
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 12, DECEMBER 1993 1217 

Multimodal Estimation of Discontinuous Optical 
Flow Using Markov Random Fields 

Fabrice Heitz and Patrick Bouthemy 

Abstract-The estimation of dense velocity fields from image 
sequences is basically an ill-posed problem, primarily because 
the data only partially constrain the solution. It is rendered 
especially difficult by the presence of motion boundaries and 
occlusion regions which are not taken into account by standard 
regularization approaches. In this paper, we present a multimodal 
approach to the problem of motion estimation in which the 
computation of visual motion is based on several complementary 
constraints. It is shown that multiple constraints can provide more 
accurate flow estimation in a wide range of circumstances. The 
theoretical framework relies on bayesian estimation associated 
with global statistical models, namely, Markov Random Fields. 
The constraints introduced here aim to address the following 
issues: optical flow estimation while preserving motion bound- 
aries, processing of occlusion regions, fusion between gradient 
and feature-based motion constraint equations. Deterministic 
relaxation algorithms are used to merge information and to 
provide a solution to the maximum a posteriori estimation of 
the unknown dense motion field. The algorithm is well suited 
to a multiresolution implementation which brings an appreciable 
speed-up as well as a significant improvement of estimation when 
large displacements are present in the scene. Experiments on 
synthetic and real world image sequences are reported. 

Index Terms-Visual motion analysis, discontinuities in optical 
flow, occlusion processing, multiple constraints, multiresolution 
analysis, MAP estimate, Markov Random Fields, deterministic 
relaxation. 

I. INTRODUCTION 

T HE recovery of visual motion from image sequences has 
motivated number of investigations in the last decade, [2], 

[26]. The optical flow field can be defined as the distribution 
of 2D velocities of the brightness patterns in the image plane. 
As optical flow is usually estimated using the spatiotemporal 
variations of the intensity function within the image sequence, 
its computed version only imperfectly accounts for the real 
underlying velocity field due to the relative motion between 
the camera and the objects in the scene. This problem has 
been thoroughly addressed by Verri and Poggio, [34], who 
have shown that the computed optical flow field is generally 
different from the true 2-D projected motion field (projection 
on the image plane of the 3D velocity field of a moving scene). 

Nevertheless, the discrepancies between the two fields are 
usually not large, in particular in areas of noticeable intensity 
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gradient values, [34]. Thus optical flow conveys significant 
information about the 3-D environment, including relative 
depth, surface orientation, structure and motion of objects in 
space and sensor motion. Dense optical flow computation thus 
appears directly relevant to numerous problems in dynamic 
scene analysis such as moving object detection, motion-based 
segmentation, [l], [25], [35], qualitative kinematic labeling 
of moving objects in a scene, [8], recovery of 3D motion 
and structure, [l], [25] with applications to robot navigation, 
obstacle avoidance, [8] or image coding. 

It is well known that the estimation of dense velocity fields, 
like many other tasks in low-level vision, is an ill-posed 
problem. This means that the available data usually do not 
sufficiently constrain the solution of the problem. Additional 
smoothness constraints on the resulting motion fields therefore 
need to be introduced, [18], [27]. Unfortunately, the standard 
answers to the problem suffer from several shortcomings. 

Gradient-based local motion measurements are known to 
be very sensitive to commonly encountered situations such 
as regions of constant intensity, motion discontinuities or 
occlusions areas, [20]. Large displacements are also beyond 
the scope of those methods. The need for several information 
sources appears clearly to cope with the variety of real-world 
images. The usual smoothness constraint also has adverse 
effects on the estimated optical flow fields because it blurs 

the motion discontinuities. Among these different problems, 
the most difficult one is certainly the processing of occlusions 
between different moving objects in a scene. Occlusions 
generate discontinuities in the optical flow field and give rise 
to regions in which no valid motion information is available. 
The usual computational approaches are not able to cope 
simultaneously with all these problems, because the constraints 
they introduce on the desired motion field only imperfectly 
account for the complexity of real-world scenes. 

In this paper, we present a multimodal approach to the 
problem of motion estimation. The computation of apparent 
velocity fields is based on several complementary constraints. 
The constraints introduced here aim at solving the different 
above-mentioned issues: optical flow estimation while preserv- 
ing discontinuities, processing of occlusions and introduction 
of additional information sources. Local motion discontinuities 
are obtained as a by-product of the method, along with 
information allowing the algorithm to distinguish occluding 
regions from occluded ones. New constraints between motion 
discontinuities, intensity edges and velocity vectors are inves- 
tigated. For the local motion measurement, two information 
sources are considered: a gradient-based and a feature-based 
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motion constraint. In our experiments, these two constraints 
are shown to be complementary. To combine these constraints 
properly, the validity of each constraint is locally tested using 
hypothesis tests. A given constraint contributes to the global 
estimation only if it has been acknowledged as valid. 

In our approach, the theoretical and computational frame- 
work enabling a cooperation between several sources of in- 
formation is based on bayesian estimation theory and Markov 
Random Field (MRF) models. MRF models have been suc- 
cessfully introduced in several important low-level problems 
of static image processing such as image restoration, [5], 
[14], image segmentation, [13], stereovision, [3], computed 
tomography, and surface reconstruction. They have recently 
been extended to image sequence analysis, for motion de- 
tection, [9], motion estimation, [15], [22] and motion-based 
segmentation, [8], [25]. By defining a coherent mathematical 
framework for nonlinear global statistical image modeling, 
they lead to significant improvement with respect to local 
methods. Markov Random Fields also appear to be an efficient 
and powerful formalism for specifying spatial interactions 
between features of a different nature, that is for combining 
information. MRF modeling allows to jointly handle problems 
of optical flow estimation and issues of motion discontinuity 
and occlusion processing. The algorithm combines gradient- 
based and feature-based velocity measurements with evidence 
on occlusion areas in order to estimate dense velocity and 
motion discontinuity maps. 

As far as motion estimation is concerned, Markov models 
were first used by Konrad and Dubois, [21], to estimate 
discrete-valued velocity vector fields. In [19] Hutchinson et 
al. describe an analog and binary resistive network model 
equivalent to a Markov Random Field, to perform detection 
of motion edges simultaneously with the estimation of the 
velocity field. A VLSI implementation is derived. Konrad et 
al., [22] and the authors, [15] have independently proposed 
to introduce binary edge sites between velocity vectors to 
estimate discontinuous motion fields. A visual motion estima- 
tion algorithm, including multiple constraints has also been 
presented by Black and Anandan in [6]. These constraints 
include brightness constancy, spatial and temporal coherence. 
The optical flow field is obtained by minimizing a nonconvex 
objective function, which can be interpreted as the energy 
of a MRF model. Motion discontinuities are handled using 
weak continuity constraints enabling outlier rejection in the 
optimization scheme. 

Here, we propose new comprehensive MRF interaction 
models for optical flow estimation which differ from the work 
reported in [6], [15], [19], [22] on the following points. 

. The model can integrate different sources of motion mea- 
surements. It is illustrated here by a cooperation between 
gradient-based and edge-based motion measurements, but 
can be extended to a cooperation with other techniques 
(correlation, similarity functions, etc.). 

l The model properly copes with the problem of discontinu- 
ity processing in image sequences. Motion discontinuities 
are modeled by local binary edges located midway be- 
tween velocity vectors, but an additional feature of the 
model allows us to take into account whole regions of 

discontinuity and not only the motion boundary lines. 
These regions correspond to occlusion parts between 
objects undergoing different motion. This is a key-point 
since in real world sequences, taking into account false 
information within an occlusion region may lead to wrong 
velocity estimates and have an adverse effect on the rest 
of the velocity field, [2]. It is demonstrated in several 
examples that the only introduction of local binary motion 
edges is not sufficient to properly handle discontinuities 
in a moving scene. 

