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Multimodal Estimation of Distribution Algorithms
Qiang Yang, Student Member, IEEE, Wei-Neng Chen, Member, IEEE, Yun Li, Member, IEEE,

C. L. Philip Chen, Fellow, IEEE, Xiang-Min Xu, Member, IEEE,
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Abstract—Taking the advantage of estimation of distribution
algorithms (EDAs) in preserving high diversity, this paper pro-
poses a multimodal EDA. Integrated with clustering strategies
for crowding and speciation, two versions of this algorithm
are developed, which operate at the niche level. Then these
two algorithms are equipped with three distinctive techniques:
1) a dynamic cluster sizing strategy; 2) an alternative utiliza-
tion of Gaussian and Cauchy distributions to generate offspring;
and 3) an adaptive local search. The dynamic cluster sizing
affords a potential balance between exploration and exploita-
tion and reduces the sensitivity to the cluster size in the niching
methods. Taking advantages of Gaussian and Cauchy distri-
butions, we generate the offspring at the niche level through
alternatively using these two distributions. Such utilization can
also potentially offer a balance between exploration and exploita-
tion. Further, solution accuracy is enhanced through a new
local search scheme probabilistically conducted around seeds
of niches with probabilities determined self-adaptively accord-
ing to fitness values of these seeds. Extensive experiments
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conducted on 20 benchmark multimodal problems confirm that
both algorithms can achieve competitive performance compared
with several state-of-the-art multimodal algorithms, which is
supported by nonparametric tests. Especially, the proposed algo-
rithms are very promising for complex problems with many
local optima.

Index Terms—Estimation of distribution algorithm (EDA),
multimodal optimization, multiple global optima, niching.

I. INTRODUCTION

M
ULTIMODAL optimization, which seeks multiple

optima simultaneously, has received much atten-

tion recently. Many real-world problems involve mul-

tiple optima, such as protein structure prediction [1],

holographic design [2], data mining [3]–[5], and electro-

magnetic design [6], [7]. Hence, it is desirable to find

as many optima as possible in the global optimization.

However, different from finding just one optimum in sin-

gle optimization [8]–[13], locating multiple global or local

optima simultaneously is qualitatively more challenging.

For such problems, classical evolutionary algorithms (EAs),

including differential evolution (DE) [9], [14]–[19], genetic

algorithm (GA) [20], [21], and particle swarm optimiza-

tion (PSO) [12], [22]–[25], lose feasibility and effectiveness,

because their overall learning and updating makes the pop-

ulation tend to converge toward one dominating candidate.

Therefore, to locate multiple optima simultaneously using clas-

sical EAs, a multimodality-specific mechanism is necessary.

So far, niching [26]–[29] has been widely used to help

an EA maintain a diverse population in multimodal opti-

mization. Niching achieves this by partitioning the whole

population into subpopulations using techniques such as

crowding [29] and speciation [30]–[32] and each subpopula-

tion is responsible for one area to locate one or a small

number of optima. Because of the sensitivity to parameters

in niching methods, for instance, crowding [29] is sensi-

tive to the crowding size and speciation is sensitive to the

niching radius [30], [31], various parameter-free or parameter-

insensitive techniques are hence developed to improve niching,

such as hill-valley [32]–[34], recursive middling [35], history-

based topological speciation [36], and clustering [37], [38].

However, these niching techniques either cost a number of fit-

ness evaluations or require a large memory or introduce less

sensitive parameters to partition the population into niches.

Alternative to niching, learning, and updating strate-

gies are modified to enhance the diversity for EAs, such

as GA [26], [28], [35], DE [38]–[40], and PSO [41], [42].
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The resultant algorithms extend learning beyond domi-

nant individuals by offering relatively poor individuals

improved survival to the next generation [38]–[40]. Together,

they maintain the diversity of the population at the

individual level.

Recently, a new family of EAs—the estimation of

distribution algorithms (EDAs) [10], [11], [43]–[46] has

emerged, which preserves diversity at the population level.

Generally, an EDA generates offspring by sampling from

the probability distribution estimated from promising indi-

viduals. However, current EDAs are designed for sin-

gle optimization and so far, there exists no report in

the literature on applying EDAs to deal with multimodal

optimization.

Since an EDA maintains significant diversity at the popu-

lation level, it should offer improved assistance for locating

multiple optima. Motivated by this observation, we propose

a multimodal EDA (MEDA), to cope with multimodal opti-

mization. Specifically, the characteristics of MEDA are as

follows.

1) Two popular niching strategies, crowding and specia-

tion, are incorporated in MEDA, leading to MCEDA

and MSEDA, respectively. Instead of operating at the

population level, MEDAs (MCEDA and MSEDA) oper-

ate at the niche level. Further, different from traditional

EDAs, all individuals in every niche participate in the

estimation of distribution of that niche.

2) A dynamic cluster sizing strategy is proposed to coop-

erate with the two niching methods. This strategy not

only affords a potential balance between exploration and

exploitation, but also reduces the sensitivity of the used

niching methods to the cluster size.

3) Gaussian distribution and Cauchy distribution are alter-

natively used to generate offspring for each niche,

instead of just using Gaussian distribution in classi-

cal EDAs. Taking the advantages of both distributions,

this alternative usage offers an extra potential balance

between exploration and exploitation.

4) A new local search scheme based on Gaussian dis-

tribution is proposed to refine the obtained solutions,

leading to local search-based MEDAs (LMEDAs), con-

taining LMCEDA and LMSEDA. This local search is

probabilistically performed around seeds of niches with

probabilities self-determined according to fitness values

of these seeds.

Extensive experiments have been conducted on 20 widely

used benchmark multimodal functions and the experimental

results supported by nonparametric Wilcoxon rank-sum test

consistently demonstrate that LMEDAs are able to provide

better and more consistent performance than the state-of-

the-art multimodal algorithms on majority of the bench-

mark functions without incurring any serious computational

burden.

Following a review of multimodal optimization techniques

and EDAs in Section II, the proposed MEDAs are detailed

in Section III. Extensive experiments are conducted to test

MEDAs in Section IV. Finally, the conclusions and discussions

are presented in Section V.

Algorithm 1 Crowding-Based DE (CDE) [29]

Input: population size NP, crowding size K

1: Randomly initialize the population;

2: For i = 1 to NP

3: Produce a child oi using standard DE;

4: Randomly select K individuals in the population to

form a crowd;

5: Compare the fitness of oi with that of the nearest

individual found by Eq. (1) and replace it if oi is

better;

6: End For

7: Stop if the termination criterion is met. Otherwise go to

Step 2;

Output: the whole population

II. MULTIMODAL OPTIMIZATION AND ESTIMATION

OF DISTRIBUTION ALGORITHMS

Without loss of generality, maximization multi-

modal problems are considered in this paper as

in [26], [29], [30], [32], [36], [37], [39]–[42], and [47]–[49].

