent
years, neural networks and various natural language

Hindawi
Computational Intelligence and Neuroscience
Volume 2023, Article ID 9645611, 18 pages
https://doi.org/10.1155/2023/9645611

mailto:1297954340@qq.com
https://orcid.org/0000-0002-6261-8418
https://orcid.org/0000-0002-1182-4537
https://orcid.org/0000-0003-0814-3121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9645611


processing techniques have shown good performance in the
area of emotion recognition. Tis is attributed to the power
of convolutional neural networks, attention mechanisms,
and their various variants to model intramodality and
intermodality emotion information.

Earlier mainstream works concentrated on unimodal
emotion recognition, which focused on designing hand-
crafted features for emotional expressivity. Han et al. [2]
extracted 238 low-level descriptor (LLD) speech description
features using the openSMILE [3] tool and used con-
nectionist temporal classifcation (CTC) to align these fea-
tures with emotion labels. To develop automatic feature
learning techniques, researchers are paying much attention
to utilizing deep learning (DL) algorithms to obtain high-
level features for speech emotion recognition. Han et al. [4]
employed deep neural networks (DNNs) to extract deeper
features from raw data and verifed the efectiveness of
DNNs in speech emotion recognition. However, this model
failed to capture the long-distance interdependence infor-
mation of the speech. Lee and Tashev [5] fully considered the
long sequences of speech features and the uncertainty of
emotion labels and proposed a method for emotion rec-
ognition based on recurrent neural networks (RNNs). Tri-
georgis et al. [6] proposed a solution to speech emotion
information extraction based on the convolutional neural
network (CNN), which uses CNN combined with the long
short-term memory (LSTM) network to identify local
emotional information from the speech’s contextual infor-
mation. Neumann and Vu [7] designed CNNwithmultiview
learning objective functions to compare the performance of
diferent lengths of input signals, diferent types of acoustic
features, and diferent types of emotional speech systems.
Tashev et al. [8] constructed a system combining a low-level
feature extractor of the Gaussian mixture model (GMM)
with a high-level feature extractor based on DNNs to learn
about the emotional features of speech. In traditional text
emotion analysis research, extracted emotion features are
based on the frequency of each word in the diferent text,
which are obtained by statistics, such as word term fre-
quency (TF) and word term frequency-inverse document
frequency (TF-IDF), and then using logistic regression and
the support vector machine (SVM) combined with other
methods for emotion classifcation. Hutto and Gilbert [9]
constructed a model based on a rule and compared it with 11
typical practice state benchmarks. In recent years, with the
increasing availability of large amounts of training data, the
use of deep learning to automatically extract features has
gained popularity. Textual features have been mainly rep-
resented using global vectors (GloVe) [10] and Word2Vec
[11] for word representation, which are based on global
information. Kim [12] drew on their experience in image
research and then used CNN’s convolutional layers and
downsampling layers to extract textual features and
Word2Vec to transform textual data into the form of word
vectors and perform emotion classifcation. With the de-
velopment of artifcial intelligence technology, current re-
search on visual emotion analysis focuses on facial
expression; in traditional visual emotion methods, such
work mainly focuses on analyzing features, local features,

and feature faces for face localization detection, after turning
to handcrafted features, usually by calculating the ofset of
the eyes, eyebrows, mouth opening and closing degree, and
other quantitative forms to represent expression features.
Te following are some of these methodologies based on
traditional emotion methods. For example, the computer
expression recognition toolbox (CERT) proposed by Lit-
tlewort and Wu [13] can automatically encode facial
movements and facial expressions from the facial action
coding system (FACS). Researchers integrate the three steps
of face location, face detection and feature extraction into an
end-to-end emotion recognition system. Because of this,
Pushpa and Priya [14] used Deep Boltzman Machine
(DBM) and CNN for emotion analysis. Compared with
traditional methods, deep learning methods greatly im-
proved the ability of emotion analysis. To enhance the
performance of prediction models, the majority of the
works turn to analyzing the pretrained model. Yu and
Zhang [15] proposed a method that contains three face
detection modules as well as multiple classifcation
modules of deep CNNs, where each CNN model is pre-
trained on one dataset and then fne-tuned on another
dataset in order to further extract its facial expression
features. Tis model fully extracts the facial emotion
feature after going through the pretraining and fne-
tuning process, which results in better performance. Many
researchers have extracted 3D features of expressions by
CNN [16, 17], as well as combining RNNs for expression
features of faces [18–20]. In addition, Jung et al. [21]
proposed a DNN containing two models, one of which can
extract feature emotions directly from original continuous
face sequences and the other model extracts temporal
geometric features from time-series face markers, and
experiments proved that combining two models can give
better results in face expression recognition. On the basis
of neural network models such as CNN, RNN, and LSTM,
more and more researchers have proposed network
models such as the visual geometry group network (VGG-
Net) [22] and ResNet [23] and constructed relevant
emotion analysis models based on these models, and
among them, the most representative network is the VGG
network. VGG was proposed by Oxford’s Visual Geometry
Group in 2014. It won second place in the 2014 ImagNet
large-scale visual recognition challenge. Compared with
AlexNet, VGG uses a deeper network structure, which
proves that increasing network depth can afect network
performance to some extent. So far, VGG has not been used
to extract image features; though there are many parameters,
the network can efectively reduce the number of iterations
required for convergence and greatly improve the compu-
tational speed, which has a better generalization ability.

Although the abovementioned deep learning algorithms
perform well in extracting feature information from each
modality, there are still many problems. Applying only a
single type of network, e.g., CNN or LSTM, to speech and
text information extraction cannot capture both long-dis-
tance information and local information and cannot accu-
rately capture the expression changes of human faces in
video modalities, and missing the contextual key emotional
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information and the key frame would result in some limi-
tations in the feature extraction process. Besides, the parallel
processing speed of such a modality is slow, resulting in
greatly limited access to deep emotional information about
each modality.

Existing emotion recognition methods mainly empha-
size feature extraction of information within modalities, fail
to efectively utilize complementary features between mo-
dalities, and ignore important sentiment information and
diferential sentiment features between diferent modalities.
Terefore, how to establish a model that can efectively
extract multimodal feature information and fully interact
and fuse it is another challenge for emotion recognition.

To overcome the above two challenges, in this work, we
propose a multimodal emotion recognition model based on
cascaded multichannel and hierarchical fusion (CMC-HF).
Te main contributions of this paper can be summarized as
follows:

(1) To address the problem of poor emotional infor-
mation extraction in the process of intramodality
feature extraction, we employ three cascadedmodels:
the cascaded sequential attention encoder (CSA
encoder), emotional feld cascade encoder (EFC
encoder), and parallel-cascaded encoder (PC en-
coder), which are based on pretrained models with
large-scale data combined with other deep learning
networks to extract text, speech, and visual emo-
tional features, respectively.

(2) We propose hierarchical fusion to efectively learn
about intermodal information interaction and fuse
the important and contextual information of text,
speech, and visual modalities for better recognition
and classifcation.

(3) We make an evaluation and comparison of ro-
bustness and generalizability of our model on two
publicly available multimodal datasets and conduct a
series of ablation studies to understand the efect of
each major component on the architecture, and the
proposed system model provides good performance
and improves accuracy.

Te remainder of the paper is organized as follows: In
Section 2, we introduce the related work of emotion rec-
ognition. Section 3 provides an overview of the proposed
method and introduces the details of each module, re-
spectively. Ten, two emotional datasets are investigated to
demonstrate the efectiveness and superiority of the pro-
posed method in Section 4. Finally, the conclusions and
future work are given in Section 5.