The paper is organized as follows. In Section II, we present 
the two complementary constraint equations: a standard 
gradient-based constraint [18] and a moving edge constraint, 
derived from a method presented in [7]. Section III is 
concerned with the integration of the different constraints 
within a global bayesian decision framework, based on 
MRF models. The maximum a posteriori (MAF’) criterion 
is adopted. Qualitative as well as quantitative experiments 
on synthetic and real world images are reported in Section 
IV. A multiresolution version for our MRF-based relaxation 
algorithm is described in Section V and Section VI contains 
concluding remarks. 

II. MULTIPLE MOTION CONSTRAINTS 

The multimodal motion estimation scheme relies on two 
motion measurement constraint equations that will be defined 
hereafter. This differs from the so-called “multiconstraint” 
methods which rather consider several inputs to the same 
equation, [24], whereas our multimodal approach is based 
on a cooperation between different complementary motion 
constraints. This is a key-point, since problems often arise 
in the “multiinput” methods because the used inputs (multi- 
spectral data for instance) do not supply real complementary 
information, leading to ill-conditioned systems. The first con- 
straint is the standard motion constraint equation proposed by 
Horn and Schunck [18], and the second one is related to a 
moving edge estimation method recently described in [7]. The 
reliability of these two different motion constraints is discussed 
and validation factors are associated to both equations, using 
hypothesis testing techniques. 

A. A Gradient-based Motion Constraint 

Let f(x, y, t) denote the observed intensity function, where 
(2, y) designate the 2-D spatial image coordinates and t the 
time axis. Let 3, = (u,, ZI,)~, (2~~ = $(s),zJ, = 3(s)) 
denote the velocity vector at point s = (2, y, t). The motion 
constraint equation is given by, [18]: 

Vf(s).G + h(s) = 0, (1) 

where o’f is the spatial image gradient and ft stands for g 
and denotes the temporal intensity gradient. 

The gradient-based motion constraint relies on the funda- 
mental assumption that the brightness of a moving point is in- 
variant between time t and t+dt. This equation shows that only 
the velocity component parallel to the spatial image gradient 
can in general be recovered through local computation. This 
is referred to as the aperture problem. In order to derive the 
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Fig. 1. motion estimation on the square sequence. (a)-(b) Original sequence 
(100 x 100): the square undergoes a translation of (2,2) pixels in the 
image plane. Gaussian white noise (with variance 4.) has been added to 
the background. A linearly varying intensity profile has been defined inside 
the square. (c) Velocity estimation using a standard smoothing method. (d) 
Estimation of normal velocities using the moving edge estimator described 
in [7]. 

complete velocity vector, it is usually assumed that points in 
the neighborhood of a given point move with similar velocity. 
Local optimization approaches [20], assume constant velocity 
in the neighborhood whereas globaloptimizationtechniques 
rely on a smoothness assumption of the velocity variations 
over the whole image, [18]. 

The limitations of the early gradient-based techniques ap- 
pear clearly and can be stated as follows. Relation (1) no longer 
exists in occluded regions, or on motion discontinuities and 
also on intensity discontinuities (on sharp edges, or in highly 
textured regions for example). Large displacements are also 
beyond the scope of these techniques for the same reason. 
The gradient-based schemes are known to be sensitive to 
ambiguous areas such as uniform regions or regions exhibiting 
a linear variation of the intensity in one direction only. Besides, 
in real world images, the velocity fields are neither locally 
constant nor globally smooth: they are rather piece - wise 
continuous. In practice, however, the existing schemes show 
(limited) robustness to these different sources of error, mainly 
because they minimize some error function with respect to the 
underlying imperfect model. 

The performances of a standard smoothing method based 
on the image flow constraint equation (1) are illustrated on 
a synthetic image sequence (Fig. l(a)-(b)). The sequence 
exhibits strong intensity discontinuities inside the square, along 
with occlusion areas corresponding to parts of the background 
covered or uncovered by the moving pattern. The motion 
discontinuities lie on the square boundaries. Inside the square 
the grey value function remains constant along the vertical 
direction and shows a linear variation along the horizontal one. 
The standard smoothing method, is close to the one developed 
by Horn and Schunck [18] and has been derived from our 
multimodal motion estimator by retaining only the image flow 
constraint and discarding motion discontinuities and occlusion 
areas (see Section III). It assumes global smoothness of the 
flow field. As expected, the resulting velocity field (Fig. l(c)) 
is blurred across the motion discontinuities. Moreover, poor 
quality estimates can be observed both on the central bright 
intensity lines and in the occlusion areas. These limitations are 
observed for all standard smoothing methods. 

Different solutions have been suggested to cope with some 
of these problems. The problem of discontinuities in the mo- 

tion field is considered by Nagel and Enkelmann, [27], who use 
an oriented smoothness constraint which prevents smoothing 
of the velocity field in directions where significant variations 
of grey values are detected. Schunck, [29], investigates clus- 

tering of local gradient-based constraints in order to obtain 
homogeneous motion measurements. The detection of motion 
discontinuities has been considered in several recent papers 
as a fundamental issue in motion estimation. Iwo approaches 
have been studied: the first one detects discontinuities after 
computing the optical flow, 1321, the second addresses the 
detection problem prior to or simultaneously with the motion 
field estimation, [15], [19], [22], [23], [32]. Techniques of the 
second class give better results because the prior knowledge 
of motion boundaries helps to prevent velocity smoothing 
through regions undergoing different movements. Wohn and 
Waxman, [35] study the global analytic structure of a 2-D 
motion field and propose a segmentation method based on 
the recovery of boundaries between regions of analycity in 
the optical flow field. Experiments on simulated flow fields 
are presented. Peleg et al., [28] describe a multiresolution 
approach to extract small moving objects from a static back- 
ground when camera motion is present. The depth map of the 
scene is assumed to be known. In [6] motion discontinuities are 
handled implicitly by using outlier rejection techniques in the 
estimation of the velocity vector from a small neighborhood. 
Outlier rejection enables to eliminate measurements which are 
inconsistent with the local motion, in particular when a motion 
boundary is present in the neighborhood. Singh [31] has 
developed an estimation theoretic framework associated with 
a correlation-based measurement approach which is shown 
to perform better than conventional smoothing methods at 
motion boundaries on texture-free images. Besides, Spoerri 
et al., [32], Little et al., [23] and Black et al., [6] have 
proposed several occlusion detection techniques based on the 
analysis of the behavior of matching algorithms in the vicinity 
of motion boundaries. Multiple motion analysis, of interest 
in situations involving for instance semi-transparencies, may 
also be used to detect motion boundaries, when two different 
motions are observed locally. Contributions in this field are 
recent, [4], [30] and techniques include separation in the space- 
time frequency domain, [30] and iterative compensation of 
multiple movements, [4]. Approaches based on MRF [19], 
[22] have been mentioned above. 

B. An Edge-Based Motion Constraint 

We consider here a second complementary motion constraint 
which is feature-based. The underlying estimation method has 
been described in [7]. It will be called in the subsequent the 
“moving edge (ME) estimator” and is based on spatio-temporal 
surface modeling and hypothesis testing techniques. It simul- 
taneously yields from some local processing the following 
output concerning moving intensity edges: edge position d, 
edge orientation 0 and velocity vector perpendicular to the 

-I edge Wd . 
To this end, a spatiotemporal edge in an image sequence 

is modeled as a spatio-temporal surface patch in the (x, y, t) 
space. Within an elementary volume ?r in the (2, y, t) space, 
two local configurations may be encountered: either there 
is no spatiotemporal edge inside x or there is one. In this 
case, a surface patch denoted by S((a) subdivides x into two 
subvolumes ?rr and 7rs. Two competing hypotheses Ha and 
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1 region A / region A 1 region A / region B 1 

Fig. 2. Location of moving edges with respect to pixels for a vertical edge. 
(the case of horizontal edges is similar). a) moving edge within a region b) 
moving edge between two regions 

H1 are associated to these configurations, [7] and formalized 
by the corresponding likelihood functions. Intensities within 
7r are assumed to be independent Gaussian random variables 
whose mean depends on the considered hypothesis. 