In addition, in the literature, locating multiple global optima is

the main objective of multimodal optimization, and hence is

also the concern of this paper.

A. Multimodal Optimization Algorithms

Generally, to cope with multimodal optimization effi-

ciently, two major issues need to be addressed: 1) diver-

sification and 2) intensification. To settle these issues, so

far, various niching methods have been proposed and com-

bined with EAs to tackle multimodal problems. At present,

crowding [29] and speciation [30] are the two most popular

niching methods.

In crowding [29], each generated child is compared with the

nearest individual from a crowd formed by randomly selecting

K parents in the population. Then if the child is better, it will

replace the compared parent. This process is formulated as

arg min
xj∈Ci

dist
(

xj, oi

)

=

√

√

√

√

D
∑

d=1

(

xd
j − od

i

)

(1)

where oi is the generated child, Ci is the crowd of this child

with K randomly selected parents, xj is the jth individual in

the crowd, dist(xj, oi) is the Euclidean distance between xj

and oi, and D is the dimension size. When applied to DE, the

framework of crowding is outlined in Algorithm 1.

In speciation [30], the population is first divided into several

species according to the following formula:

Si =

⎧

⎨

⎩

xj|xj ∈ P & dist
(

xseed, xj

)

=

√

√

√

√

D
∑

d=1

(

xd
seed − od

i

)

≤ r

⎫

⎬

⎭

(2)

where Si is the ith species, P is the exclusive population, where

individuals in the (i−1) species are excluded, xseed is the seed

of the species, which is defined as the best individual in this

species, and r is the species radius.
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Algorithm 2 Speciation-Based DE (SDE) [30]

Input: population P with NP members, species radius r,

minimal species size m

1: Randomly initialize the population P;

2: Sort the individuals in descending order according to fitness

values;

// Determine the species of the current population

3: While P is not empty

4: The best individual is set as a seed to create a new

species;

5: Find other individuals in this species according

to Eq. (2);

6: Delete all individuals of this species from P;

7: End While

8: For each species

9: Produce an equal number of children using standard DE;

10: If the species size is less than m

11: Randomly generate new individuals within the

radius of the species seed so that the species size

reaches m;

12: End If

13: If a child’s fitness is the same as that of the species

seed

14: Replace this child with a new randomly generated

individual within the radius of the species seed;

15: End If

16: End For

17: Combine the children and the parents and then keep the

NP best ones;

18: Stop if the termination criterion is met. Otherwise go to

Step 2;

Output: the whole population

After partition, each species is evolved individually using

an optimizer. When incorporated into DE, the framework of

speciation is presented in Algorithm 2.

Even though these two niching strategies have shown

their efficiency and effectiveness on the tested prob-

lems in [29] and [30], respectively, they both encounter two

dilemma. First, their performance is seriously dependent on

the setting of their parameters, namely the crowding size (K)

and the species radius (r). Second, they lose feasibility sub-

stantially in larger and more complex search spaces, such

as the cases where masses of local optima exist. These two

limitations restrict their wide application in practice.

To reduce the sensitivity of niching algorithms to parame-

ters, certain topology-based niching methods [32], [35], [36]

have been proposed. For example, hill-valley [50], [51] was

developed to examine the landscape topography along the

line segment connecting two sampled individuals. If there

exists a third point along the line segment whose fitness value

is lower than those of both individuals, a valley is said to

be detected, separating the two individuals into two differ-

ent niches. Recursive middling [35], [52] is another niching

technique that adopts a similar mechanism but borrows the

idea of binary search, which reduces the number of sampled

Algorithm 3 Crowding Clustering [37]

Input: population P, cluster size M

1: Randomly generate a reference point R;

2: While P is not empty

3: Select the nearest individual Pnear to R in P ;

4: Combine M-1 individuals nearest to Pnear and Pnear as

a crowd;

5: Eliminate these M individuals from P;

6: End While

Output: a set of crowds

Algorithm 4 Speciation Clustering [37]

Input: population P, cluster size M

1: Sort P according to fitness;

2: While P is not empty

3: Select the best individual Pbest in P as a new seed;

4: Combine M-1 individuals nearest to Pbest and Pbest as

a species;

5: Eliminate these M individuals from P;

6: End While

Output: a set of species

points to a deterministic amount. Combining these two

methods with a seed preservation strategy, topological species

conservation [32], [33] was put forward to reduce extinction

of species that have a diminishing number of individuals.

Although these techniques can self-adaptively determine

niches, they cost an extra number of fitness evaluations. To

combat this, Li and Tang [36] proposed a history-based topo-

logical speciation method to detect valleys without sampling

extra points. It maintains a large archive to store all historical

points for valley detection. However, some valleys may be

missed, and this is more so during the first few generations as

the number of historical points is initially small.

To improve partition, Gao et al. [37] and Qu et al. [38]

have utilized clustering techniques to determine niches.

Neighborhood-based CDE (NCDE) [38] generates offspring

for each individual according to its M (termed as the neigh-

borhood size) nearest neighbors. While neighborhood-based

SDE (NSDE) [38] divides the whole population into species

with an equal number of individuals, as in Algorithm 4.

Self-adaptive clustering-based CDE (Self_CCDE) and

SDE (Self_CSDE) proposed in [37] partition the whole

population into crowds and species as presented in

Algorithms 3 and 4, respectively. These tactics partition

a population by introducing a less sensitive parameter

(the neighborhood size or the cluster size) to improve the

performance of CDE and SDE.

Subsequently, variants of conventional EAs have also been

developed with niching to solve multimodal problems. For

example, Li [42] proposed a variant of PSO (RPSO) using ring

neighborhood topology for niching. It utilizes the particles’

local memories to form a stable network and retain the best

positions found so far. Qu et al. [41] put forward a distance-

based locally informed PSO (LIPS), which uses several local

best positions to guide the search of each particle instead of the
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Algorithm 5 EDA

Input: population size NP, the number of selected

individuals K

1: Randomly initialize the population;

2: While the termination criteria is not satisfied

3: Select K best individuals from the population;

4: Estimate the probability distribution of the population

according to the selected individuals;

5: Sample new individuals according to the estimated

distribution;

6: Combine the sampled individuals and the old population

to create a new population with NP individuals;

7: End While

Output: the best individual and its fitness

global best position. LIPS can operate as a stable niching algo-

rithm by using the information provided by particles’ neigh-

borhoods assessed by Euclidean distance. Biswas et al. [40]

developed locally informative niching DE (LoINDE, contain-

ing LoICDE combined with CDE and LoISDE combined

with SDE), which absorbs an improved information sharing

mechanism among individuals for inducing efficient niching

behavior. Further, using normalized search neighborhoods,

they presented a parent-centric normalized mutation with

proximity-based CDE (PNPCDE) [39]. It restricts random-

ness of members without inhibiting the explorative power, and

facilitates in tracking and maintaining optima without loss of

niches in multimodal basins [39].