2. Related Work

As social media data in recent years are no longer limited to
single modality, considering that these unimodal features
based one network model was proved to be insufcient to
precisely recognize the speaker’s emotions. Some other
modalities that can ofer supplementary information are
adopted to enhance recognition accuracy, so many

researchers have turned to research on emotion recognition
based on multimodal, such as speech and visual domains.
Earlier studies [24, 25] have shown that fusing two mo-
dalities, speech and video, either in the feature layer [26] or
in the decision layer [27], can help achieve higher recog-
nition accuracy than that obtained from any single modality,
and with the exploration of diferent modalities and diferent
fusion methods, recognition accuracy is improving as well.
Yoon et al. [28] used two RNN networks to encode infor-
mation from speech and text sequences and directly con-
nected the obtained sentiment feature sequences for
emotion recognition, with a fnal recognition accuracy of
71.8%. Some studies have also attempted to pay attention to
intramodal interaction to explore potential relationships.
Yoon et al. [29] proposed multihop attention, which used
attention mechanisms for successive interactions of text and
speech modalities. Important features are learnt from one
modality to another modality; the fnal accuracy rate was
improved to 76.5%. Zadeh et al. [30] proposed a multinote
block (MAB) to extract the interrelationships between ex-
pression, speech, and text modalities and store them in long
and short time memory hybrid (LSTMMH). To enhance
emotion recognition performance over unimodal or two bi-
modal methods, Poria et al. [31] exploited diferent methods to
separately extract text, visual, and speech feature data and then
performed decision layer fusion on the classifed results. Te
authors in [32, 33] employed the sameDLnetwork for the three
modalities for feature extraction. Majumder et al. [34] pre-
sented a novel feature fusion strategy that proceeds in a hi-
erarchical fashion, frst fusing two modalities and only then
fusing all three modalities. Tsai et al. [35] used transformers to
extract and fuse the features of the three modalities, which
efectively solved the problems of unalignment of modal data
and long-term dependencies between diferent modalities.

Also, recently, pretrained networks using transfer
learning techniques have achieved good performance for
extracting features [36], especially in the feld of emotion
recognition [37–40], and have advanced signifcantly. As the
pretrained model can learn about global features from data,
its parameters show better generalization efects.

In the process of multimodal emotion recognition, the
pretrained network method is still insufcient when con-
sidering the emotional features of diferent dimensions, and
further improvement is needed. So some researchers have
suggested constructing some cascaded data encoders con-
sisting of a combination of multiple models, which efec-
tively take advantages of the benefts of each network.
Diferent models focus on diferent dimensional features of
the same input data, obtain richer sentiment features, and
achieve better recognition results. Sun et al. [41] constructed
a speech encoder by cascading CNN and LSTM to extract its
deep semantic features and then fused it with text infor-
mation in the feature layer, efectively capturing the senti-
ment information contained in speech, with a fnal accuracy
improvement of 4%–5% compared to using only a single
network as a data encoder. Lee et al. [42] used a BERT-based
heterogeneous feature fusion approach to fuse multiple low-
level features and high-level features of text, speech, and
video for emotion recognition, and the fnal accuracy for the
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IEMOCAP dataset was up to 85.1%. Zadeh et al. [43] used
the memory network to model speech, text, and video se-
quences, strictly aligned the three modalities in the time
dimension, adopted LSTM for view-specifc interactions,
and proposed a dynamic memory-based attention network
(DMAN) and a multiview-gated memory method for
crossview interactions.

In the latest social networks, more and more multimodal
emotion analysis is being conducted on videos through text,
speech, and rich facial expressions [44]. However, multi-
modal research has a high standard for the size and diversity
of corpora, and currently, available datasets are not enough
to support broader research. Terefore, at present, the
technology of extracting modalities from emotional features
through pretrained networks combined with other deep
learning technologies is still mainstream. Zhao et al. [45]
proposed a novel multimodal transformer-based pretrained
model, MEmoBERT, under self-supervised learning on a
large-scale unlabelled movie dataset and further adopted a
prompt-based learning method to adapt it to downstream
tasks for multimodal emotion recognition, especially under
low-resource conditions. Wei et al. [46] considered the
computational and storage problem caused by a large
number of long-length and high-resolution videos in the 5G
and self-media era, and they transferred the success of
transformer in vision into the audio modality and intro-
duced the Rep VGG-based single-branch inference module
for multimodal emotion recognition tasks; extensive ex-
periments on the IEMOCAP and CMU-MOSEI datasets
demonstrate the efectiveness of these methods, but for some
similar emotional expressions like happy and neutral, the
proposed model performs not so well in discriminating
between these emotions. How to distinguish similar emo-
tions and extract fne-grained information is also a problem
that needs to be studied in future research. Te work [47]
explored the relationships between diferent modalities,
adopted a bidirectional alignment network CNN-LSTM to
obtain the aligned representation for diferent modalities,
and showed empirically that the method has a discriminative
power in emotion classifcation; inevitably, the alignment
process would correspondingly increase the computing task.

In addition to the infuence of an insufcient corpus, the
multimodal emotion recognition study is also hindered by
the mutual exclusion of diferent modalities, due to diferent
modalities being involved in diferent domains. To further
explore the context information and relationships between
intermodalities, Liu et al. [48] designed a spatialtemporal
graph convolutional network (SE-GCN) for video emotion
recognition. By constructing two subnetworks, the sparse
spatial graph and sparse temporal graph, an emotional re-
lationship is obtained between any two emotion proposal
regions and rich emotion cues. Ten, SE-GCN is applied to
obtain the reasoning features of the emotional relationship,
due to GCN extending CNN to the graph structure. Tis
method considers the relationship between diferent do-
mains and explores the relationship between diferent
modalities, which efectively improves the performance of
multimodal emotion recognition. Inspired by the above
work, GCN combined with other natural language

processing (NLP) aimed to fuse frequency-domain features,
time-domain features, and spatial features for comprehen-
sive emotion analysis is constructed in our paper.

In short, although existing emotion recognition methods
have made major breakthroughs, they have certain limita-
tions.Te data after being aligned are too costly and lead to a
poor extraction process for extracting less and insufcient
information feature with long-distance dependence. Te
feature data extracted by a single end-to-end network model
are not comprehensive, rich enough, and deeper. In addi-
tion, the intermodal interactions of modalities are ignored,
which would result in less attention being paid to emotional
features. Terefore, in this paper, we consider that diferent
modalities contain diferent emotional information, exploit
the complementarity between intramodal and intermodal
sequences, focus more on contributing features containing
emotional information in the multimodal fusion stage,
employ a hierarchical fusion approach for multimodal
features, and fnally enhance the accuracy of emotion
recognition.

3. Materials and Methods

Te pipeline of the proposed CMC-HF method in this paper
is shown in Figure 1. Tere are four modules in our CMC-
HFmodel: the data pretrainingmodule, data codingmodule,
data hierarchical fusion module, and emotion classifcation
module. First, speech, text, and visual data are preprocessed.
Te cascaded encoder is used to extract the features of the
three modalities’ information separately to obtain their deep
feature representations. Ten, the collaborative attention
mechanism is used to interact with the sequence information
of any twomodalities among the three modalities. After that,
the Hadamard dot product is applied to extract the two-by-
two interactive information belonging to the same central
modal, and inter-bimodal information is input to the GCN
for secondary fusion; the hierarchical fusion strategy that we
proposed fully considers diferent and correlated emotion
information between the three modalities. Finally, after
intramodality and intermodality information interaction,
the fused feature representation is concatenated and
inputted into the two fully connected layers and the SoftMax
classifer to achieve multimodal emotion recognition.