A log-likelihood ratio test is designed for a predefined 
set of values of the parameters @ describing surface 5’. 
Planar patches are considered. Computation mainly reduces 

to local convolution operations. Edge location, orientation and 
displacement are directly related to the optimal parameters 4 
of the determined planar surface patch if present. To decide 
whether a ME is present or not, the log-likelihood ratio 
is compared to a threshold X (we refer the reader to [7] 
for more details). The local motion measurement is reliable, 
even on motion discontinuities and for important displacement 
magnitudes. Due to the aperture effect only the perpendicular 
component of the displacement can be derived. 

In the ME estimator version we use, edge sites d can be 

considered as located midway between pixel sites (Fig. 2). To 
save computation time a spatial intensity edge detection, [lo] 
is performed to determine edge locations. The ME estimator 
is only applied at these locations to estimate vector wd . 

The velocity component perpendicular to the edge at lo- 

-I 
+ wd 

II w’dl II= 0, 

where w: designates vectors w’, or L&, and & is the 

unit vector normal to the intensity edge. The moving edge 
constraint states that the projection of the unknown velocity 
w’, on the unit vector perpendicular to the moving edge is 
equal to the norm of the perpendicular component Wd . 

If the detected moving intensity edge is related to an 
occlusion between two different regions, the constraint only 
holds for the velocity vector belonging to the same region as 
the occluding edge. In the case of Fig. 2(b) for instance, it 
turns out that the constraint only holds for vector w’,, and not 
for vector W;. In order to propagate the constraint properly, it 
is necessary to determine to which region the occluding edge 
belongs. Information allowing the algorithm to differentiate 
between the occluding region and the occluded one is therefore 
required. This information will be defined later in the global 
markovian modeling (Section III-A). It will be considered 
as an additional, unknown feature in the model, and will be 
estimated in parallel with velocities and motion discontinuities. 

Fig. 3. Confidence factor on the square sequence (for the original sequence 
see Fig. 1). (a) Moving edge constraint: log-likelihood surface for the ME 
estimator. (b) Moving edge constraint: Binary confidence factor trne (d) (black 
points correspond to F,,,(d) = 1). (c) Image flow constraint: Confidence 
factor Fs (black points correspond to Fs = 0). 

Fig. l(d) presents the result of the moving edge estimator 
on the square sequence. One can point out that unlike the 
gradient-based approach (Fig. l(c)) the moving edge estimator 
yields good measurements on motion and intensity disconti- 
nuities (however motion information remains obviously sparse 
and only perpendicular velocity components are recovered). 

C. Reliability of Motion Constraints 

The accuracy and the reliability of the partial measurements 
associated to motion constraints (1) and (2) depend on the 
adequacy between the observed variations of the intensity 
pattern and the spatiotemporal changes the underlying model 
accounts for. For the different existing motion constraint 
equations, little attention has been given to getting reliability 
measurements (apart from [7], [20]). In the following we 
define validation factors associated to the constraints we have 
introduced. They will be used to withdraw the contribution of 
invalid local constraints from the global estimation. 
A Validation Factor for the Moving Edge Constraint: As far 
as the moving edge constraint is concerned, the ME estimator 
provides a natural way to define a validation factor. Let us 
recall that the determination of a moving edge at location d 
leads to comparison of the log-likelihood ratio associated with 
the two competing hypotheses to a threshold (see Section II-B 
or [7]). The optimal value of the log-likelihood ratio Ld at 
location d, with respect to surface parameters 6 can be used 
to measure the reliability of the corresponding moving edge. 

Fig. 3(a) shows the log-likelihood surface in the case of the 
moving square. The likelihood surface indicates high reliability 
in the vicinity of edge location. We introduce following binary- 
valued validation factor Erne : 

Ime(d) = 1, if&(&, to, &, 22) > x1, 

Ime = 0, else, (3) 

where X1 is a threshold. The validation factor then gives the 
location of the most reliable moving edges (Fig. 3(b)). 
A Validation Factor for the Image Flow Constraint: Basically 
the image flow constraint (1) holds as long as the local inten- 
sity variations and the observed temporal changes are related. 
This property refers to the local spatiotemporal linearity and 
derivability of the intensity function. 

To determine whether the observed variations preserve the 
spatiotemporal relation, it is shown in [16] that it is sufficient 
in practice to test if the first order spatial derivatives of the 
intensity function at point s remain the same between time t 
and t + 1. The hypothesis test considered here relies on a local 
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linear model for intensity function f(z, y, t) at point s = (2, y) 

in two successive images (t and t + 1) of the sequence: 

f(a: + sz, y + sy, t) = f(z, y, t) + at62 + bt6y + n1(4) 

f(z + 6x, Y + 6% t + 1) = f(z, y, t + 1) + at+1Sz 

+ h+1SY + %, (5) 

where nl and n2 are assumed to be independent zero-mean 
Gaussian noises with the same variance c2. 

The reliability of the constraint equation is tested by consid- 
ering two competing hypotheses denoted Ho and HO, where 

Ho : {ut = at+1 and bt = b,+l} in W(s) 
- 

HO : {at # at+1 orb # bt+l} in W(s). (6) 

W(s) designates a local window centered at point s, in which 
the parameters are estimated. The likelihood functions under 
each hypothesis are computed, assuming gaussian noises with 
same variances for n1 and n2 and the log-likelihood ratio is 
compared to a threshold. As in the case of the ME constraint, 
we define a binary validation factor for the motion constraint 
at site 3: 

t&l~= 1, if HO is selected (7) 

I&J) = 0, if HO is rejected. 

Fig. 3(c) shows the sites corresponding to &(s) = 0 
issued from test (7) on the square sequence. Let us notice 
that these regions are closely related to the occlusion areas 
(near the square boundaries) and to spatial discontinuities in 
the intensity pattern (along the two central lines). In these 
different areas the image flow constraint is indeed invalid: in 
the following, & will help us to disregard these wrong local 
constraints. 

As intuitively expected comparing Fig. 3(b) and Fig. 3(c), 
one can see that the two motion constraints are complementary 
in this example. Experiments with other sequences have given 
similar results: the gradient-based constraint is invalid in 
regions of “spatiotemporal discontinuity” (within occlusions, 
on sharp intensity edges and in highly textured regions) 
whereas the ME method is reliable at those locations (excepted 
in textured regions). This experimental statement justifies the 
use of these two particular motion constraints. 

III. A GLOBAL BAYESIAN FORMULATION 

FOR MULTIMODAL MOTION ESTIMATION 

Global bayesian estimation defines a coherent mathematical 
framework to extract labels describing motion from image 
sequences. The estimation process can be outlined as follows. 

l One or more specialized low-level modules extract from 
the image sequence features (gradients, moving edges, 
etc.) that will be used as observations in the estimation 
process. 

l Observations are combined within local photometric and 
structural models with a priori generic knowledge on 
the expected result, in order to derive estimates of the 
unknown labels. 

(Obsenrations) Motion Labels 

Fig. 4. The multimodal interaction model: interactions between motion labels 
and observations. Thanks to the MRF model, the motion discontinuities are 
estimated jointly with the optical flow field. The motion measurement relies 
on two complementary motion constraints: gradient and feature-based. The 
reliability of local motion constraints is tested and they contribute to the global 
estimation only if they are valid. The estimation of motion discontinuities is 
supported by intensity edges. Geometrical constraints are also defined on the 
desired discontinuity configurations. 

The spatial interactions between observation fields and 
motion labels are specified using Markov random field (MRF) 
models. The random field models are employed to provide 
constraints on the solution and to fuse information. 

In the MRF model designed here, local motion disconti- 
nuities are simultaneously estimated with the velocity field 
and multiple local constraints contribute to the estimation of 
those fields. Intensity edges are used as additional evidence to 
support the estimation of motion boundaries (Fig. 4). 