So far, multimodal algorithms are all based on

DE [38]–[40], GA [26], [28], [35], or PSO [41], [42],

which exhibit various deficiencies, such as inefficiency in

dealing with complex problems, where masses of local

optima exist. Few attempts have been made to the devel-

opment of EDAs for multimodal application, despite EDAs

feature substantial exploration with high diversity at the

population level [10], [46], [53] that would be beneficial for

multimodal optimization.

B. Estimation of Distribution Algorithms

EDAs [11], [54] form a new family of EAs, which gener-

ate offspring according to a probability distribution, and have

been intensively studied in the context of single optimization.

A general framework of EDAs is outlined in Algorithm 5.

EDAs have achieved success in both combinato-

rial [55], [56] and continuous domains [10], [44], [57]–[60].

However, they are all essentially designed for single

optimization, and few attempts have been made to locate

multiple global optima for multimodal optimization. Although

Yang et al. [45] proposed a novel maintaining and processing

multiple submodels to enhance the ability of EDAs on mul-

timodal problems, it is still designed for single optimization.

In addition, despite niching-based EDA [46] was reported, it

is also for single global optimization.

In this paper, taking the advantage of EDAs in preserv-

ing high diversity at the population level, we concentrate on

developing two MEDAs for multimodal optimization.

Fig. 1. Fitness landscapes of F6 and F12 selected from CEC’2013 multimodal
benchmark function set. (a) F6. (b) F12.

III. MULTIMODAL EDAS

From Algorithm 5, we can see that without modification,

an EDA is unsuitable for multimodal optimization. Take F6

and F12 from the CEC’2013 benchmark multimodal function

set [61] for example. Fig. 1 displays the fitness landscapes of

these two functions, where a number of global maxima are

distributed across various areas surrounded by multiple local

maxima. In addition, some global optima are far away from

one another, while some are very close to one another. In such

an environment, an EDA is more likely to converge toward

one or a small number of global optima, because it estimates

the probability distribution of the whole population based on

selected individuals.

Consequently, to cope with this situation, we develop

an MEDA with niching for multimodal optimization.

Specifically, MEDA augments EDAs with crowding outlined

in Algorithm 3 and speciation in Algorithm 4, leading to two

different versions of MEDA, named MCEDA and MSEDA,

respectively. To afford a balance between exploration and

exploitation, a dynamic cluster sizing strategy is absorbed in

the niching methods for MEDAs. To further promote the diver-

sity, both Gaussian and Cauchy distributions are alternatively

utilized to generate offspring, taking the advantages of both

distributions. Besides, to enhance solution accuracy, a local

search algorithm outlined in Algorithm 6 is added to these

MEDAs, resulting in LMCEDA and LMSEDA, respectively.

Having discussed the primary idea behind this paper, the

concrete description of each algorithmic component will be

elucidated in the following sections.

A. Dynamic Cluster Sizing

Without loss of generality, referring to F6 in Fig. 1, for

a given population size, a small cluster size leads to a large

number of niches with narrow ranges of information (shown

in red circles). This may be beneficial for exploitation, but

may lead to low diversity of each niche, resulting in poor

exploration and local traps due to such a narrow range of

information. Conversely, if the cluster size is too large, a small

number of niches covering wide areas (displayed in black cir-

cles) are obtained. This situation affords high diversity but

leads to poor exploitation. The same dilemma can be seen for

more complex functions, such as F12 shown in Fig. 1.

Thus, a balance between exploration and exploitation should

be achieved. To this end, a dynamic cluster sizing strategy

should be brought up. When a niche converges to one local
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area, the cluster size can be increased in the following genera-

tions to enhance the diversity of niches. In contrast, when more

promising areas are discovered, the cluster size can be reduced

to refine the search. However, without prior knowledge about

the landscape of a problem and heuristic information on the

number of global optima found during the evolution, it is

hard to precisely determine a proper cluster size M in dif-

ferent evolution stages. To make a compromise, in this paper,

a randomness-based dynamic sizing is utilized to realize the

above idea for simplicity of dynamism.

In details, every generation, a number is chosen uniformly at

random from a set C containing different integers as the clus-

ter size M. With such a mechanism, the proposed methods are

able to potentially balance the exploration and exploitation

demands in spite of different features of different objective

functions and evolution stages. This simple scheme is demon-

strated to work well experimentally (see Section IV-B1). In this

way, we can also reduce the sensitivity of choosing a suitable

cluster size M in the niching methods used in our algorithms.

Through this sizing dynamism, MEDAs are less restricted

by the maturing niches, hence providing diversity dynamism

while balancing refinement and globalism without necessity to

set sensitive parameters of the algorithms. The efficiency of

this strategy will be fully tested in Section IV-B1.

B. Distribution Estimation and Offspring Generation

After partitioning the population into niches, MEDAs start

to estimate the probability distribution of each niche. Suppose

the population size is NP, and the selected cluster size is M.

Then the total number of niches is ⌈NP/M⌉, denoted as s

(when NP%M �= 0, the last niche contains NP%M individuals,

where % stands for the modulo operation).

First, differing from an EDA [10], [44], [57]–[60] that esti-

mates the probability distribution of the whole population

using a number of selected individuals, MEDAs estimate the

distribution at the niche level, i.e., MEDAs estimate each

niche’s distribution. Because a niche is considerably small, all

individuals in each niche are potentially useful and thus all par-

ticipate in the distribution estimation of that niche in MEDAs.

Such mechanism may be helpful for diversity enhancement

of each niche and thus potentially beneficial for finding more

promising areas.