3.1. Data Preprocessing Module

3.1.1. Text Data. We perform tokenization for text data to
clean and segment text data and then split the text infor-
mation into tokens, which can be used for BERT feature
extraction. Te operation is as follows:

Step 1: We pretrain the BERT-wwm [49] model and
import other corresponding models and classifers.
Step 2: For the original text data, we frst split the
sentence into several words, remove the symbols and
text words that are without emotional information, and
add four auxiliary tokens for the sentence (PAD for
padding, CLS for sentence beginning, SEP for sentence
spacing, and MASK for obscuring words).
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Step 3: We embed words and convert each sentence
into a fxed-length sequence. After the embedding
operation, each word in the sentence is represented as a
word vector with a length of 768.

3.1.2. Speech Data. For speech data, we extract the spec-
trogram from them and then input them into a pretrained
deep network VGGish [50] to extract shallow speech fea-
tures, which can obtain an embedded vector containing
semantic information. VGGish is a model trained on
AudioSet, a large sound dataset published by Google, which
can extract rich semantic information from speech data. Te
speech preprocessing process is as follows:

Step 1:We resample the speech fle in 16 kHzmono, use
the 25ms Hamming window, and perform a short

Fourier transform of the speech with 10ms frame shift
to obtain a spectrogram.
Step 2: We calculate the log spectrogram with a size of
96× 64; after inputting the spectrogram into the
VGGish network, we extract a 128-dimensional em-
bedding vector containing rich semantic information
about the last fully connected layer as the input to the
next network.

3.1.3. Visual Data. For visual data, we decided to analyze
facial expressions in the video for visual emotional analysis.
Since human express emotion is a process and the facial
expression change is actually slow and continuous, we grab
the efective frames in the video in a specifc way. Specif-
cally, we sample continuous video frames at certain intervals

d’ you are so beautiful Ð
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Figure 1: Te architecture of the CMC-HF model proposed in this paper.
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and analyze these video frames as visual emotional features.
On the one hand, capturing a subset of the video frames can
reduce the requirements of computer resources; on the other
hand, it can prevent some additional noise data being
extracted from unnecessary redundant features, which may
afect the accuracy of emotional recognition. Te specifc
video preprocessing methods are as follows:

Step 1: We read all the video clips in the dataset and get
the frame rate of each video; after calculating the av-
erage frame rate of the dataset, we trim the length of
each video according to the average frame rate, in-
tercept the video that exceeds the average frame rate at
the end, and pad zero frames for the video that is less
than the average frame rate.
Step 2:We follow the method that one frame is sampled
every two frames to sample the processed video, and
then, each video retains 32 frames for feature extrac-
tion. We use the OpenCV library to read the video
frame data, and fnally, a single video sample is pro-
cessed into a data form with dimensions (224, 224, 3,
32).

3.2. Data Encoding Module

3.2.1. Speech Encoder. After preprocessing the speech data,
we add position encoding to encode the temporal position of
words for characterization and apply the one-dimensional
temporal convolutional network to transform the speech
feature dimension to obtain a sequence dimension d, which
is consistent with text features and can be expressed as
follows:

X′a � Conv1D X
a
, k

a
( 􏼁 ∈ R

Ta×da , (1)

where ka represents the convolutional kernel size of the
convolutional network, Xa � xa

1, xa
2 , · · · , xa

Ta􏼈 􏼉 ∈ RTa×da is
the input speech feature, and Ta and da are the speech
sequence length and feature dimension, respectively.

In the process of speech sequences feature extraction,
traditional recurrent neural networks such as LSTM have a
poor parallel computing capability because of the limitation
of the sequence length, which cannot capture the rela-
tionship between long-distance words in a sentence and lack
the understanding of semantic information. Terefore, in
this paper, we use transformer encoders to encode extracted
speech features and parallelize the word sequences in sen-
tences. Ten, we combine them with the VGGish network to
form CSA-encoder to extract deep semantic information
from the text. On the one hand, it can efectively solve the
problem of insufcient semantic extraction for distance
limitation, fully understand the contextual relationship
between words, and extract rich semantic information; on
the other hand, the multihead attention mechanism in the
transformer encoder pays diferent attention to features,
which can assign diferent weight sizes to words containing
diferent degrees of emotional information. Diferent heads
pay attention to diferent emotional information, and after
concatenation, the model can obtain rich emotional

information features in speech sequences. Te structure of
transformer encoder self-multi attention (SMA) is shown in
Figure 2, which mainly consists of the multihead attention
mechanism and fully connected neural networks.

Te multihead attention mechanism computes input
sentiment sequences in parallel compared with the tradi-
tional self-attention mechanism that only acquires attention
information from a single level. Te multihead attention
mechanism has multiple heads, and each of which pays
diferent attention to the input speech emotion information
and can generate diferent self-attention distributions, thus
obtaining more comprehensive emotion information. Te
attention value of the ith head is calculated and is executed in
scaled dot-product calculation as follows:

headi � softmax
QaKa

T

��
dk

􏽰􏼠 􏼡Va, (2)

where Qa � X′
a

Wi
Q, Ka � X′

a
Wi

K, and Va � X′
a

Wi
V are

three vectors generated by the linear variation of the speech
sequence, corresponding to the query, key, and value of the
feature sequence of the modality a and WQ

i ∈ Rd×dk ,
Wi

K ∈ Rd×dk , and WV
i ∈ Rd×dk are the corresponding pro-

jection matrices.
Ten, the attention values obtained from m(dk � d/m)

heads are concatenated together and multiplied by the
corresponding weight matrix Wo ∈ Rd×d to obtain intra-

modal attention X
∧ a

:

X
∧ a

� Concat headi, · · · , headm( 􏼁W
o
. (3)

Finally, we input X
∧ a

to the fully connected feedforward
neural network (FNN), and after two times of linear vari-
ation using ReLU, we can obtain the fnal deep feature
representation of speech Ha � ha

1 , ha
2, · · · , ha

Ta􏼈 􏼉 ∈ RTa×d:

Ha � FFN X
∧ a

􏼠 􏼡 � max 0, X
∧ a

W1 + b1􏼠 􏼡W2 + b2. (4)

Note that W1, W2 and b1, b2 are the trainable weight
matrices and deviations of the fully connected layers,
respectively.

3.2.2. Text Encoder. We choose BERT whole word masking
(BERT-wwm) as a feature extraction network for text. It is an
upgraded version of BERTreleased by Google in 2019, which
mainly changes the sample generation strategy of the
original pretraining phase. BERT, a transformer-based
model, has strong language representation and feature ex-
traction ability and has shown performance improvement by
fne-tuning pretrained weights for a specifc downstream
task, which now achieves state of the art in eleven NLP
benchmark tasks. BERT introduces two core tasks in the
pretraining stage, one is masked LM (language model
training with mask) and the other is next sentence pre-
diction. In the mask operation, the original word splitting
method of the BERT pretraining model [51] is based on
WordPiece, which splits a complete word into several
subwords blindly, and mask operations are randomly
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performed on these separated subwords to generate training
samples. However, this splitting method is still not suitable
for English expressions because a word contains various root
and afx variants. Some adjectives or adverbs containing
emotional information have more forms. For example, some
adverbs denote the highest degree like “completely” and
“deeply,” some adverbs denote the middle degree like
“somewhat” and “merely,” and some adverbs denote the
least degree like “hardly” and “nearly.” In the traditional way
of word splitting, the adverb “somewhat” is divided into the
subwords “some” and “what,” and then randomly masked
during the training process. It is obvious that this training
method does not allow the model to learn the semantic
information in the text, so we use the BERT-wwm model in
this paper. When the subwords in a word that contains
emotional information are masked, the other subwords
belonging to the same word will also be masked accordingly,
which can improve the adaptability of the pretraining model
in extracting the key emotional information and better solve
the problems of semantic ambiguity and sparsity for text
emotion key features.

In order to make the BERT pretraining model better to
extract emotional key features for subsequent sentiment
recognition, in addition to the pretrained BERTmodel given
by the ofcial, we also use the IEMOCAP and CMU-MOSI
datasets to train the model again. Te generated sample is
shown in Table 1.