A. Observations and Labels Supporting Motion Information 

In the estimation process, information about motion is 
summarized in the following labels. 

l Vectorial labels 3,, (~2~ E W2) corresponding to the 

velocity field w’ = {3,, s E S} where 5’ denotes the set 
of pixel sites in the image plane. A local velocity vector 
is thus associated to every point s in the image plane. 

l A set of discrete labels y = {yd, d E D} describing local 
motion discontinuities. D denotes the set of edge sites 
located midway between the pixel sites. There are three 
possible states for motion discontinuities: yd = 0,l or 
-1. 
yd = fl (resp. Td = 0 ) means that a motion dis- 
continuity (resp. no motion discontinuity) is present at 
location d. In case that Yd = fl the sign of +j’d codes the 
relative position of the occluding surface with respect to 
the motion discontinuity, (see Fig. 5). ^/d = +l (resp. 
“/d = -1) means that for a vertical discontinuity the 
occluding region is on the right-hand side (resp. on the 
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1 region 1 / region 2 1 region 1 I region 2 1 

Fig. 5. The sign of label Y,j defines the region to which the occluding edge 
belongs (case of a vertical edge) (a) Case Yd = -1: the occluding edge 
belongs to region 1 (w’dl and 3, are consistent). (b) Case Yd = +1: the 
occluding edge belongs to region 2 (L&l and & are consistent). 

left-hand side). A similar code is used for horizontal 
discontinuities. This three state edge description is used 
to propagate the moving edge constraint to the proper 
region (see Section II-B), but can also be considered as a 
useful by-product of the estimation scheme. 

Observations correspond to the output of four independent 
modules. 

l A first module computing the spatial and temporal deriva- 
tives Df = {o’f(s), g(s),s E S} of the intensity 
function f at every vector site s. 

l The moving edge estimation module described in Sec- 
tion II-B, which yields displacement information about 
intensity edges located on grid D (only the displacements 
perpendicular to the edges are determined). The set of 
sites d E D, for which a moving edge exists, will be de- 
noted D,,. The corresponding local motion measurement 
set is denoted &- = {wd -‘,d E D,,}. 

l The validation factors defined in Section II-C, & = 

{&ds),s E S), Es(s) E I&l) and he = {5me(4,d E 
D} , &(d) E (0, l}. Observations Es state, at every 
pixel location s, whether the image flow constraint is 
reliable or not (the same holds for Erne at edge locations 
d for the moving edge constraint). 

l A spatial intensity edge detector derived from Canny’s 
criterion proposed by Deriche, [lo], provides a binary 
information about intensity discontinuities on sites d E D. 
n = {r)d, d E D} designates the binary map output 
of the intensity edge detector (rod = 1 if an intensity 
edge is detected). Following [12] intensity edges will be 
used as partial evidence supporting the state of motion 
discontinuities Ed at the same locations. 

As explained in Section II-B, the output of the intensity 
edge detector is also used in the moving edge estimator to 
reduce the global computation cost. The spatial locations of 
the moving edges w’ thus coincide with the locations of the 
intensity edges used to support motion boundary detection. 

B. Global Bayesian Decision and the MAP Criterion 

The maximum a posteriori (MAR) criterion has been widely 
used in the context of global bayesian decision, [9], [14], [22], 
[25]. To derive the unknown label fields (3,~) from the ob- 
served fields (Df, WI, &, cme, Q), the following optimization 
problem has to be solved: 

where p(2)f, WI, &, Eme, ~,3, y) is the joint distribution of 
the observed and hidden variables. 

The distribution of observations and motion labels are 
specified using a coupled Markov Random Field (MRF) model 
whose distribution is written in the following form ([14]): 

is called the energy function of the MRF. The lowest energies 
correspond to the most likely configurations. Such a formula- 
tion is possible since we assume that the interactions between 
the different variables remain local, with respect to a chosen 
neighborhood system v (see [14] for a complete theory of 
MRF). C denotes the set of cliques associated to neighborhood 
system V. Cliques c are subsets of sites which are mutual 
neighbors. The potential function V, is locally defined on 
clique c and expresses the local interactions between the 
different variables of the clique. The form of the potential 
functions is of course problem dependent. The functions that 
we have defined for the motion estimation scheme integrate the 
different modeling aspects already discussed: regularization of 
the velocity field along with preservation of motion bound- 
aries, multimodal cooperation between different measurement 
sources, discarding of invalid local motion constraints (in 
particular in the occlusion regions), processing of motion 
discontinuities... Within this framework, finding the maximum 
a posteriori estimate amounts to minimization of the global 
energy function U. 

The neighborhood system Y is defined on sets 5’ and D 
as explained in Fig. 6(a). Interactions between observations, 
velocities, and motion discontinuities are supported by mixed 
cliques, whereas edge cliques support the geometric properties 
of motion discontinuities (Fig. 6(b)). 

Interactions between variables are modeled through the 
following decomposition of the global energy function: 

Each term is decomposed into local potential functions defined 
on the different cliques (for the notations see Fig. 5 and Fig. 
6) in the equations at the bottom of the next page where Qcy3 
is given by 

sign(ll 3, -3, 11 -o/3)(" 
3, -3t 11 -cx3)2 

a32 
, 

the o.i,i = l,.** ,4, are model parameters and the Ci, i = 
l,**. ,8 denote the different clique types depicted in Fig. 6(b). 
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a : MRF neighborhood system 
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b : cliques associated to 

the MRF neighborhood 

Fig. 6. MRF neighborhood system including vector and edge sites. 

In this decomposition, each term expresses a different 
interaction model, each of which contributes to the global 

estimation process. The different terms can be interpreted as 
follows. 

Energies Ul and Uz (Motion Measurement Constraints): 
Energies VI and U2 are related to the motion constraint 
equations (1) and (2) upon which the motion estimation is 
based. Those energy functions take into account the confidence 
factors discussed in Section II-C. For sites s belonging to 
smooth spatiotemporal regions (Es(s) = l), the image flow 
constraint equation is applied (energy VI), whereas in sites 
where Eme(s) = 1, (i.e. presence of a moving edge), the 
moving edge constraint is considered (energy U2). 

If the moving edge at site d corresponds to a motion 
discontinuity l~dl = 1, the moving edge constraint is only 
propagated to the proper region depending on the sign of Yd. 
For instance for a vertical motion boundary (see Fig. 5) when 

“/d = 1, ;(+dl - Yd + 2) = 0 and +(+dj + Td + 2) = 1; 

hence, the moving edge constraint is only propagated to the 
vector Gt belonging to the right-hand side region (Fig. 5). 
When Td = 0, i.e., when there is no motion discontinuity at 
site d, the moving edge constraint is propagated to the regions 
on both sides. 

Conversely, when the velocities are given, two configura- 
tions may be encountered. 

l The measured orthogonal component w>’ is exactly 
consistent with the neighboring velocities w’, and W;, that 

+I iszt.&-Wd =w’,. & 
+I 

-wd = 0. In this case, 

energy us has no effect on the choice of y,j. 
l A discrepancy exists between w>l and its neighbor 

vectors. In this case, energy Uz favors either value Td = 
-1 or Y,j = fl according to the lowest local energy. For 
a vertical discontinuity for instance, if the perpendicular 
component w>l is consistent with vector 3, (Fig. 5), the 
value -1 is assigned to Yd. This means that the occluding 
surface is on the left-hand side of the boundary in this 
case. The occluding region is the one containing the 
velocity vector (Gs or &) the most consistent with the 

+I observed component Wd . 

Let us point out that energy function U2 does not decide 
between states Td = 0 and lTd[ = 1, i.e. whether a motion 
boundary has to be introduced or not. Energy Uz only makes 
a selection among States Yd = 1 and Yd = -1, that is, assigns 
an existing motion boundary to the region which it belongs 
to. The decision for the placement of a motion boundary at a 
given location is inferred from energy term Us, based on the 
variations in the estimated velocity field. 