In the literature of EDAs, many distribution models are

utilized, such as univariate Gaussian distribution [54], [62],

multivariate Gaussian distribution [53], [63]–[65], and his-

togram model [10], [45]. Generally, these models can be

applied to MEDAs, but in this paper, for brevity, we adopt

univariate Gaussian distribution because it suffices with a low

level of computational complexity [10], [53]. Therefore, the

distribution estimation of each niche is computed as follows:

µd
i =

1

M

M
∑

j=1

Xd
j

δd
i =

√

√

√

√

1

M − 1

M
∑

j=1

(

Xd
j − µd

i

)2
(3)

where µi = [µ1
i , . . . , µ

d
i , . . . , µ

D
i ] and δi =

[δ1
i , . . . , δd

i , . . . , δD
i ](1 = i = s) are, respectively, the

mean and standard deviation (std) vectors of the ith niche,

Xj = [X1
j , . . . , Xd

j , . . . , XD
j ] is the jth individual in the ith

niche, and D is the dimension size of the multimodal problem.

The next step is the generation of offspring. Most vari-

ants of EDAs only adopt Gaussian distribution to sample

points [10], [44], [57]–[60]. However, Gaussian distribution

generally has a narrow sample space, especially when the

standard deviation δ is small, which would limit the explo-

ration ability of an EDA. To improve this situation, we turn to

Cauchy distribution [66], which is similar to Gaussian distri-

bution, but has a long fat tail, leading to a wide sample space.

Equipped with this distribution, an EDA is potentially more

capable of escaping from local areas.

Overall, we find that Gaussian distribution is more suitable

for the exploitation stage owing to its narrow sampling range,

while Cauchy distribution is fitter for the exploration stage

because of its wide sampling space [66], [67]. This motivates

us to alternatively use these two distributions to generate off-

spring. Since MEDAs are based on niches, it is obvious that

these two distributions should be operated at the niche level,

namely each niche should randomly select one of these two

distributions to generate offspring. For simplicity, we assign

these two distributions with the same probability for each

niche. In a word, the offspring generation of each niche is

as follows:
{

Ci = Gaussian(µi, δi) if rand() < 0.5

Ci = Cauchy(µi, δi) otherwise
(4)

where Ci is the M offspring of the ith niche, and rand() is

a uniformly random number generator that generates numbers

within [0, 1]. Implicitly, such alternative usage can poten-

tially offer a balance between exploration and exploitation for

MEDAs based on the features of the two distributions.

After the generation of offspring, it comes to the selection

of promising individuals. For MCEDA, we adopt the selection

procedure in CDE [29], namely the offspring will replace its

nearest parent in the current population if it is better. While

for MSEDA, unlike the selection process in SDE [30], we also

adopt the one in CDE [29], but it is operated within niches,

namely, the offspring of each niche will replace its most sim-

ilar parent in its niche if the offspring is better. Different

selection procedures are adopted here on account of differ-

ent niching strategies used for partitioning the population into

niches.

The cooperation between the distribution selection oper-

ated at the niche level and the individual selection is likely

to arm MEDAs with competitive exploration and exploita-

tion abilities. Experiments in Section IV-B will demonstrate

the superiority of employing both Cauchy and Gaussian dis-

tributions for sampling over using only one of these two

distributions.

C. Local Search

Usually an EDA is prone to difficulty in improving the accu-

racy of solutions because of its unsubtle sampling strategy.

This can be improved through local search strategies [10].
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Likewise, in this paper, we propose a new local search

strategy based on Gaussian distribution for MEDAs, leading

to LMEDAs (containing LMCEDA and LMSEDA). Gaussian

distribution is utilized here because it owns a narrow sam-

pling space, especially when the standard deviation is small,

which is beneficial for local search. Thus, this inspires us to

set a small local standard deviation σ for the local search. In

this paper, σ = 1.0E-4 is utilized.

In general, more promising solutions can be found around

the best individuals in the current generation. For MEDAs, to

avoid performing local search in the same area, we conduct

local search at the niching level. Consequently, local search is

executed only around the seed of each niche, which is defined

as the best individual in a niche.

Suppose the seeds of all niches are stored in S, containing

s = ⌈NP/M⌉ seeds. Owing to the sampling strategy used in the

local search, it is evident that enough points should be sampled

around each seed so that better solutions could be obtained.

However, the number of points (denoted as N) sampled by the

local search should not be too large, because it would waste

fitness evaluations if there is no improvement around some

seeds. Besides, it should not be too small either, because it

cannot afford the improvement around the seeds if only few

points are sampled. In preliminary experiments, we find N = 5

is enough to compromise the above concerns.

As a consequence, the local search is performed as follows:

LCi = Gaussian(Si, σ ) (5)

where LCi is the N individuals of the ith niche generated by the

local search and Si is the seed of the ith niche. Since the sam-

pled points LCi are only produced around the seed of the ith

niche, it is reasonable that we should use the sampled points

to only replace the seed if they are better. That is, the whole

procedure of local search is only related to the seeds of niches.

The purpose of local search is to improve the accuracy of

promising solutions, so that the gap between the global optima

and the obtained solutions can be narrowed. This indicates that

it would be useless to do local search on the niches, which

fall into local areas. Inspired by this, we consider conducting

local search with probability.

Apparently, the better the seed is, the greater chance it has to

do local search. This suggests that the probability of carrying

out local search on a niche should be proportional to the fitness

of its seed. Thus the following formula can be obtained:

Pri =
Fi

Fmax
(6)

where Pri is the probability for the ith niche to do local search,

Fi is the seed fitness of the ith niche, and Fmax is the maximum

fitness in F, which contains the fitness of all seeds in S.

To cover functions that have negative or zero fitness values,

(6) is extended to

Pri =
Fi + |Fmin| + ξ

Fmax + |Fmin| + ξ
(7)

where Fmin is the minimal fitness value in F and ξ is a small

positive value, which is used to accommodate the case where

Fmin = Fmax = 0.

Algorithm 6 Local Search

Input: seeds set S, the number of seeds s, fitness of

these seeds F, local std value σ , the number of sampled

individuals N

1: Fmin = min(F), Fmax = max(F), flag = false;

2: If Fmin ≤ 0

3: Fmax = Fmax + |Fmin| + ξ ;

4: flag = true;

5: End If

//Calculate the probability for each seed to perform local

search

6: For i = 1:s

7: If flag

8: Pr[i] = (F[i]+ |Fmin|+ξ )/ Fmax;

9: else

10: Pr[i] = F[i]/Fmax;

11: End If

12: End For

13: For i = 1:s

14: If rand( ) ≤ Pr[i]

15: For j = 1:N

16: Generate a new individual LCj using

Gaussian(S[i], σ );

17: If LCj is better than S[i]

18: Replace S[i] with LCj;

19: End If

20: End For

21: End If

22: End For

Output: Seeds S and their fitness F

From (6) and (7), we can observe that all seeds with equal

fitness values have the same probability to do local search. In

addition, local search is always performed for the best individ-

ual. Besides, the worse the fitness of the seed, the lower the

probability it would have to do local search and vice versa.