From Table 1, we can fnd that the word vector obtained
by the BERT-wwm pretraining model efectively reduces the
loss of emotional information and captures more emotional
features.

However, transformer blocks in BERT-wwm mainly
emphasize the model’s ability of long-distance dependence,
which pays attention to the global features of word vectors,
not local information features; therefore, on the basis of the

abovementioned BERT-wwm pretraining model, we intro-
duce the CNN to further perfect the inadequacies of a single-
text extraction network, as the sliding windowmechanism in
CNN can efectively focus on the local information features
of word vectors. Te specifc network structure is shown in
Figure 3, and a convolutional layer and a maximum pooling
layer are connected behind the BERT-wwm structure to
form the EFC encoder. It can improve the ability to extraxt
contextual information around a word and reduce the loss of
emotional information. On the other hand, the global and
local information can be considered, efectively improving
fnal recognition accuracy.

Te specifc calculation process of extracting text fea-
tures from the EFC-encoder network model is as follows:
Te original text sequence utti,s � (s1, s2, . . . , sn) is toke-
nized to Xt � xt

1, xt
2, . . . , xt

Ta􏼈 􏼉, t ∈ RTt×dt . Ten, as the
BERT-wwm pretraining model’s input, it can obtain the
word vector with rich global information and capture the
long-distance information. After that, we exploit the CNN to
extract the local text information which captures emotional
features missed by the BERT-wwm network and fnally
obtains textual features containing rich emotional infor-
mation representation Ht � ht

1, ht
2, . . . , ht

Ta􏼈 􏼉 ∈ RTa×d:

X
∧

t � BERT fBERT−wwm, utti,s􏼐 􏼑, h􏼐 􏼑,

Ht � ReLU X
∧

W
f

+ b
f

􏼒 􏼓,

(5)

where h � 1, 2, . . . , 24; i � 1, 2, . . . , n, fBERT−wwm(utti,s) in-
dicates making tokenization to the input’s sequence, and h is
the number of implicit layers of the transformer encoder in
BERT. We choose the model that contains 12 transformer
blocks, 16 attention heads, and 340 million parameters and
select the output of the last four transformer encoder layers’
hidden layer of the model as the input for the next step. We

Add & Norm

Feed Forward

Add & Norm

Multi-Head Attention

Self Multi-Attention (SMA)

Q K V

Concat

Scaled Dot-Product
Attention

Linear

Linear

h

Multi-Head attention

Linear Linear

Figure 2: Transformer encoder.
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get the word’s length as 3072; the CNN convolutional kernel
size is [3 4 5], and the number of convolutional kernels is
128. We use the ReLU as the activation function.

3.2.3. Visual Encoder. Tis paper uses two parallel channels
to extract the features of the preprocessed visual data: one of
which adopts the cascade model VGG16-LSTM to extract
deep learning features of the visual data in the entire image;
another uses the VGG16 network pretrained on ImageNet to
extract the each frame’s representation information from the
image, as it has been pretrained by large-scale data and
introduced so much sufcient prior knowledge, which ob-
tains more abundant emotion representation information
for the model and provides more robustness for the senti-
ment analysis results.

In addition, the LSTM network efectively increases the
time dimension information for visual emotional features,
adds more timing information for expression emotional
features, and makes up for shortcomings of insufcient
feature extraction of a single image after video framing. Te
VGG16 network extracts 4096 dimensions of facial ex-
pression features as the LSTM’s input, and we can obtain the
fnal facial emotional features XV

VGG16−LSTM � xv,1
VGG16−LSTM,􏽮

xv,2
VGG16−LSTM, . . . , xv,TV

VGG16−LSTM ∈ R4096}.
After performing the experiment and data analysis of the

aforementioned operations, we fnd that the aforementioned
process is the extraction of emotional features from the
whole image in a certain frame, not the people’s faces.
However, when performing visual emotion analysis, the
emotion expressed by the face should be emphasized, and
because the image contains a lot of irrelevant backgrounds,
objects, and other noises, it cannot provide efective in-
formation, which will directly afect the efect of emotion
analysis.

Terefore, in order to further accurately analyze the
changes in facial emotion, we introduce corresponding
auxiliary features to eliminate the infuence of these noise
data.

Te Dlib library can detect the facial information in each
frame of the image, which only extracts the facial expression
feature and ignores background information. After col-
lecting the 68 key point emotional information character-
istics of the face and obtaining detailed coordinate
information for each key point, including the nose, eye-
brows, the outline of the face, eyes, and other information,
and then using these key point coordinates to calculate the
coordinates of a centre point, we obtain the distance in-
formation between the centre point and each key point;
fnally, we combine the obtained distance information as the
emotional feature representation. Te length of this feature
vector is 68, noted as XV

Dlib � xv,1
Dlib, xv,2

Dlibx, . . . , xv,TV

Dlib ∈ R68􏽮 􏽯.
Ten, the two channels VGG16-LSTM and Dlib library

jointly constituted the PC encoder to extract visual features
in parallel, and the fnal expression emotion feature can be
expressed as XV � (XV

VGG16−LSTM, XV
Dlib) ∈ RTV×4164.

Considering that facial emotional change is a dynamic
process, there is a strong temporal correlation between the
sampled frames in the same video, after inputting XV to a 1D
CNN, it can convert the visual modality’s dimension into the
same one as the text modality. In the self-attention mechanism
module, we can pay attention to the association between the
current visual frame and others. According to the number of
sampled video frames, the facial emotion feature vector is
converted into N groups, and the size of each set of feature
vector is v

−
� v/N, where v represents the dimension of the facial

+

+
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…

…
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EFC-Encoder
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Figure 3: EFC encoder framework.

Table 1: Sample of the BERT-wwm model.

Description Samples
Original text Te weather is somewhat terrible today, I’m in a completely bad mood
Input text Te weather is ##some ##what terrible today, I’m in ##complete ##ly a bad mood
BERT text Te weather is [Mask] ##what terrible today, I’m in [Mask] ##ly a [Mask] mood
BERT-wwm text Te weather is [Mask] [Mask] terrible today, I’m in [Mask] [Mask] a [Mask] mood
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emotion feature vector and N is the number of sampled video
frame frames. Te facial attention value Hv can be obtained as
follows:

X′V � Conv1D XV
, k

V
􏼐 􏼑 ∈ R

TV×d
,

αv
t �

exp W
v
.X

v
t( 􏼁

􏽐
N
t�1 exp W

v
.X

v
t( 􏼁

Hv � 􏽘
N

t�1
αv

t X
t
v,

(6)

where kV represents the convolutional kernel size of the 1D
CNN, TV and dV are the length and feature dimension of the
video data sequence, respectively, αv

t is the weight coefcient
of the eigenvector of group t, Xt

v represents the eigenvector
of group t, and Wv is the trainable linear transformation
parameter vector.

3.3. Hierarchical Fusion Module. At present, much work in
the multimodal fusion stage only simply connects the feature
sequences of diferent modalities, does not make full use of
the important emotional and diferent characteristics be-
tween diferent modalities, and ignores the interaction of
diferent modalities. In addition, traditional fusion methods
are mostly based on aligned multimodal data, which fused
according to time series, which would cost too much re-
sources. To overcome this issue, we employ a novel hier-
archical fusion strategy to explicitly model the intermodal
interactions of the three modalities. Specifcally, hierarchical
fusion frst utilizes collaborative attention to guide one
modality to attend to the other modality and update features
accordingly, and six fusion modules are obtained, as illus-
trated in Figure 1; the six fusion blocks can be grouped into
three pairs considering their core modality (modality of the
Q vector in the collaborative attention computation). As the
next step, to extract the essential information that stems
from one modality, we take the Hadamard product between

fusion module pairs of the same core modality. Finally, we
employ the GCN to further fuse the information of the three
modalities in a cross-domain way. In the following part, we
introduce the hierarchical fusion strategy in detail.