Energy U3 (Velocity Field Smoothing While Preserving Dis- 
continuities): Interactions between velocities and motion dis- 
continuities are supported by mixed cliques (s, t, d). The 
chosen potential function smooths out the motion field using 
terms of the form 11 3, - L& I(, corresponding to first order 

derivatives (second order terms were also used, but appeared 
more sensitive to noise). Velocity smoothing is inhibited when 
a motion boundary is present ( lYd[ = 1). Conversely when 

+I 

c 

wd 
a2 

~- 
Ime(d>(G. ,I w’dl ,I 11 w’dl ib2;(-hdl - ^ld + 2) 

s~S,d~D,,,(s,d)E{C3}u(c4) 

-I 

+ (112 
c 

wd 
~- 

&r&Wt~ll w’dl lI 11 w’dl ~~)2~(-t~dl + ?‘d + 2) 

t~S,d~D,,,(t,d)E{C,}u{C2} 

U3(w’,Y) = c @cI,(II G - w’t ll)(l - hi) 
(S,t,d)E{Cs)uIGl 

u4(%7) = a4 x(1 - ~d)h’di 

dED 

U5(r) = c K(r), 

~~{~7}u{~,} 

(10) 



1224 IEEE TRANSAflIONS ON PATI-ERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 15, NO. 12, DECEMBER 1993 

the vector field shows important variations in edge vicinity 

(I] w’, - Gt ]I> as), the placement of a motion discontinuity 
at that site is favored (]rd] = 1 ). 

Energy U4 (Interactions Between Motion Discontinuities and 
Intensity Edges): Intensity edges are used as partial evidence 
for the determination of motion boundaries. In real world 
scenes, a 3-D configuration resulting in a motion disconti- 
nuity generally also contributes to an intensity edge. Hence, 
following [12], we assume that motion discontinuities appear 
with a rather low probability when there is no intensity 
edge at the same location. This is specified using energy 
function U4 with a large positive value for parameter (-114. U4 
prevents configurations in which ]Yd] = 1 and vd = 0 from 
appearing. This can be a limitation in situations in which the 
motion boundaries are not supported by underlying intensity 
edges (two random dot patterns, one occluding the other, for 
instance). Such (rather uncommon) situations are beyond the 
scope of the method. 

Energy U5 (Edge Geometry): The edge cliques considered 
in U5 help to discourage undesirable geometric configurations 
(edge ending, isolated or double edges [14]). Two main 
methods for specifying the geometrical properties of edges 
in MRF have been proposed, [13,14]. The first approach, [14], 
consists of assigning different weights to the different possible 
local edge configurations defined on the geometrical cliques. 
A large weighting on a configuration tends to discourage this 
configuration, [14]. The main drawback of this method is to 
introduce an important number of additional parameters in the 
model, corresponding to the different weights. The tuning or 
learning of those parameters is generally not an easy task. As 
we are concerned with a three state discontinuity description 
and with the chosen neighborhoods, the number of local 
configurations is as large as 162. Therefore we have resorted 
to an alternate approach recently described in [13]. This other 
solution consists of introducing forbidden edge configurations. 
Each forbidden local configuration (edge endings, isolated or 
double edges, impossible configurations of occluding/occluded 
regions), weighs an elementary weight of 1 in energy Us. The 
following constrained optimization problem is then solved: 

min (VI + U2 + U3 + U4) + asU5 with (~5 = +oo. (11) 
t3,71 

A constrained optimization may be obtained in practice by 
letting ~5 /” +ce (see [ 131 for convergence’ theorems). 

C. Energy Minimization Using Deterministic Relaxation 

Finding the MAP estimate of the fields 3 and y is 
equivalent to minimizing the global energy function 

Wfd ,&7,&=9?,4~). This global energy function 
depends both upon continuous and discrete valued variables 
( 3 and y ). To reach configurations close to the global 
minimum of an energy function, stochastic optimization 
methods for continuous and discrete variables have been 
studied [ 141. Stochastic optimization algorithms are very 
time consuming, especially for continuous variables. Most 
of the recent papers resort to deterministic schemes which 
are more appealing, as far as computation time is concerned. 
Deterministic relaxation converges to a local minimum of 

the energy function, but this loss of optimality may be 
compensated for by an appropriate initial guess. Besides, in 
many cases the suboptimal solution can be considered as 
a relevant solution. In our experiments, we use a modified 
version of Iterated Conditional Modes [5], a deterministic 
alternative to simulated annealing. In this relaxation scheme 
the final result depends on initialization and site visiting 
order. Satisfactory results are obtained by initializing vectors 
with 0’ and motion boundaries with the intensity edges map 
qd. This suggests that for the optimization problem at hand, 
the initial guess for the velocity field is not so critical. 

In the Iterated Conditional Modes relaxation method, the 
global energy function (10) is minimized by sequentially 
updating the different sites of the velocity and discontinuity 
fields. The site visiting order is raster scan, with reverse 
order after every full sweep of the image. Vector sites and 
discontinuity sites are visited in turn. At a given location, 
the label value assigned to a site is the one maximizing 
the decrease of the global energy function. Thanks to the 
decomposition of the MRF into local interaction terms, it 
turns out that updating a site leads to the minimization of 
a local energy function that depends on the visited site and 
its neighbors, [ 141. 

The terms of the local energies are derived from the global 
one (lo), apart from one exception concerning the smoothing 
term @oI,(]] w’, - w> ]I), which has been replaced by the 
simplified quadratic form crs’ ]I w’, - w< ]I2 in the local energy 
function E(w’,) used to update w’, (the expression of the local 
energy functions as well as other implementation details may 
be found in [16]). Using such a simplified form makes the 
computation of the minimum of E(3,) easier since it becomes 
quadratic with respect to 3,. No visible degradation on the 
final velocity fields was noticed when this simplification was 
used. 

The other model parameters are either set to a fixed value, 
whatever the sequence at hand, or computed from the other 
parameters. We have taken or = 1, (~2 = 1, a4 = &. Indeed, 

the only parameters that need to be tuned are (11s’ and as 
which weight the interactions between smoothing of velocities 
and introduction of motion discontinuities. as’ and ~3 have 
been chosen by trial and error for the different sequences and 
may change from one sequence to another. Large values for 
parameter ~13’ will favor the smoothing of the velocity field, 
hence this parameter should be increased for noisy images. 
Typically na’ = 200 was used for synthetic sequences whereas 
r~a’ was set to 1000 for real world sequences. Parameter 
cys acts like a threshold for detecting motion boundaries: 
small values for os makes the process sensitive to small 

variations in the vector field and thus increases the number of 
detected motion boundaries whereas large values only retain 
the most relevant discontinuities. The final results were not 
very sensitive to the value of the ~3’ smoothing parameter: a 
large range of values gave similar results. They appear more 
sensitive to parameter ~3 which has to be tuned accurately 
in order to get the relevant motion boundaries (like with a 
standard edge detector). Of course, an efficient data driven 
parameter identification method would be of great interest 
here. 
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Fig. 7. Velocity fields and motion discontinuities obtained on the square 
sequence. (a) Optical flow estimation using a standard gradient-based smooth- 
ing method. (b) Optical flow and motion discontinuities obtained with our 
algorithm but without the moving edge constraint (02 = 0). (c) Optical flow 
and motion discontinuities obtained by the complete multimodal estimation 
scheme. (d) Differentiation of occluding surface and occluded surface. Each 
symbolic vector points to the interior of the occluding region. 

In our experiments, between 200 and 400 iterations (i.e. 
full scans of the image) are usually necessary to lead to 
configurations close to convergence. This number of iterations 
seems unusually large for a deterministic scheme. This is due 
to the fact that the velocity vectors are continuous-valued: 
in discrete problems, convergence is generally faster (within 
10 iterations for binary-valued fields, for example). The num- 
ber of iterations can be reduced by using a multiresolution 
implementation and other extensions described in Section V. 

D. Comments about the Different Elements of the Model 

The contributions of the different elements of the multi- 
modal model are highlighted on the “square sequence” (Fig. 
l(a)-(b)). Let us recall that, for this sequence, the grey value 
function remains constant in the square along the vertical 
direction and shows a linear variation along the horizontal 
one. Two bright horizontal lines (creating sharp intensity 
discontinuities) have been added inside the square (Fig. l(a)). 
This sequence is typical of indoor scenes with texture-free 
objects which are difficult to handle using standard smoothing 
algorithms. 