Overall, the procedure of the local search is summarized in

Algorithm 6, and the complete procedures of LMCEDA and

LMSEDA are outlined in Algorithms 7 and 8, respectively.

D. Complexity Analysis

Given that the population size is NP, the dimension size is

D and the cluster size is M, LMCEDA and LMSEDA have

the same complexity with O(NP × D) as previous EDAs

in the procedures of distribution estimation and offspring

generation, even though there are differences in these pro-

cedures. Comparing Algorithms 7 and 8 with Algorithm 5,

we can see that compared with previous EDAs, the dif-

ference in complexity for LMCEDA and LMSEDA mainly

lies in the procedures of niche generation (line 3), individ-

ual selection (lines 11–14), and the local search (line 15) in

Algorithms 7 and 8, respectively. For niching generation,

LMCEDA needs O(D)(line 1) + (O(NP × D) + O(NP2 × D))

(lines 2–6) in Algorithm 3, while LMSEDA needs O(NP ×

log(NP))(line 1) + O(NP2 × D)(lines 2–6) in Algorithm 4.

In terms of individual selection, LMCEDA costs O(NP2 × D)
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Algorithm 7 Local Search-Based MCEDA (LMCEDA)

Input: population size NP, cluster size set C, local search

std σ

1: Randomly initialize the population;

2: Randomly select a number from C as the cluster size M;

3: Using Algorithm 3 to partition the population into crowds;

4: For each crowd

5: Estimate the probability distribution (mean µ and

std δ) of this crowd using (3);

6: If rand( )≤ 0.5

7: Using Cauchy(µ,δ) to generate M new individuals;

8: else

9: Using Gaussian(µ,δ) to generate M new

individuals;

10: End If

11: End For

12: For each new individual ci

13: Compare the fitness of ci with that of the most similar

individual in the current population and replace it if

ci is better;

14: End For

15: Perform local search according to Algorithm 6;

16: Stop if the termination criterion is met. Otherwise go to

Step 2;

Output: the whole population

Algorithm 8 Local Search-Based MSEDA (LMSEDA)

Input: population size NP, cluster size set C, local search

std σ

1: Randomly initialize the population;

2: Randomly select a number from C as the cluster size M;

3: Using Algorithm 4 to partition the population into species;

4: For each species

5: Estimate the probability distribution (mean µ and std δ)

of this species;

6: If rand( )≤ 0.5

7: Using Cauchy(µ,δ) to generate M new individuals;

8: else

9: Using Gaussian(µ,δ) to generate M new individuals;

10: End If

11: For each new individual ci in the species

12: Compare the fitness of ci with that of the most

similar individual in current species and replace it

if ci is better;

13: End For

14: End For

15: Perform local search according to Algorithm 6;

16: Stop if the termination criterion is met. Otherwise go to

Step 2;

Output: the whole population

(lines 12–14) in Algorithm 7, while LMSEDA takes O(M ×

NP × D) (lines 11–14) in Algorithm 8. Additionally, the com-

plexity of previous EDAs in individual selection usually is

O(2NP × log(2NP)) [10]. As for the local search, suppose the

number of points sampled in the local search is N, then the

complexity is O(NP/M × N × D) for both algorithms. Note

that NP/M and N are usually much smaller than NP.

In total, the overall complexities of both LMCEDA and

LMSEDA are O(NP2 × D). Comparing to the complexity of

classic EDAs with O(NP × D), we can see that the com-

plexities of the proposed MEDAs and classic EDAs both are

linearly proportional to the dimension size D. The only dif-

ference is that the increment speed for MEDAs is NP2, which

is caused by the niching generation, which is unavoidable for

niching-based multimodal algorithms [37], [38], [40], [45].

In summary, with the dynamic cluster sizing strategy, the

alternative usage of Gaussian and Cauchy distributions and

the local search, the proposed MEDAs are capable of solving

multimodal problems with little extra computational burden,

which will be substantiated in the following section.

IV. EXPERIMENT STUDIES

In this section, a series of experiments are carried out to

verify the feasibility and efficiency of MEDAs developed in

this paper. First, Section IV-A describes the benchmark func-

tion set and evaluation protocols we adopt in the experiments.

Then, the influence of each component in MEDAs is observed

in Section IV-B, where the comparison between LMCEDA

and LMSEDA is also conducted. Section IV-C will present

the detailed comparison results between LMEDAs and several

state-of-the-art multimodal algorithms with the results attached

to the supplemental material. In addition, to better understand

the abbreviations of algorithms used in the experiments, we

list the names of all algorithms in details in Table SI, which

is left in the supplemental material for the consideration of

saving space.

A. Benchmark Functions and Evaluation Protocols

To demonstrate the effectiveness of LMEDAs, we conduct

experiments on a widely used benchmark function set—the

CEC’2013 multimodal function set [61] containing 20 func-

tions, which are designed for the 2013 IEEE CEC Special

Session on Niching Methods for Multimodal Optimization.1

To save space, the main characteristics of these functions are

summarized in Table SII in the supplemental material. For

more details, readers can refer to [61].

To evaluate the performance of LMEDAs and to make

fair comparisons with the state-of-the-art multimodal algo-

rithms, peak ratio (PR), success rate (SR), and convergence

speed (CS) are selected as the evaluation protocols, which

are also adopted in the corresponding competition on niching

methods for multimodal optimization at the special session.

Given a fixed maximum number of function evaluations

(denoted as Max_Fes) and a specific accuracy level ε, PR

is defined as the percentage of the number of the global

optima found out of the total number of global optima aver-

aged over multiple runs. SR measures the ratio of successful

runs out of all runs and a successful run is defined as a run

where all known global optima are found. CS is computed by

counting the number of function evaluations (denoted as Fes)

1http://goanna.cs.rmit.edu.au/∼xiaodong/cec13-niching/

http://goanna.cs.rmit.edu.au/~xiaodong/cec13-niching/
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TABLE I
PARAMETER SETTINGS

required to locate all known global optima at a specific

accuracy level ε. If one algorithm cannot locate all global

optima when the maximum number of fitness evaluations is

exhausted, then Max_Fes is used when calculating CS [61].

The formula to compute these three protocols can be found

in [61], which also contains the method to compute the

number of global optima found in the current population.

In the experiments, five different accuracy levels, namely:

ε = 1.0E-01, ε = 1.0 E-02, ε = 1.0E-03, ε =

1.0E-04, and ε = 1.0E-05, are adopted. However, for sav-

ing space, in this paper, unless otherwise stated, we mainly

report the results at ε = 1.0E-04, which is common

in [35], [37], [38], [42], [47], and [48].