3.3.1. Collaborative Attention. First, we consider the im-
portant emotional characteristic information for any two
modalities. In the frst fusion stage, we employ the collab-
orative attention mechanism to attend to cross-modal in-
teractions at diferent time steps, propagate information
between the two modalities, and capture long-distance in-
formation, which aims to let the model learn to pay more
attention to more informative modalities in the fusion
process, and the six fusion blocks can be expressed as
COAMi⟶j, where i, j ∈ l, a, v{ }.

Te collaborative attentionmechanismmodule is mainly
composed of N transformer encoder blocks, which include
N-stacked cross-attention layers, feedforward layers, and a
position embedding layer. Single-head cross attention can be
calculated by (7), which is illustrated in Figure 4.

COAMi⟶j Hi, Hj􏼐 􏼑 � softmax
QjK

T
i��

dk

􏽰⎛⎝ ⎞⎠Vi. (7)

COAMi⟶j(Hi, Hj) represents the modality i that
can receive important emotional information from core
modality j, where query, key, and value vectors are
Qj � HjWQj

, Ki � HiWKi
, and Vi � HiWVi

and WQj
, WVi

,

WKi
∈ Rdmode l×dk are the corresponding weight matrices.
As the collaborative attention mechanism module based

on N transformer encoder blocks adopts the N-stacked
cross-attention layers, there exists a multihead version of
COAMi⟶j(Hi, Hj), and the process can be mathematically
described as follows:

H
[0]
i⟶ j � H

[0]
j ,

H
∧ [i]

t⟶ a � COAM[i],mult
i⟶ j LN H

[i−1]
i⟶ j, LN H

[0]
i⟶ j􏼐 􏼑􏼐 􏼑 + LN H

[i−1]
i⟶ j􏼐 􏼑􏼐 􏼑,

H
[i]
i⟶ j � fθ

[i]
i⟶ j(LN H

∧ [i]

i⟶ j􏼠 􏼡 + LN H
∧ [i]

i⟶ j􏼠 􏼡,

(8)

where fθ is the position feedforward network with the
parameter θ, COAM[i],mult

i⟶ j is the multihead attention of the i

th layer, and LN is layer normalization. H
[i]
i⟶ j represents

the output of the ith transformer encoder layer, where i �

1, 2, . . . N{ }; after passing through the collaborative attention
mechanism module, we obtain a two-by-two fusion repre-
sentation H[N]

i⟶ j with the central modality j at the last layer
of N layers.

According to the above process, we can also obtain a
bimodal fusion representation H

[N]
j⟶ i, which represents the

propagated information from modality j to core modality i.
After the collaborative attention mechanism modules,

we can obtain six two-by-two fusion modality interaction
pairs, respectively, that is H[N]

a⟶ v, H
[N]
a⟶ l􏽮 􏽯, H[N]

v⟶ a,􏼈

H
[N]
v⟶ l}, H[N]

l⟶ a, H[N]
l⟶ v􏽮 􏽯. We can get three resultant

vectors Ua, Ut, and Uv, after computing the Hadamard
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product between the frst fusion stage outputs that belong to
the same core modality.

Ua � Ua⟶v ⊙Ua⟶t􏼂 􏼃,

Ut � Ut⟶v ⊙Ut⟶a􏼂 􏼃,

Uv � Uv⟶t ⊙Uv⟶a􏼂 􏼃.

(9)

3.3.2. Graph Convolutional Network. GCN is usually used to
obtain a graph representation of its graph structure, which is
done in a graph embedding way. However, with the growing
popularity and development of GCN, it is also applied to the
study of multimodal emotion analysis to obtain contextual
information. Specifcally, by constructing the graph struc-
ture relationship between adjacent samples, the GCN further
captures diferent features contained between diferent
modalities and learns about the fused multimodal contextual
information. Moreover, the GCN can efectively combine
frequency-domain features, time-domain features, and
spatial features for comprehensive analysis, which has a
signifcant role in multimodal emotion recognition.

First, we need to establish the structure relationship
between adjacent sample graphs. In this paper, we divide a
complete video into some short video samples, and each
short video sample is regarded as an adjacent sample, as
there is a sequential relationship in time series between the
adjacent samples, which indicates that the currently
expressed emotion is closely related to the previous and
subsequent emotion, and this relationship can be mapped as
a graph structure in the GCN. According to the above
analysis, we use the bimodal emotion features belonging to
the same core modality Ua, Ut, Uv, and ∈ RM×f as the node
set of the graph structure. M is the number of adjacent
samples and f is the dimension of the bimodal emotion
features. Ten, the adjacency matrix A, which is used to

defne the edge set information Ue between adjacent sam-
ples, can be constructed by the following similarity formula:

sim �
vivj
vi

����
���� vj
�����

�����
, (10)

where vi and vj represent the multimodal emotion feature
vectors of the ith and jth adjacent samples, sim represents
the cosine similarity, and ‖.‖ represents a module operation;
when sim≥ 0.8, the value of ai,j is 1, which is the element of
the adjacency matrix A. When sim< 0.8, ai,j is 0.

After constructing the adjacent sample graph structure,
it is necessary to build a reasonable model to achieve
emotional fusion, input the graph structure to the GCN, and
perform a series of graph convolution operations. Te
convolution operation on any node or graph structure is
completed by aggregating the edge set information of its
adjacent nodes, which is shown in the following equation:

H
l+1

� σ D
1/2

(D − A)D
1/2

H
l
W

l
􏼐 􏼑, (11)

where the degree matrix is

D �

􏽐
j

a1,j . . . 0 · · · 0

⋮ ⋱ ⋮ ⋮ ⋮
0 · · · 􏽐

j

ai,j · · · 0

⋮ ⋮ ⋮ ⋱ ⋮
0 · · · 0 · · · 􏽐

j

aN,j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ai,j represents the

elements of column j of row i in the adjacency matrix A, Hl

represents the lth convolutional layer output, and H0 � Ui,
i ∈ l., a, v{ }Ui is the bimodal emotion feature vector after the
Hadamard dot product, Wl is a trainable linear change
parameter, and l represents the number of layers of graph
convolution. In the experimental process, the value of l is 0
or 1, and σ(.) represents the sigmoid nonlinear activation
function. By overlaying the graph, convolutional layers
enable the network to learn about context dependencies
between adjacent samples.

Finally, three pieces of enhanced modal information are
concatenated together to obtain a feature vector represen-
tation for emotion classifcation, which can be represented as
follows:

U � GCN Ut( 􏼁,GCN Ua( 􏼁,GCN Uv( 􏼁􏼂 􏼃. (12)

3.4.ClassifcationModule. To perform fnal classifcation, we
use two fully connected layers and a SoftMax classifer to
predict the underlying emotion. Te ReLU function is used
as an activation function, which can efectively overcome
disappearance of the training gradient and avoid gradient
explosion. Te predicted scores of each emotional label are
calculated through the SoftMax layer. Te cross-entropy loss
is used to optimize the model. Te above process is sum-
marized as follows:

Hi-->j

Ki Qj

Hj

WVi WKi WQj

Vi

Hi

dk

QjKi
T

softmax ( ) Vi

dk

QjKi
T

softmax ( ) 

… …

……

…

…

Figure 4: Te calculation process of COAMi⟶j(Hi, Hj).
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y
∧

� softmax fθ(U)( 􏼁,

softmax xi( 􏼁 �
e

xi

􏽐
c
i�1 e

xi

l � − 􏽘
C

i

yilog y
∧

i􏼒 􏼓,

(13)

where exiq represents the output value of the ith node in the
classifcation model, C is the number of emotion classes, and
the value of C varies according to diferent datasets, yi
represents the real value, y

∧
i represents the predicted value of

the model, and fθ represents a fully connected layer network
with a parameter θ.