Fig. 7(a) shows again the flow measurements obtained by 
considering only the image flow constraint (taking into account 
neither the moving edge constraint, nor motion discontinuities 
nor confidence factors). This field is of the kind of what can 
be obtained with the standard Horn and Schunck’s algorithm, 
[18]: the vector field is strongly corrupted near occlusions and 
intensity discontinuities and it appears oversmoothed. 

Fig. 7(b) presents the result of multimodal estimation when 
motion discontinuities and the confidence factor & are used 
in the estimation process, but the moving edge constraint 
is discarded. The confidence factor & (see Fig. 3c) vali- 
dates locally the image flow constraint (1). This constraint 
is invalidated on the boundaries of the square and on the 
two horizontal lines inside the square. Although the motion 
boundaries are precisely detected in this case, one can verify 
that only the horizontal component of the velocity field can 
be recovered using the image flow constraint, since the grey 
value function in the square remains constant along the vertical 
direction. More information is required to recover the second 
component of velocity. This information can be obtained, from 
the two horizontal lines inside the square and from the square 
boundaries via the moving edge constraint. 

Fig. 7(c) shows the result considering the full multimodal 
model obtained by adding the moving edge constraint and 

confidence factors trne (see Fig. 3(b)). The moving edge 
constraint (2) yields reliable measurements for the points cor- 
responding to intensity discontinuities, i.e. the boundaries of 
the square and the two horizontal lines inside the square. The 
full model (Fig. 7(c)) actually captures the motion boundaries 
and excellent accuracy is reached, even in the vicinity of 
discontinuities as can be seen. In this example the estimation 
process propagates the information gained from the moving 
edge constraint from the two central intensity lines and the 
square boundaries to the rest of the field. The cooperation 
between the moving edge constraint and the image flow 
constraint allows recovery of the horizontal and vertical com- 
ponents of the velocities. The sign of Td (Fig. 5) expresses, for 
every motion discontinuity, the relative position of occluding 
and occluded surfaces (Fig. 7(d)). Each symbolic dash in Fig. 
7(d) points to the interior of the occluding region. The result 
is the right one, except for one point on the boundary. 

This example suggests that, when the intensity profile shows 
limited variations, (creating ambiguous motion information in 
some areas) a cooperation between different motion cues is 
necessary to recover a complete motion vector. The usefulness 
of determining motion discontinuities appears also clearly. 
Finally, the confidence factors, associated to each motion 
constraint avoid to introduce inconsistent constraints, when 
the underlying models are broken. 

The relative importance of the different elements of the 
model will typically depend on the class of images which 
are considered. In the case of natural outdoor images, with 
texture, the image flow constraint might be sufficient to recover 
significant motion information. The motion discontinuities and 
validation factor should of course be used to avoid smoothing 
near motion boundaries and to prevent a misuse of the image 
flow constraint in occlusion areas for instance. In the case of 
indoor scenes, with little texture, the contribution of moving 
edges can become relevant to recover the motion field in 
ambiguous regions. 

IV. EXPERIMENTS 

Experiments have been carried out on several synthetic and 
real world sequences, involving qualitative and quantitative 
evaluation of the performance of the method. Indeed, we 
are usually able to judge the qualitative correctness of the 
estimated velocity fields, especially in the vicinity of motion 
discontinuities and occlusion areas. 

When the true motion is known (this is the case in par- 
ticular for synthetic sequences) a quantitative evaluation of 
the correctness of the field is possible by computing the 
difference between the estimated field and the true one and 
taking some norm of the difference field. Error histograms are 
also presented. 

When the true motion is unknown (which is usually the 
case), one can consider frame-to-frame registration and com- 
pute some norm on the error between the motion compensated 
frame and the original one’. The root mean square error 
(RMSE) of the resulting difference image is computed in this 

1 More precisely, frame at time t is reconstructed from frame at time t + 1 
and from the estimated velocity field between t and t + 1 
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case. It should however be noticed that RMSE only gives a 
very limited insight in the real correctness of a computed field. 
A perfect intensity image reconstruction does not necessarily 
mean that the computed motion field is physically consistent. 
Pel-recursive methods, though providing quite “surprising” 
motion fields, yet perform good motion compensation. Hence 
RMSE is not really an adequate evaluation of motion field 
correctness (but it remains the only available when the ground- 
truth is unknown !). For instance, in constant grey level 
areas RMSE does not depend on the computed velocity field. 
Moreover, a small error in the vicinity of a sharp intensity 
edge will have a worse effect on RMSE than a large error in 
an area of slowly varying intensity. We have also noticed that, 
even if the frame is compensated by the true displacement 
field, the RMSE can remain arbitrary large if large occlusion 
areas exist in the scene. Occlusion areas can of course not be 
compensated properly by a frame-to-frame registration, since 
points belonging to them have no correspondence in the other 
frame. 

We have focused here on five sequences corresponding to 
different classes of images and movements: indoor scenes 
and outdoor scenes, situations comprising static camera and 
moving objects and situations involving both camera and 
object motions. These sequences have been chosen to illustrate 
different contributions of the multimodal estimation process: 
preservation of motion boundaries, multimodal cooperation 
between different measurement sources, processing of occlu- 
sions... 

A. Experiments on Synthetic Sequences 

The contributions of the different modeling parts are best 
highlighted on a synthetic sequence, in which motion can be 
controlled. The moving square sequence example (Fig. 7) has 
already shown that, even for the very ambiguous intensity pat- 
tern considered in that case, the multimodal motion estimation 
scheme recovers an optical flow field close to the true motion. 

The errors between the true motion and the estimated fields 
presented in Fig. 7(a), (b), and (c) have been evaluated using 
the following norms: Lr = & CsES (( Gestim(s) -C&,,,(S) 11 

and 62 = [& CsES II Gstim(s) -G-,,(s) II21 ‘, where N 
is the number of image sites. 

The histogram of the local errors II L&,~~~(s) - C&,,,(S) 11, 
s E S, which gives information on the distribution of errors 
has also been computed (Fig. 8). 

Quantitative evaluations of the results are presented in Table 
I. They make apparent the large errors in the flow field when 
certain elements of the multimodal scheme are discarded. The 
multimodal method divides the L2 error by 4, with respect to 
the standard smoothing method. 

The error histograms (Fig. 8) show that, in the case of stan- 
dard smoothing (Fig. 7(a)), the errors are large and spread over 
a large range of values. For the full multimodal method (Fig. 
7(c)) the error is strongly reduced and mainly concentrates 
near zero. 

We present a second synthetic sequence called moving 
disks, including two disks undergoing different motions and 
occluding each other (Fig. 9). The foreground disk moves 
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Fig. 8. Histogram of the error vector field on the square sequence. 

TABLE I 
ERRORS ON THE SQUARE SEQUENCE. THE ORIGINAL SEQUENCE IS PRESENTED IN 

FIG. 1. THE DIFFERENT METHODS ARE DESCRIBED IN SECTION III-D 

METHOD Ll error 

standard smoothing (see Fig. 7a) 1.01 

without moving edge constraint (see Fig. 7b) 0.35 

multimodal model (see Fig. 7c) 0.13 

L2 error 

1.42 

0.83 

0.37 

parallel to the axis of view, hence a dilatation is observed. This 
disk partially occludes another disk undergoing a translation of 
3fi pixels toward the lower right corner. White noise (with 
variance 4.) has been added to the background. 

The validation factors concerning the gradient-based motion 
constraint are derived from hypothesis test (7). Sites with 
validation factors equal to 0 are shown in Fig. 9(b). One can 
notice that they are closely related to the different occlusion 
areas in the scene: part of the background covered by the two 
moving objects and part corresponding to the overlapping of 
the two disks. 

Fig. 9(c) depicts both the intensity edges detected on the 
original grey-level image and the perpendicular velocity com- 
ponents obtained from the ME estimator (see Section II-B). 
The intensity edges are somewhat noisy, due to white noise 
added to the background. The velocity components in Fig. 9c 
measure, as expected, the displacement of the moving disks 
perpendicularly to the intensity edges. 