To make fair comparisons, the maximum number of fit-

ness evaluations (Max_Fes) and the population size (NP) are

set to the same for all compared multimodal methods as

shown in Table I. Further, all experiments are carried out for

51 independent runs for statistics.

Additionally, it is worth mentioning that all experiments are

conducted on a PC with 4 Intel Core i5-3470 3.20 GHz CPUs,

4 GB memory and the Ubuntu 12.04 LTS 64-bit system.

B. Observations of LMEDAs

Before investigating the influence of the three techniques

adopted in LMEDAs, namely the dynamic cluster sizing, the

alternative usage of Gaussian and Cauchy distributions, and

the local search, we should announce the setting for the cluster

size set C introduced in LMEDAs. It should be noticed that

the cluster size should be neither too large nor too small, since

a too large cluster size would lead to too few niches, bringing

in too wide area one niche covers and a too small cluster size

would result in too many niches, making many niches possibly

located at local areas. In this paper, for simplicity, C is set as

a range of integers varying from 2 to 10, namely C = [2, 10].

Actually, in preliminary experiments, we find our algorithms

are not sensitive to C if we keep C in a wide range.

1) Influence of Dynamic Cluster Sizing: To testify the use-

fulness of the dynamic cluster sizing strategy, we conduct

comparison experiments between LMEDAs with the dynamic

cluster sizing and the ones with different fixed cluster sizes.

For these fixed sizes, to make it simple, we set them as

{2, 4, 5, 6, 8, 10}, which is mainly for exact division. Table II

exhibits the comparison results between different versions of

LMCEDA (the left part of the bolded line) and LMSEDA (the

right part of the bolded line) with respect to PR at the accu-

racy level ε = 1.0E-04 and the best PR is highlighted in bold.

The numbers under unit “LMCEDA” or “LMSEDA” denote

the fixed cluster sizes, and “dynamic” means LMCEDA or

LMSEDA adopts the dynamic cluster sizing strategy.

Observing Table II, we can draw the following conclusions.

1) First, on F1–F5 and F13–F14, different cluster

sizes make no difference on both LMCEDA and

LMSEDA. However, on F6–F12, a small cluster size is

preferred for both algorithms, and on F15–F20, neither

a small nor a large cluster size is attractive, and only an

appropriate cluster size is beneficial. This observation

demonstrates that the optimal cluster size of different

problems is not the same and such a size for different

problems needs to be fine-tuned.

2) LMCEDA with the dynamic cluster sizing can achieve

comparable performance on most problems (17 func-

tions) when compared with the one with the optimal

cluster size. The PR results obtained by the dynamic ver-

sion on these functions are very close to those achieved

by the one with the optimal cluster size. Specially, the

dynamic version even obtains the best PR result on F17

and only loses the competition on F8 and F20.

3) LMSEDA with the dynamic cluster sizing shows its

superiority to the one with the optimal cluster size. It

achieves considerably similar PR results on 16 func-

tions and obtains the best PR results on F6, F15, F17,

and F19 in comparison with the version with the fixed

optimal size.

In summary, the dynamic cluster sizing strategy is helpful

for both LMCEDA and LMSEDA, and this benefit is more

evident for LMSEDA. Such benefit comes from the potential

balance between exploration and exploitation resulted from the

changing cluster size. Additionally, the dynamic strategy on

the cluster size also eliminates the sensitivity to this parameter

and relieves users from the task of fine tuning.

2) Effects of Local Search and Combination of

Distributions: Here, we take a close observation at the

influence of the local search scheme and the combi-

nation of Gaussian and Cauchy distributions. In the

experiments, we denote LMEDAs only with Gaussian

distribution as LMEDA_Gs containing LMCEDA_G and

LMSEDA_G. Likewise, LMEDAs only with Cauchy distribu-

tion are denoted as LMEDA_Cs, including LMCEDA_C and

LMSEDA_C. The proposed LMEDAs without local search

are represented as MEDAs (MCEDA and MSEDA). The

version with both techniques is still be LMEDAs (LMCEDA

and LMSEDA). Table III presents the comparison results

among these versions with respect to PR at accuracy level

ε = 1.0E-04 with the left part of the bolded line related to

LMCEDA and the right part associated with LMSEDA. The

first two columns of each part, namely columns “G” and

“C,” represent the results of LMCEDA_G (LMSEDA_G) and

LMCEDA_C (LMSEDA_C), respectively. Additionally, the

best PR results are highlighted in bold.

First, in terms of the combination of the two dis-

tributions, comparing LMCEDA with LMCEDA_G and

LMCEDA_C, we can see LMCEDA performs similarly to

both LMCEDA_G and LMCEDA_C on 12 functions (F1–F6,

F10–F14, and F16). LMCEDA defeats LMCEDA_G and

LMCEDA_C on 3 (F7, F18, and F19) and 8 (F7–F9, F15,
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TABLE II
COMPARISON RESULTS ABOUT PR BETWEEN LMEDAS WITH DYNAMIC CLUSTER SIZE AND THOSE WITH

FIXED CLUSTER SIZES AT ACCURACY LEVEL ε = 1.0E-04. THE BEST PR IS HIGHLIGHTED IN BOLD

TABLE III
COMPARISON RESULTS IN PR AMONG DIFFERENT VERSIONS OF MEDAS

AT ACCURACY LEVEL ε = 1.0E-04 WITH BEST PR BOLDED

and F17–F20) functions, respectively. Besides, there is no

loss of competition for LMCEDA in comparison with

LMCEDA_C, and LMCEDA only seriously loses its advan-

tage on F20 when compared with LMCEDA_G. When it comes

to LMSEDA, observing the right part, we find the combina-

tion of the two distributions is very beneficial, which helps

LMSEDA defeat LMSEDA_G and LMSEDA_C on six func-

tions (F6, F7, F9, F12, F18, and F19) and nine functions

(F6, F8, F9, F11, F15, and F17–F20), respectively. And there

is no serious loss of advantage for LMSEDA when compared

with the two versions. Comprehensively, we can see the com-

bination of the two distributions provides potential help for

both LMCEDA and LMSEDA, and the benefit is more obvious

on LMSEDA. Such benefit origins from the potential balance

between exploration and exploitation afforded by the alterna-

tive usage of the two distributions, which takes advantages of

both distributions.