4. Results and Discussion

4.1. Datasets. In this paper, the proposed models are eval-
uated on the IEMOCAP and CMU-MOSI datasets, and
dataset preprocessing operations are illustrated as follows.

4.1.1. IEMOCAP. Te IEMOCAP dataset contains two-by-
two dialogues between 10 actors, with a total of 5 sessions,
each of which is completed by 1 man and 1 woman. Sessions
are utterances with a corresponding emotional label. Tere
are usually 7 emotion classes of “happiness,” “excitement,”
“frustration,” “sadness,” “neutral,” “anger,” and “others.”
However, in the process of speech data preprocessing, we
found that the spectrogram of “excitement” was similar to
that of “happiness,” and the expression ways of these two
emotions were similar; besides, the class “happiness” had a
small sample number, so we combined the “excitement” and
“happiness” samples, followed by “happiness.”Te spectrum
of “frustration” was similar to that of “sadness,” and the two
were merged in the same way, followed by “sadness,” and did
not consider the “others” class. After operating on unbal-
anced samples, we fnally chose four emotion classes,
namely, “happiness,” “anger,” “neutral,” and “sadness” as the
IEMOCAP dataset’s experimental emotion classes.

Ten, we considered that there were a total of 5531
utterances of these four classes in fve dialogues; therefore,
we took an utterance as a unit, divided a video into multiple
short videos, and used these short videos as samples. Sim-
ilarly, we obtained the same number of text and speech
samples and then used 4290 utterances (77.7%) of 8 actors in
4 sessions as the training set for the experiment. 1241 ut-
terances (22.3%) of 2 actors in 5 sessions are used as the
testing set. Te details of the IEMOCAP dataset assignment
are shown in Table 2.

4.1.2. CMU-MOSI. TeCMU-MOSI dataset is a multimodal
emotion analysis dataset published in 2016 and contains
2199 video clips from single-lens commentary recordings on
YouTube, as well as text from each video recorder’s content.
Unlike the common discrete emotion labels mentioned
above, videos are segmented into utterances where each
utterance is annotated with scores between −3 (strongly

negative) and +3 (strongly positive) by fve annotators. We
take the average of these fve annotations as the sentiment
polarity and consider only two (positive and negative). We
randomly select 1284 utterances for the dataset as the
training set, including 1447 utterances, and select the
remaining 915 utterances as the testing set. We also take an
utterance as a sample and obtain these divided short videos
as samples.

4.2. Experimental Details and Evaluation Metrics. Te ex-
periments are based on the Python framework launched by
Facebook. Te experimental platform used in this article is
shown in Table 3.

In the speech and visual data encoder module, we set
multihead attention heads to 8 and the size of attention
heads to 64. Te dropout of the model is 0.3, which can
prevent overftting, and the batch size of the model is set to
32.When training is completed up to 100 times, the accuracy
of the model no longer increases, and it will stop in advance
and save the training results. Te learning rate is initialized
to 0.00001, and when the training efect of the model no
longer rises, the learning rate automatically decreases. Te
Adam algorithm, as an optimizer, is used to fnd optimal
parameters.

In the process of selecting other important parameters,
we unify the text sequence length to 20, for sequences with a
length greater than 20, truncate the part with a length greater
than 20. For sequences with a length less than 20, we select
the pad zero operation. In addition, in the collaborative
attention mechanism module, considering that the amount
of multihead attention and the number of attention layers
have a greater impact on the information interaction pro-
cess; according to [32], too many heads and layers are easy to
cause information redundancy. On the contrary, the lower
number of heads and layers resulting in long-distance in-
formation between the two modalities has insufcient in-
teraction, and long sequence information is not fully
captured, resulting in the omission of valid information, so
we choose the number of layers and heads of multihead
attention in the collaborative attention mechanism module
as fve. We used the accuracy (Acc), F1 value (F1 score),
mean average error (MAE), and correlation coefcient
(Corr) as the main evaluation metrics.

4.3. Comparison with State-of-the-Art Approaches. To
comprehensively evaluate our proposed CMC-HF approach,
the following baselines and state-of-the-art approaches are
utilized for comparison. Te details of the baselines are

Table 2: IEMOCAP dataset allocation.

Session 1 Session 2 Session 3 Session 4 Session 5
Anger 229 137 240 327 170
Happiness 278 327 286 303 442
Sadness 184 197 305 143 245
Neutral 384 362 320 258 384
Total 4290 1241
Percentage 77.7% 22.3%
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shown in Table 4, and the experimental results are shown in
Tables 5 and 6.

From Tables 5 and 6, it can be seen that the performance
of the CMC-HF model proposed in this paper outperforms
that of other state-of-the-art models for both benchmarks.
Specifcally, for the IEMOCAP dataset, it can be seen that the
CMC-HF model has higher recognition accuracy than other
models for the four emotion classes. As the MFN, MCTN,
RAVEN, and MulT models mainly use a single traditional
network (LSTM or CNN) to extract modality features, such
networks fail to capture long-distance and local information
at the same time in the speech and text modality and can
easily miss the key frame information in the video. SSE-FT
performs best in the existing SOTA models because it uses
the same pretrained network method and the hierarchical
fusion way (fuse diferent modality features in a phased
form), which shows the hierarchical fusion way and achieves
a better performance compared with the SSE-FT model.
Neutral has the largest increase in recognition accuracy with
an increase of 3%, and anger has a relatively small increase in
recognition accuracy with an increase of 1.9%. Such ex-
cellent results confrm the superiority of the CMC-HF
structure. Table 6 shows the performance of the CMC-HF
model for the CMU-MOSI dataset, where Acc (2 class h), F1
score, MAE, and Corr performed better than the above
baseline model, and the value of Acc (7 class h) is little lower
than that of the most advanced model.

In addition, the confusion matrix obtained by the
IEMOCAP dataset is shown in Figure 5. Te abscissa of
the confusion matrix plot represents four class emotion
labels predicted by the model. Te darker the colour of the
square on the diagonal, the higher the recognition ac-
curacy of the corresponding category of the square. All
emotion categories have been identifed with a high level
of per class accuracy, as indicated by the diagonal ele-
ments of matrices. In this case, because the text and speech
modalities are more pronounced in the emotional per-
formance of anger and sadness, the overall accuracy rate is
higher than that of happy and neutral, and it is due to the
fact that happy contains a wider range of text emotion
expressions, while the neutral’s emotional state is more
ambiguous, resulting in the two being easily confused with
other emotional classes, and prediction accuracy is rela-
tively lower.

We report confusion matrix comparison for the SSE-FT
and HFusion models’ performance on the more challenging
IEMOCAP dataset. From Figure 6, we can infer that the
neutral performance of the HFusionmodel is lower than that
of the SSE-FT model, whereas performances of the other
three classes are higher. Compared with the result of

Figure 5, our proposed model achieves an excellent and
competitive performance, which verifes the combination of
modality data encoders and ensures that the learnt repre-
sentations are compact, rich, and complementary, thus
making the architecture optimal and robust towards the
recognition task for multimodal data.

A potential limitation of our model may be its trainable
weight and parameters. However, the number of parameters
in our model is 132,491,017, which is 25% of the SSE-FT
model and 60% of the HFusion model, which have reduced
compared with that of these two cascade models. To explore
the time complexity of CMC-HF, we compute FLOPs for
these three cascade models in the testing process; the result
turns out that our model needs 261,322,124 FLOPs in
testing, whereas the number of FLOPs in HFusion and SSE-
FT is 253,961,225 and 591,236,844, respectively. Undoubt-
edly, the inference time is a key factor for the emotion
recognition task. For this parameter, we report an average of
63.2ms through the whole process, whereas the HFusion
and SSE-FT models yield a total of 98.4ms and 132.9ms,
leading to an increased inference time. Considering the low
inference time, the proposed CMC-HF model has better
performance.