The fields computed after the two-step relaxation process 
are drawn in Fig. 9(d) and 9(e). 183 iterations were nec- 

- 
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Fig. 9. Motion estimation on the moving disks sequence. (a) First frame 
from the original sequence (256 x 256). The foreground disk undergoes a 
dilatation, the background disk a translation. White noise has been added to the 
background. (b) Confidence factor for the gradient-based equation. The black 
areas corresponding to Fs(s) = 0 show the different occlusions in the scene. 
(c) Intensity edges detected on the first frame by Deriche’s edge detector, 
[lo]. The perpendicular velocity displacements computed by the moving edge 
estimator, have been superimposed on the intensity edges. (d) Motion bound- 
aries estimated by the multimodal scheme (corresponding to ]-rd( .s) 1 = 1). (e) 
Resulting optical flow field (183 iterations, (~a’ = 200. as = 0.1) (f) In this 
figure, each dash, computed from the sign of Ed, points to the inner part of 
the occluding region. The disks are occluding the background. The occluded 
regions correspond to the background and the overlapping area between the 
two moving disks. (g) Upper right part of Fig. 9(e)) (100 x 100). (h) Result 
of Horn and Schunck’s method. This field can be compared with the result 
of the multimodal scheme (Fig. 9(g)). (i) Result obtained without taking the 
occlusions into account but handling the motion boundaries. This shows that 
a major part of the estimation error comes from the occlusion areas. 

essary here to reach convergence (model parameters: ~a’ = 
200, ~3 = 0.1). Fig. 9(d) presents the motion discontinuities 
corresponding to l+yd] = 1. The proposed Markov interaction 
model filters the noisy detections on the background and only 
captures the true motion boundaries. Moreover, the sign of 
the motion discontinuity labels Yd allows us to differentiate 
the occluding regions from the occluded ones. In Fig. 9(f), 
each dash points to the inner part of the occluding region. The 
performance of the method in the overlapping area between 
the two moving objects should be noticed: the dashes point to 
the true occluding disk. The result is the right one, except for 
two small parts of the boundary of the second disk which in 
fact slide parallel to themselves. There the local information 
remains ambiguous and it is not possible to differentiate the 
occluding region from the occluded one. Fig. 9(e) contains 
the estimated motion field: the accuracy is very satisfactory, 
when compared with the theoretical values, especially near 
the motion boundaries. 

Again, these results have been compared to standard 
smoothing obtained by discarding motion discontinuities, 
occlusion areas and the moving edge constraint. Details of 
the fields computed using different methods appear in Fig. 

TABLE II 
ERRORS ON THE MOVING DISKS SEQUENCE. 

METHOD Ll error L2 error 

standard smoothing 0.58 1.04 

multimodal model 0.26 0.48 

9(g), (h), and (i). Fig. 9(g) corresponds to the upper right 
part of the field estimated by our multimodal method (Fig. 
9(e)). Fig. 9(h) presents the results of the standard smoothing 
method. As expected, the resulting motion field is blurred 
across the motion discontinuities. However introducing motion 
discontinuities without processing occlusions is not sufficient, 

as shown in Fig. 9(i). The field in Fig. 9(i) is computed while 
handling local motion boundaries, but without considering 
the invalid sites of Fig. 9(b). Let us recall that these sites 
correspond to the occlusion areas. As a result, the final field is 
also very corrupted in this region. By comparing Fig. 9(h) and 
(i) one can conclude here that the major error source comes 
from the occlusion area rather than from an oversmoothing of 
the velocity field. This demonstrates that a specific processing 
of regions containing invalid observations is a real contribution 
of the multimodal scheme. Error statistics have been computed 
in this case for standard smoothing and multimodal estimation 

( II). The multimodal method brings significant improvement 
in field accuracy: a factor of 2 is obtained in this case with 
respect to standard smoothing. 

B. Experiments on Real World Sequences 

Several real-world sequences have been processed, which 
can be related to different contexts: traffic scene, TV se- 
quences, etc. Quantitative results are presented (other experi- 
ments on real-world sequences may be found in [16]). 

A first sequence called interview consists of a TV sequence: 
the woman on the right moves up and the camera follows her 

motion (Fig. 10). 
A second sequence houses has been acquired by panning 

an urban scene. Prominent grey level features appear on the 
houses along with quite uniform regions (Fig. 11). 

The results presented here are computed from two succes- 
sive frames out of the original sequences. 

As far as the interview sequence is concerned, motion 
boundaries are closely related to the woman’s movement 
(compare Fig. 10(b) with Fig. 10(c)). The estimated motion 
field accurately reproduces the visual motion in the back- 
ground due to the camera panning. The complex motion 
of the woman moving up (Fig. 10(d)) is recovered with 
good accuracy, especially near motion boundaries. It can be 
compared to the field computed by the standard smoothing 
method, Fig. 10(f). The oversmoothing is very perceptible in 
this last case. The root mean square error are respectively 
9.12 (multimodal scheme) and 9.37 (standard smoothing). The 
difference between the two methods seems small because the 
standard smoothing method does a good job in this example 
nearly everywhere, but in the motion boundary areas whose 
size is negligible compared to the image size. Again, one must 
make use of this global quality measure with caution; it cannot 
account for local artefacts which nevertheless are detrimental. 
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Fig. 10. Multimodal motion estimation: Inrerview sequence (by courtesy of BBC-UK). (a) First frame of the original sequence 
(134 x 168): the woman at the right moves up and the camera follows her motion. (b) Intensity edges extracted from Fig. 10(a). 
(c) Motion boundaries estimated by the multimodal estimation scheme (400 iterations,03 = 1000.. ng = 0.15). (d) Associated 

optical flow estimation (horizontally and vertically subsampled by 3). (e) Detail of the optical flow field of Fig. 10(d) showing 
the woman’s head. (f) Result of standard smoothing on the same detail as in Fig. 10(e). The smoothing of the optical flow 
field across the discontinuities is visible. 

The sequence houses (Fig. 11) was chosen to show the 
contribution of the moving edge constraint, when there are 
many regions of uniform intensity in the image. This is the 
case in the almost uniform areas of the house roofs and walls 
in Fig. 11(a). Fig. 11(b) shows moving edges detected by the 
algorithm described in [7]. Fig. 11(c) and 11(d) present the 
resulting velocity field computed using two different methods. 
The first one only makes use of the gradient-based constraint, 
the second one includes both the gradient-based and the 
moving edge constraint. A low value was chosen here for 
the smoothing parameter cr$ (CX$ = 10) in order to emphasize 
the differences between the two versions. The improvement 
due to the multimodal cooperation scheme is visible (Fig. 
11(d)). The visual motion corresponding to a translation in 
the image plane is better estimated in the vicinity of moving 
edges in Fig. lld than in Fig. llc. The image flow equation 
here does not bring sufficient local information: the use of an 
additional constraint significantly improves the result. As far 
as the frame-to-frame registration is concerned, the root mean 

square of the error image is 14.0 in the first case and 9.4 in 
the second one. 

V. MULTIRESOLUTION MOTION ANALYSIS 

As explained in Section II-A, large displacements are gen- 
erally not reachable using gradient-based motion estimation 
methods. This also concerns our multimodal scheme, which 
makes use of the gradient-based constraint. As soon as the 
displacements become large, the confidence factor associated 
to the gradient-based measurements decreases very quickly. 
As a consequence, a large part of the gradient-based measure- 
ments do not take part to the estimation of the final velocity 
field and in many cases there is not enough information 
available to get reasonable results. Besides, iterative relaxation 
schemes are very slow to propagate velocity information into 
image areas with almost homogeneous or linearly sloping 
grey value distribution, [ll]. A standard solution to these 
problems is to use a multiresolution image analysis, [3], [4], 
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Fig. 11. Multimodal motion estimation: houses. (a) First frame of the sequence (170 x 170) .(b) Perpendicular velocity components 
estimated on the intensity edges. (c) Gradient-based only optical flow estimation (400 iterations, oa’ = 10.. na = 1.). (d) Multimodal 
optical flow estimation (horizontally and vertically subsampled by 7) (same parameter values as in Fig. 11 (c)). 