Second, from the perspective of the local search, compar-

ing LMCEDA with MCEDA and LMSEDA with MSEDA,

respectively, which corresponds to the last two columns of the

two parts, we can find that the local search is very useful

for LMCEDA on F6, F8, F12, and F15, while it benefits

LMSEDA specially on F6, F8, F12, F15, and F17. On other

functions, even though such benefit is not evident, the perfor-

mance of LMCEDA and LMSEDA is comparable to that of

MCEDA and MSEDA, or even a little better, such as on F7,

F9, and F17 for LMCEDA and on F7, F9, F10, F18, and F19

for LMSEDA. As a whole, we can see that the local search

scheme makes significant difference on both LMCEDA and

LMSEDA.

In short, we can conclude that both the combination of

the two distributions and the local search are beneficial for

LMEDAs in locating more global optima.
3) Overall Performance of LMCEDA and LMSEDA: After

observing the influence of the three techniques on LMCEDA

and LMSEDA from the above two series of experiments, we

present the overall performance of these two algorithms at

all accuracy levels. Table IV shows the comparison results

between LMCEDA and LMSEDA with respect to PR and SR

on all 20 functions at all accuracy levels and the best PR

results are emphasized in bold.

From Table IV, we can observe the following.

1) Both algorithms achieve almost the same performance

on nine functions (F1–F5, F10, F13, F14, and F16) at all

five accuracy levels. Besides, on F1–F5, they can locate

all known global optima successfully at any accuracy

level, and on F10, LMCEDA can successfully find all

global optima at all accuracy levels, while LMSEDA can

nearly successfully locate all global optima with only

one run missing finding only one global optima out

of 51 independent runs. On F13, F14, and F16, both

LMCEDA and LMSEDA can almost successfully find

all global optima at accuracy level ε = 1.0E-01, while

at other levels, even though they cannot find all optima in

any run, they are able to find most of the global

optima (4 out of 6).

2) Compared with LMSEDA, overall, LMCEDA is slightly

better on F6, and shows its great superiority to
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TABLE IV
COMPARISON RESULTS IN PR AND SR BETWEEN LMCEDA AND LMSEDA ON 20 FUNCTIONS AT DIFFERENT ACCURACY LEVELS

LMSEDA on F7 and F9. Conversely, LMSEDA displays

its little superiority on F18 and F19, and wins the com-

petition with great advantages on 6 functions (F8, F11,

F12, F15, F17, and F20).

3) From the perspective of accuracy levels, both LMCEDA

and LMSEDA can almost successfully locate all global

optima for almost all functions at the accuracy level

ε = 1.0E-01, except for F8, F9, F12, and F19 for

LMCEDA and F6, F8, F9, and F19 for LMSEDA. As for

other accuracy levels, LMCEDA cannot achieve a suc-

cessful run on 13 functions (F7–F9 and F11–F20) and

LMSEDA cannot obtain any successful run on 11 func-

tions (F7–F9 and F13–F20) owing to the influence of

an ocean of local optima. Such phenomena is common

for the state-of-the-art multimodal algorithms, but ours

can locate more global optima in the unsuccessful runs,

which will be testified in the following section.

In addition, to have a better view of the comparison between

LMCEDA and LMSEDA, we visualize the final fitness land-

scape of the final population when the maximum number of

fitness evaluations is exhausted on ten visual functions, which

is shown in Fig. 2.

First, we observe that both LMCEDA and LMSEDA can

locate the global optima. And when there is not so many or

even no local optima, as shown in Fig. 2(b)–(d), (f), and (g),

LMCEDA and LMSEDA achieve very similar performance,

namely the individuals are located around or at the global

optima. However, when there are many or even masses of

local optima, the two algorithms perform very differently.

LMCEDA not only can locate global optima, but also can

locate many local optima, while LMSEDA can locate more

global optima but at the loss of locating local optima, which

can be clearly seen in Fig. 2(e) and (h)–(j). Such phenom-

ena may be attributed to the different individual selection

procedures adopted in LMCEDA and LMSEDA as shown in

Algorithms 7 and 8, respectively.

In summary, we can conclude that from the perspective

of locating more global optima as concerned in this paper,

LMSEDA is a little superior to LMCEDA. But, from Table IV,

we can see that both algorithms are promising for solving

multimodal optimization problems.

C. Comparisons With State-of-the-Art Algorithms

To further demonstrate the superiority of LMEDAs

(LMCEDA and LMSEDA), we conduct comparison experi-

ments between LMEDAs and several state-of-the-art multi-

modal algorithms. The compared algorithms are CDE [29],

SDE [30], LIPS [41], R2PSO, R3PSO [42], Self_CCDE,

Self_CSDE [37], NCDE, NSDE [38], LoICDE, LoISDE [40],

and PNPCDE [39]. The brief description of these algorithms

can be found in Section II-A. To make fair comparisons, the

population size and the maximum number of fitness evalua-

tions are set the same for all algorithms according to Table I.

Other parameters introduced in the corresponding algorithms

are set as recommended in the related papers.

For saving space, we leave all the comparison results

at the five accuracy levels in the supplemental material.

Tables SIII–SVII (in the supplemental material) show the

comparison results with respect to PR, SR, and CS of dif-

ferent multimodal algorithms at the five accuracy levels,

and the best PRs are highlighted in bold. The row named

“bprs” counts the number of functions where one algorithm

obtains the best PR results, namely the number of bolded

PRs. Tables SVIII–SXII (in the supplemental material) present

nonparametric Wilcoxon rank-sum test2 results with respect

to PR between LMEDAs and the state-of-the-art methods

2http://en.wikipedia.org/wiki/Mann–Whitney_U_test

http://en.wikipedia.org/wiki/Mann--Whitney_U_test
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Fig. 2. Comparison results in final fitness landscapes between LMCEDA and LMSEDA on ten functions that can be visualized. (a) F1. (b) F2. (c) F3.
(d) F4. (e) F6. (f) F7. (g) F10. (h) F11. (i) F12. (j) F13.

at the five accuracy levels. In these tables, each compared

algorithm is associated with two columns, of which the left

are the results compared with LMCEDA and the right are

the results compared with LMSEDA. In addition, the crit-

ical value of Wilcoxon rank-sum test with respect to the

rank sum for 51 samples is 2866. Therefore, the number

larger than 2866 indicates that our algorithm is signifi-

cantly better than the compared algorithm, and the number

smaller than 2387 indicates our algorithm is significantly

worse. Other cases mean our algorithm is equivalent to the

compared algorithm. According to this standard, the grayed

units in Tables SVIII–SXII (in the supplemental material)

mean LMCEDA or LMSEDA is significantly better than the

compared algorithm, while the bolded values indicate that

LMCEDA or LMSEDA is significantly worse. Other cases

suggest LMCEDA or LMSEDA performs similarly to the com-

pared method. On the basis of these, the last row (w/l/t)

of these tables counts the number of functions on which

LMCEDA or LMSEDA significantly wins, significantly loses,

and ties the competitions when compared with corresponding

counterparts.