Te reason for fewer trainable parameters, the moderate
number of FLOPs, and the lower inference time is that
despite having multiple components in our architecture, our
model entails low dimensions for unimodal and multimodal
representations. For unimodal representations, we apply
conv 1D-unifed feature dimension for speech and vision,
respectively, and the CNNmodel is introduced to obtain the
low dimensions for unimodal representations. In the fol-
lowing multimodal representation fusion phase, the use of
Hadamard computation efectively reduces the number of
trainable parameters since pure concatenation of all six
vectors adds three times more parameters to the fnal
prediction layer. In addition, other components, except for
the pretrained models, in our architecture have a few layers,
ensuring a reasonable computational load and a low-com-
putational task.

4.4. Result of Diferent Modalities and Teir Combinations.
Similarly, in order to explore the importance of diferent
modalities in multimodal tasks, we used speech, text, and
visual features as independent inputs and conducted single-
modal and bimodal experiments in which any two mo-
dalities are fused with each other, and we obtained the
comparative experimental results, as shown in Tables 7
and 8.

Among them, V represents vision emotion analysis, S
represents speech emotion analysis, T represents text
emotion analysis, V+ S represents speech and vision bi-
modal emotion analysis, V+T represents text and vision
bimodal emotion analysis, T+ S represents speech and text
bimodal emotion analysis, and V+ S+T represents three
modal fusion emotion analysis.

From the analysis of the experimental results in Table 8,
in unimodal, it can be seen that T shows higher performance
for most emotional classes (e.g., happiness, anger, and

Table 3: Experimental platform.

Experimental environment Specifc information
Operating system Windows 10
GPU version GTX 2080Ti
Development language Python 3.6
Development platform PyTorch
Development tools PyCharm
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neutral) than S and V. In the case of bimodal, V+T has the
best performance, especially for sadness, anger, and neutral,
which has a dominant efect on emotion recognition.

Our trimodal CMC-HF model shows the highest per-
formance for happiness, anger, and neutral by fusion of
V + T + S. Tis experiment shows that under the condition
of using cascade encoders, increasing the number of
modalities can efectively increase accuracy, which shows
that the interaction of information between diferent
modalities is very efective and necessary for emotion
recognition.

Table 9 shows the results for the CMU-MOSI dataset.
Compared with other unimodal or bimodal models, our tri-
modal CMC-HFmodel has the best performance for the Acc (2
class-h), F1 score,MAE, andCorrmetrics.TeT+Vmodel has
higher Acc (7 class h), which improved by 0.008 over the
trimodal CMC-HF model, which is due to the introduction of
speech data causing some information redundancy.

4.5. Ablation Experiments

4.5.1. Text Data Encoder Ablation Experiment. We studied
the efectiveness of the EFC encoder model for the IEMOCAP
dataset, and there are two comparisonmodels, one is to replace
the BERT-wwm model with the traditional BERTpre-training
model in the text data encoding layer, and the other is to
remove the CNN to form the BERT-wwm module, while
keeping the othermodules and parameters of the systemmodel
unchanged, and and using these two methods compared with
the EFC-Encoder. From the experimental results shown in
Table 10, it can be seen that the EFC encoder has the excellent
performance of emotion recognition for the four classes, and
the BERT-wwmmodel has a good performance.Te improved
BERT-wwm model enables the model to capture more emo-
tional features and improve the performance of emotion
recognition. And from the experimental results of BERT-wwm
and EFC-Encoder, we can draw the following conclusions:Te
introduction of a CNN module can capture local features in

Table 4: Comparative experiment details.

Model Speech Text Vision Fusion
MFN [43] LSTM LSTM LSTM Feature fusion
MCTN [32] CNN CNN CNN Concatenation
RAVEN [33] LSTM LSTM LSTM Feature fusion
HFusion [34] openSMILE Word2vec +CNN 3D CNN Hierarchical fusion
MulT [35] Conv 1D Conv 1D Conv 1D Feature fusion
SSE-FT [40] Wav2vec Roberta FabNet Hierarchical fusion
CMC-HF(ours) CSA encoder EFC encoder PC encoder Hierarchical fusion

Table 5: Comparison between CMC-HF and other state-of-the-art methods for the IEMOCAP dataset.

Model
Happiness Sadness Anger Neutral

Acc F1 Acc F1 Acc F1 Acc F1
MFN 86.5 84.0 83.5 82.1 85.0 83.7 69.6 69.2
MCTN 80.5 77.5 72.0 71.4 64.9 65.6 49.4 49.3
RAVEN 77.0 76.8 67.6 65.6 65.0 64.1 62.0 59.5
HFusion 74.3 81.4 75.6 77.0 79.6 77.6 78.4 71.2
MulT 84.8 81.9 77.7 74.4 73.9 70.2 62.5 59.7
SSE-FT 86.5 85.7 86.7 86.2 89.4 89.0 76.0 75.9
CMC-HF (ours) 88.7 86.2 89.6 89.1 91.2 90.8 79.0 77.3
Te values in bold represent the best values of the attributes in this column. Te larger the value of Acc and F1, the better the corresponding model.

Table 6: Comparison between CMC-HF and other state-of-the-art
methods for the CMU-MOSI dataset.

Model Acc
(7 class h)

Acc
(2 class h)

F1
score MAE Corr

MFN 34.1 77.4 77.3 0.965 0.632
MCTN 35.6 79.3 79.1 0.909 0.676
RAVEN 33.2 78.0 76.6 0.915 0.691
HFusion 35.3 77.9 79.8 0.890 0.703
MulT 39.1 81.1 81.0 0.889 0.686
SSE-FT 55.7 87.3 87 0.529 0.792
CMC-HF (ours) 58.2 88.2 87.3 0.581 0.798
Te bold values represent the best values of the attributes in this column.
Te larger the values of Acc (7 class-h), Acc (2 class-h), F1 score, and Corr,
the better the corresponding models. Te smaller the value of MAE, the
better the corresponding model efect.
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Figure 5: A confusion matrix diagram of four emotion classes for
the IEMOCAP dataset.
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Table 7: Te comparison of model complexity.

Models Number of parameters FLOPs Inference time (ms)
HFusion [34] 224,383,645 253,961,225 98.4
SSE-FT [40] 526,980,770 591,236,844 132.9
CMC-HF (ours) 132, 91,017 261,322,124 63.2
Te bold values represent the best values of the attributes in this column. Te smaller the value of number of parameters, FLOPs, and conference time (ms),
the better the efect of their corresponding models.

Table 8: Comparison of the experimental results for single-modal, bimodal, and multimodal emotion recognition for the IEMOCAP
dataset.

Task
Happiness Sadness Anger Neutral

Acc F1 Acc F1 Acc F1 Acc F1
Unimodal
V 0.834 0.826 0.826 0.802 0.892 0.874 0.694 0.683
S 0.802 0.798 0.849 0.826 0.893 0.890 0.710 0.698
T 0.863 0.857 0.846 0.836 0.908 0.896 0.776 0.764

Bimodal
V+ S 0.802 0.794 0.878 0.869 0.906 0.880 0.725 0.718
V+T 0.849 0.836 0.865 0.862 0.910 0.901 0.823 0.79 
T+ S 0.856 0.85 0.863 0.854 0.907 0.894 0.793 0.768

Trimodal (CMC-HF)
V+ S+T 0.887 0.862 0.896 0.891 0.912 0.908 0.790 0.773

Table 9: Comparison of the experimental results for singlemodal, bimodal, and multimodal emotion recognition for the CMU-MOSI
dataset.