[ 111, [22], [33]. The large displacement vectors are determined 
at lower resolutions, where the interactions between spatial 
and temporal derivatives are maintained. The multimodal 
estimation scheme, leading to a standard relaxation algorithm, 
is naturally well suited to multiresolution processing. 

Multigrid techniques (usual in numerical analysis) have 
been adapted to visual motion computation by Terzopoulos, 
[33] and Enkelmann, [ 111. Multiresolution methods have been 
proposed for MRF-based relaxation algorithms by Barnard, 
[3] for stereo matching and Konrad ef al., [22] for motion 
estimation. 

The implemented multiresolution algorithm consists of a 
coarse-to-fine strategy, starting from the lowest resolution 
and propagating the estimates from the coarse scales to the 
finer ones. A gaussian image pyramid is built up using low- 
pass filtering and subsampling by a factor of 2 the original 
images of the sequence. The optical flow at resolution level 
k is denoted (3”. Three levels of resolution are used in our 
experiments (/c = 0, 1,2). The multiresolution algorithm can 
be described as follows : 

1) Estimation of the optical flow at the lowest resolution 
level (lc = 2) using the original multimodal scheme. 

2) Repetition and bilinear interpolation of the vectors from 
the coarse level k to the finer level k - 1. The inter- 

polation takes into account the location of the motion 
boundaries. The interpolated field is denoted w’t-l. 

+ k-l 
3) Estimation of an incremental optical flow field dw at 

level Ic - 1 introducing a modified version of the image 
flow equation, [ll] in the global energy function: 

-k-l 

-k-l 

, t + At) - f(s, t) = 0 

The relaxation is performed until convergence at that 
level (the convergence criterion is the same as in the 
single resolution case). The final optical flow field at 

-k-l 
level ,r~ - 1 is: GkP1 = w’iU1 + dw . The motion 
boundaries are estimated using the same energy function 
as in the single resolution method. 

4) If the current level is 0, stop; else lc := Ic - 1, goto 2. 

In the experiments carried out, the same parameters values 
are used for the potential functions at each level of the image 

pyramid. 
The contribution of the multiresolution relaxation method 

is illustrated here on one real-world sequence: a TV sequence 
called Mobi comprising large displacements, several different 
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Fig. 12. Multiresolution estimation: Mobi sequence (by courtesy of CCE’IT-Rennes). (a) First frame of the original sequence (512 X 

512): the scene is composed of a rolling ball, a moving toy-train and a calendar undergoing a vertical translation. The camera motion 
corresponds to a panning of the scene. (b) Optical flow estimation with the original single resolution scheme (horizontally and vertically 
subsampled by 10). (c) Optical flow estimation with the multiresolution method (horizontally and vertically subsampled by 10). 

TABLE III 
NUMBER OF ITERATIONS IN THE SINGLE AND 

MULTIRESOLUTION SCHEME (MOBI SEQUENCE). 

Level Iteration No Equ. Iter. 

Multiresolution 0 43 56 

1 37 

2 59 
Monoresolution 0 111 111 

Equ. Iter.: Computational equivalent of one complete sweep through the 
image at the finest resolution. 

moving objects and involving camera motion. The scene is 
composed of a rolling ball, a moving toy-train and a calendar 

undergoing a vertical translation (Fig. 12(a)). The camera 
motion corresponds to a panning of the scene, which yields an 
additional horizontal translation component in the optical flow. 

For the “Mob? sequence, due to large displacements along 
with important uniform areas (on the calendar and on the 
wallpaper for instance) and sharp edges, the spatial and 
temporal derivatives interact on a very short range in that case. 
Therefore, the final optical flow field computed by the original 

single resolution scheme is not satisfactory (see Fig. 12(b)). 
The estimates delivered by the multiresolution algorithm, with 
three resolution levels, are presented in Fig. 12(c). Visually 
the optical flow recovered in the multiresolution case is closer 
to the real underlying motion (see for example the apparent 
diagonal translation on the calendar). Table III shows the 
number of iterations required at each resolution level to reach 
convergence. The total iteration number in the multiresolution 
case corresponds to an equivalent number of 56 iterations 
at full resolution. This is half that of the single resolution 
algorithm which requires 111 iterations to converge to a 
result of lower quality. The improvement in frame-to-frame 
registration is highly significant here: RMSE is 27.8 for single 
resolution, 11.8 for multiresolution processing. Multiresolution 
processing brings a significant improvement in the quality of 
the estimated optical flow fields as well as an appreciable 
speed-up of the algorithm. 

A second possible extension of the proposed scheme is 
related to the processing of multiple frames. Intrinsically, the 
method only considers two successive frames of the sequence. 
There are no connections between the motion estimates de- 
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rived at different times. However, the velocities usually vary 
smoothly along a sequence; hence, the estimated velocities at 
time t can be used to support the estimation at time t + dt. 
Such an extension is described in [16]. 

VI. CONCLUDING REMARKS 

We have presented a general algorithm for optical flow 
estimation which is able to jointly handle discontinuities and 
occlusions in the motion field. It can be interpreted as a 
generalized regularization approach to the ill-posed problem 
of optical flow computation. The method has been called 
multimodal in that it integrates several complementary con- 
straints on the desired solution. Statistical models express 
the interactions between the different low-level image en- 
tities: velocity vectors, motion boundaries, occluding and 
occluded surfaces, intensity edges and the spatio-temporal 
variations of the brightness pattern. The motion measurements 
are based on two complementary constraints: gradient-based 
and feature-based. The algorithm requires the tuning of only 
two main parameters which balance the smoothing of the 
velocity field and the sensitivity of the motion boundary 
detection. A multiresolution implementation of this algorithm 
has been described, which appears very efficient for the 
measurement of large displacements. 

Experiments have been carried out on a large number 
of real-world sequences: outdoor and indoor scenes imaged 
by a moving camera with several moving objects and large 
displacements. One key feature of the described scheme is its 
ability to handle properly occlusion areas. Indeed, in image 
sequences, discontinuities are not only local but exist on large 
areas corresponding to occluded surfaces. This problem has 
been addressed here by testing directly the validity of the 
underlying motion measurement equations. We think this is 
an efficient way to cope with the general occlusion prob- 
lem. The experimental results on synthetic sequences clearly 
demonstrate the advantages of this approach. We think that 
the multimodal estimation algorithm should be considered as 
a step toward a comprehensive multimodal motion estimation 
scheme. Such a scheme would enable velocity estimation in 
very general situations: for textured outdoor scenes as well 
as for structured man-made environments with long-range or 
short-range motion. 

Yet, a perfect detection of motion boundaries remains dif- 
ficult: for instance the extracted motion boundaries are some- 
times locally broken. This is mainly due to two factors: the 
quality of intensity edges used as partial support for estimating 
motion boundaries and the use of a deterministic optimization 
algorithm which yields suboptimal motion edge configura- 
tions. However, the statistical framework described here seems 
flexible enough to allow several important extensions. For 
instance, in the present scheme, only local motion boundaries 
are determined. An extension toward a region-based motion 
segmentation algorithm would be of interest in the context 
of dynamic scene analysis. A partition of a sequence into its 
constituent moving objects indeed defines a first key-step in 
many dynamic scene analysis problems. Such an extension 
can be found in [8]. 

Another straightforward addition could be to introduce in 
the multimodal cooperation process other local motion mea- 
surements resulting from similarity functions, token tracking 
or grey-value corners matching, for instance. 

Besides, a significant contribution to MRF modeling would 
be the development of a consistent and tractable theoretical 
framework for multiresolution MRF-based image analysis. A 
recent contribution to this problem may be found in [17]. 

The last point is the temporal stability of the extracted 
motion cues (motion boundaries or regions). In the algorithm 
described here, there is no a priori modeling of the connections 
which naturally exist between estimates obtained at different 
times. It would be of interest to introduce also a control on 
the temporal dimension, in order for example to filter and 
to track motion cues along the sequence. A class of models 
involving temporal neighborhoods has already been introduced 
in motion detection [9], motion segmentation, [25] and in 
motion measurement, [6]. They appear promising as far as 
the processing of long sequences is concerned. 
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