Observing Tables SIII–SXII in the supplement material, we

can draw the following conclusions.

1) From the perspective of bprs, based on Tables SIII–SVII

(in the supplemental material), we can see that with the

accuracy level increasing, the performance of all meth-

ods degrades drastically, except for LMSEDA, whose

performance is very stable. In details, when the accu-

racy level changes from ε = 1.0E-01 to ε = 1.0E-02,

the bprs of CDE, NCDE, Self_CCDE, LoICDE, and
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PNPCDE, whose performance is comparable to both

LMCEDA and LMSEDA at accuracy level ε = 1.0E-01,

decreases rapidly from 13, 15, 13, 15, and 13 to 8, 8,

10, 8, and 6, respectively, while that of LMSEDA keeps

nearly unchanged. As the accuracy level changes from

ε = 1.0E-02 to ε = 1.0E-05, LMSEDA always keeps

its dominant position and performs significantly better

than the other algorithms. When it comes to the last

accuracy level, ε = 1.0E-05, we can observe that both

LMCEDA and LMSEDA outperform all the compared

algorithms.

2) When we take a further look at Tables SIII–SVII

(in the supplemental material), both LMCEDA and

LMSEDA achieve the best performance on F15–F20,

except for F20, on which LMSEDA obtains very sim-

ilar result with NCDE, while LMCEDA receives poor

performance. Such observation becomes more and more

evident with the accuracy level increasing, which sub-

stantiates the competitive efficiency and superiority of

LMEDAs in dealing with larger and more complex

search spaces, where masses of local optima exist.

3) When it reaches the comparison in CS, since it makes

no sense to evaluate this standard on functions where

there is no successful run for one algorithm and on

algorithms whose PR results are not comparable, we

compare LMCEDA and LMSEDA only with CDE,

NCDE, Self_CCDE, LoICDE, and PNPCDE on F1–F5,

where they achieve comparable performance. At the first

two accuracy levels, both LMCEDA and LMSEDA show

no evident superiority to these five compared algorithms.

However, when it arrives at the last three accuracy lev-

els, we find that both LMCEDA and LMSEDA present

their dominance to the five compared algorithms in

CS. Take accuracy level ε = 1.0E-04 for example.

From Table SVI (in the supplemental material), it

can be found that LMCEDA achieves faster CS than

CDE, NCDE, Self_CCDE, LoICDE, and PNPCDE on

3(F2, F3, and F5), 3(F1–F3), 3(F1–F3), 2(F2 and F3),

and 3(F2, F3, and F5) functions, respectively, while

LMSEDA converges faster than them on 3(F2, F3, and

F5), 3(F1–F3), 4(F1–F3 and F5), 3(F2, F3, and F5), and

3(F2, F3, and F5) functions, respectively. This observa-

tion potentially shows that LMEDAs can achieve a com-

petitive convergence speed to locate global optima for

multimodal optimization.

4) From Tables SVIII–SXII (in the supplemental mate-

rial), we find that the dominance of both LMCEDA

and LMSEDA to the counterparts becomes more and

more obvious as the accuracy level increases. Specially,

at the last accuracy level, ε = 1.0E-05, both LMCEDA

and LMSEDA are significantly better than all the com-

pared algorithms on more than ten functions, except

for NCDE and Self_CCDE. However, LMCEDA and

LMSEDA still beat NCDE and Self_CCDE down on 7

and 8 functions, which is much more than the num-

ber of functions where LMCEDA and LMSEDA are

defeated by the two compared algorithms, respectively.

Particularly, we find both LMCEDA and LMSEDA are

significantly superior to SDE, NSDE, and LoISDE

on more than 17 functions. All these evidently ver-

ify the superiority of LMEDAs to the state-of-the-art

multimodal algorithms.

Comprehensively, we can conclude that with the accuracy

level increasing, both LMCEDA and LMSEDA become more

and more outstanding when compared with the state-of-the-art

multimodal algorithms. This observation demonstrates that

both LMCEDA and LMSEDA achieve consistent superiority

at most accuracy levels, which can be attributed to the power-

ful exploration ability and exploitation ability of LMEDAs,

resulted from the three techniques proposed in this paper:

1) the dynamic cluster sizing; 2) the alternative usage of two

distributions to generate offspring; and 3) the local search

around seeds. Equipped with these strategies, LMEDAs can

make a good balance between exploration and exploitation,

which results in their efficiency and effectiveness in dealing

with multimodal optimization problems.

V. CONCLUSION

This paper has developed MEDAs to locate multiple global

optima for multimodal optimization problems. Distribution

estimation and niching are effectively utilized to realize the

proposed algorithms. Specially, the clustering-based niching

tactics for crowding and speciation are incorporated, lead-

ing to crowding-based and speciation-based MEDAs, named

MCEDA and MSEDA, respectively. Further, they are enhanced

with local search, forming LMCEDA and LMSEDA, respec-

tively. Their superior performance on multimodal problems is

brought about by three techniques developed in this paper:

1) the dynamic cluster sizing; 2) the alternative usage of two

distributions to generate offspring; and 3) the local search

around seeds.

The niching methods of MEDAs are improved from those

in the literature through developing a dynamic cluster-sizing

strategy to afford a potential balance between exploration and

exploitation, whereby relieving MEDAs from the sensitivity

to the cluster size. Differing from classical EDAs to estimate

the probability distribution of the whole population, MEDAs

focus on the estimation of distribution at the niche level, and

all individuals in each niche participate in the estimation of

distribution of that niche. Further, the alternative usage of

Gaussian and Cauchy distributions to generate offspring takes

the advantages of both distributions, and potentially offers

a balance between exploration and exploitation. Finally, the

solution accuracy is enhanced through a new local search

scheme based on Gaussian distribution with probabilities

self-adaptively determined according to fitness values of seeds.

The influence of these three techniques has been fully tested

in the experiments. The comparison results with respect to PR,

SR, and CS between MEDAs and the state-of-the-art multi-

modal algorithms demonstrate the superiority and efficiency

of MEDAs developed in this paper.

However, Tables SIII–SVII (in the supplemental material)

also indicate that even though MEDAs can locate more global

optima than the state-of-the-art multimodal algorithms, there

is still room to improve the performance such that all global
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optima may be located when the dimensionality of the problem

increases or there exist an excessive number of local optima.

This directs certain future work in the development of MEDAs.
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