Task Acc
(7 class h)

Acc
(2 class h) F1 score MAE Corr

Unimodal
V 0.324 0.713 0.694 0.862 0.473
S 0.298 0.684 0.651 0.913 0.246
T 0.365 0.832 0.813 0.745 0.764

Bimodal
V+ S 0.13 0.736 0.725 1.34 0.236
V+T 0.551 0.869 0.856 0.738 0.824
T+ S 0.436 0.834 0.816 0.917 0.794

Trimodal (CMC-HF)
V+ S+T 0.543 0.882 0.873 0.581 0.798

Te bold values represent the best values of the attributes in this column.Te larger the values of Acc (7 class-h), Acc (2 class-h), F1 score, and Corr, the better
the corresponding models. Te smaller the value of MAE, the better the corresponding model efect.
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Figure 6: A confusion matrix of the SSE-FT and HFusion model for the IEMOCAP dataset.
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text and efectively pay attention to the emotional information
ignored in the BERT-wwm module. Terefore, fnal accuracy
has improved.

4.5.2. Speech Data Encoder Ablation Experiment. In order to
study the efectiveness of the CSA encoder model, we
conducted the comparative experiment with the transformer
encoder and VGGish model, which are obtained by re-
moving the other module in the CSA encoder model. In
these experiments, the other parameters of the emotion
recognition model are kept unchanged, and the experi-
mental results obtained are shown in Table 11; we can
observe that the CSA encoder model improves the other two
models of the four classes by 7%∼10% in terms of accuracy.
It can be seen that the CSA encoder model, efectively
cascading the VGGish model and transformer encoder, has
the best experimental results for four classes. On the one
hand, compared with the transformer encoder model, which
only uses the speech data in the IEMOCAP dataset to train
the model, the introduction of the VGGish pretraining
model, with a huge amount of emotional data as the basis for
pretraining, can extract more expressive speech features and
more emotional information and improve the generalization
ability of the model.

On the other hand, in the VGGish network, the superior
transformer encoder can efectively solve the problem of
insufcient semantic extraction due to distance information
and fully understand the contextual relationship between
words, in which the multihead attention mechanism pays
attention to diferent emotional characteristics, extracts
richer semantic information, and improves the computing
speed. Te CSA encoder model efectively compensates for
the shortcomings caused by the use of only these two single
networks as a speech encoder, efectively captures the in-
formation about speech emotions, and improves the accu-
racy of fnal emotion recognition.

4.5.3. Visual Data Encoder Ablation Experiment. We
remove VGG16-LSTM and the Dlib library from the PC
encoder separately. First, we remove VGG16-LSTM and
only retain the 68 key point feature information and distance

information obtained from the Dlib library as the fnal visual
emotion feature. Te other operation only uses VGG16-
LSTM. Te other parameters of these two models are kept
unchanged. From the results in Table 12, we fnd that the PC
encoder has the best performance; compared with that of the
Dlib library or the VGG16-LSTM model, the four classes in
the IEMOCAP dataset have higher accuracy. Te VGG16-
LSTM model efectively obtains the visual representation
feature, and the introduction of sufcient prior data can
provide a more robust efect for sentiment analysis and add
more timing sequence information. Besides, by introducing
the auxiliary features extracted by the parallel channel Dlib
library, the noise data in the VGG16-LSTM model are ef-
fectively eliminated.

4.5.4. Hierarchical Fusion Module Experiments. In order to
verify the efectiveness of the hierarchical fusion module,
we compare the two fusion stages and observe their re-
spective efects on the performance of emotion
classifcation:

(1) We only implement the frst-stage fusion and use
CMC-HF (I, ∗) to represent this ablation model.Te
specifc operation is to remove the GCN fusion
module in the model. Tat is, we do not consider the
cross-modal fusion of text, speech, and vision,
contextual emotional information, and diferent
features between modalities, which are ignored. Te
fnal classifcation representation can be expressed as
U � [Ut, Ua, Uv].

(2) We use CMC-HF (∗, II) to represent the second-
stage fusion. Tat is, we remove the collaborative
attentionmechanism and the Hadamard dot product
module in the model, ignore the interactive fusion of
important emotional information features between
two modalities, and only consider the diferent
emotional information between modalities; the fnal
representation is U � [GCN(Ht),GCN(Ha), GCN
(Hv)].

During this experiment, we keep the other experimental
parameters unchanged, and the comparative experimental
results are shown in Table 13; compared with that of CMC-

Table 10: Comparison of the experimental results in the text data encoder for the IEMOCAP dataset.

Model
Happiness Sadness Anger Neutral

Acc F1 Acc F1 Acc F1 Acc F1
BERT 80.2 79.6 82.4 82.1 81.3 79.6 69.4 68.7
BERT-wwm 83.4 82.5 83.6 82.7 80.8 79.4 71.4 70.5
EFC encoder 88.7 86.2 89.6 89.1 91.2 90.8 79.0 77.3

Table 11: Comparison of the experimental results in the speech data encoder for the IEMOCAP dataset.

Model
Happiness Sadness Anger Neutral

Acc F1 Acc F1 Acc F1 Acc F1
VGGish 79.1 79.6 80.9 79.5 81.6 79.6 71.3 69.7
Transformer encoder 84.1 83.6 86.8 86.4 87.9 86.7 74.8 73.5
CSA encoder 88.7 86.2 89.6 89.1 91.2 90.8 79.0 77.3
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HF (I, ∗) and CMC-HF (∗, II), it can be seen that the
performance of CMC-HF has been improved to a certain
extent. CMC-HF (∗, II) does not emphasize the important
emotional characteristics contained in two-by-two modal-
ities, and its performance is worst. CMC-HF (I, ∗) does not
take into account diferent emotional features contained in
the three modalities, the result in the contextual information
of the three modes is insufciently extracted, and the per-
formance is better. CMC-HF provides sufcient interaction
and fusion of important and diferential afective features
between modalities, and the performance is best. Tis ex-
periment illustrates that it is necessary to pay attention to the
important and diferent emotional features between the
modalities in a hierarchical fusion way and that it is also
essential to explore the contextual information between
diferent modalities, which verifes the efectiveness of the
hierarchical fusion strategy proposed in this paper.

5. Conclusions

In this paper, we propose a cascaded multichannel hier-
archical fusion method for multimodal emotion recogni-
tion. First, diferent cascade data encoders are established
for text, speech, and visual modalities for feature extrac-
tion. Specifcally, the CSA encoder is designed to extract
deep speech emotion features, which improves the speed of
parallelized computing and further enriches semantic in-
formation; the EFC encoder is designed to encode textual
emotion information with a great emphasis on global and
local contributing textual features, solving the sparsity of
key features; the PC encoder is designed for visual feature
extraction, which efectively solves the problems of low
robustness and less temporal information compared to
traditional extraction methods. Second, we design a hi-
erarchical fusion approach; in the frst fusion stage, we use
a collaborative attention mechanism to pay attention to
contributing emotional feature intramodalities, realize the
long-distance information interaction between multi-
modal sequences with diferent time steps, reduce the cost
of alignment operation, and solve the long-term depen-
dency problem in the traditional interaction network. In
the second fusion stage, GCN is utilized to fuse multimodal

context information feature intermodalities obtained by the
Hadamard dot product, reduce the loss of emotional in-
formation, and achieve full interaction between multimodal
intermodalities. Compared to other recent approaches in the
literature, the proposed method achieved competitive results
for two important and challenging benchmark datasets
IEMOCAP and CMU-MOSI. Although the proposed
method has made promising progress in performance im-
provement, there is a need to explore such models to extract
features and ways to design fusion approaches and inter-
action models that can learn about joint representation
between more and more modalities in future research.
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