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Abstract. Multidimensional scaling with city-block distances is considered in this paper. The tech-
nique requires optimization of an objective function which has many local minima and can be
non-differentiable at minimum points. This study is aimed at developing a fast and effective global
optimization algorithm spanning the whole search domain and providing good solutions. A mul-
timodal evolutionary algorithm is used for global optimization to prevent stagnation at bad local
optima. Piecewise quadratic structure of the least squares objective function with city-block dis-
tances has been exploited for local improvement. The proposed algorithm has been compared with
other algorithms described in literature. Through a comprehensive computational study, it is shown
that the proposed algorithm provides the best results. The algorithm with fine-tuned parameters
finds the global minimum with a high probability.
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1. Introduction

Multidimensional scaling (MDS) is a technique employed for exploratory analysis of
multidimensional data (Borg and Groenen, 2005; Dzemyda et al., 2013). It can be used
to represent multidimensional data as a set of points in a low-dimensional embedding
space and expose it as an image for heuristic analysis by human experts. Application
areas of MDS vary from psychometrics (Takane, 2006) and market analysis (DeSarbo
et al., 1998; Nelson and Rabianski, 1988) to mobile communications (Groenen et al.,
2000) and pharmacology (Žilinskas, 2006).

MDS aims at finding the points in a low dimensional space whose inter-point dis-
tances fit the given dissimilarities of multidimensional objects. This can be achieved by
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optimization of a criterion of fit (Žilinskas and Žilinskas, 2009b). Unfortunately the op-
timization problem is not easy to solve since there are normally many local minima.
Moreover, the objective function is invariant with respect to translation and rotation or
mirroring. The number of decision variables depends on the number of multidimensional
objects and the dimensionality of the embedding space, so, the number can be large.

The Euclidean distances are commonly used in the definition of the objective func-
tion for MDS. Efficient algorithms have been proposed for such problems (Everett,
2001; Groenen et al., 2000; Mathar, 1996; Mathar and Žilinskas, 1993). However, MDS
with other Minkowski distances can be more informative than MDS with the Euclidean
distances (Arabie, 1991). The images of geometrical data obtained using MDS with the
city-block distances highlight the structural properties of the original data better than
the images obtained using MDS with the Euclidean distances (Žilinskas and Žilinskas,
2006, 2007, 2009b). Agonist and antagonist ligands can be separated by a line in a two-
dimensional image obtained using MDS with the city-block distances (Žilinskas, 2006),
but this is not possible in a corresponding image obtained using MDS with the Euclidean
distances.

In this study, MDS with the city-block distances is considered. In the case of the city-
block distances, the least squares objective function can be non-differentiable at a mini-
mum point (Žilinskas and Žilinskas, 2007). Therefore special attention should be given
to this point. However, the least squares objective function with city-block distances is
piecewise quadratic. Such a structure is exploited to develop a local optimization algo-
rithm.

A successful algorithm for global optimization has to provide a balance between the
exploration of the search space to identify regions with good solutions and the exploita-
tion of the accumulated search experience. In this work, a multimodal evolutionary algo-
rithm (MEAL) for MDS with the city-block distances has been designed. MEAL forms
and maintains a population of individuals. Individual represents the attraction region of
a local minimum point. MEAL could also be identified as a memetic algorithm (Speer
et al., 2004), in the sense that it uses local optimization in the evolution process.

Performance of MEAL has been compared with two algorithms applicable to MDS
with the city-block distances: GENSSCAL (Vera et al., 2007) and HA (Žilinskas and
Žilinskas, 2008). GENSSCAL applies a multivariate randomly alternating simulated an-
nealing procedure with permutation and translation phases. HA is a hybrid algorithm of
evolutionary combinatorial search and convex continuous quadratic programming. Pro-
posers of GENSSCAL and HA have shown that their algorithms perform better than a
heuristic algorithm based on simulated annealing for two-dimensional city-block scal-
ing (Brusco, 2001) and a distance smoothing approach (Groenen et al., 1998). Through
a comprehensive computational study we will show that using the same computational
resources and CPU time, the solutions obtained by MEAL are better than those obtained
by GENSSCAL and HA. Furthermore, with a suitable parameter setting MEAL is able
to obtain the global optimum with a high probability.

The paper is organized as follows: MDS with the city-block distances based on
quadratic programming is presented in Section 2. The metaheuristic algorithm for mul-
tidimensional scaling is described in Section 3. A computational study to analyze the
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performance of the different algorithms is presented in Section 4. The paper ends with
some conclusions and directions for future research in Section 5.

2. Multidimensional Scaling with City-Block Distances Based on Quadratic
Programming

Multidimensional scaling aims at visualization of multidimensional data which cannot
be visualized directly. A set of n objects whose pairwise dissimilarities are represented
by an (n × n) matrix (δij), i, j = 1, . . . , n, is considered. It is supposed that dissimi-
larities are non-negative: δij � 0, symmetric: δij = δij , and δii = 0. A set of points
xi ∈ R

m, i = 1, . . . , n in an m-dimensional embedding metric space is considered as an
image of the set of objects. Ideally, we want to find the points whose inter-point distances
are equal to the given dissimilarities. However such points usually do not exist. There-
fore, we minimize a criterion which measures the differences between the distances and
the given dissimilarities. The least squares Stress function is used most frequently:

S(x) =
n∑

i<j

wij

(
d(xi,xj) − δij

)2
, (1)

where x = (x1, . . . ,xn) represents the set of points, xi = (xi1, xi2, . . . , xim); it is
supposed that the weights are positive: wij > 0, i, j = 1, . . . , n; d(xi,xj) denotes the
distance between the points xi and xj . In this work, we consider the city-block distances

d1(xi,xj) =
m∑

k=1

|xik − xjk |.

Therefore, Stress function (1) with the city-block distances can be redefined as

S(x) =
n∑

i<j

wij

( m∑
k=1

|xik − xjk | − δij

)2

. (2)

Stress function with city-block distances can be non-differentiable at a minimum point
when m � 2 (Žilinskas and Žilinskas, 2007). This does not happen with other Minkowski
distances, where positiveness of the distances d(x∗

i ,x
∗
j ) at a minimum point x∗ (when

wijδij > 0 for i, j = 1, . . . , n, i �= j) implies differentiability of Stress (de Leeuw,
1984; Groenen et al., 1995). Stress with Minkowski distances is not differentiable where
at least one distance is zero. However, this can be taken into account when choosing
starting points for local optimization, but it can be ignored later during local optimization.
Non-differentiability of the objective function at a minimum point cannot be ignored.

We use a special local optimization algorithm for MDS with city-block distances.
The algorithm exploits that Stress function with city-block distances is piecewise
quadratic.
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Let A(P) be a set such that

A(P) =
{
x|xik � xjk for pki < pkj , i, j = 1, . . . , n, k = 1, . . . , m

}
,

where P = (p1, . . . ,pm), pk = (pk1, pk2, . . . , pkn) is a permutation of 1, . . . , n;
k = 1, . . . , m. For x ∈ A(P), (2) can be rewritten in the following form

S(x) =
n∑

i<j

wij

( m∑
k=1

(xik − xjk)zkij − δij

)2

,

where zkij = 1 if pki > pkj and zkij = −1 if pki < pkj , and therefore zkij is constant
for x ∈ A(P). The function can be rewritten as

S(x) =
n∑

i<j

wij

( m∑
k=1

(xik − xjk)zkij − δij

)2

=
n∑

i<j

wij

( m∑
k=1

(xik − xjk)zkij

)2

− 2
n∑

i<j

wijδij

m∑
k=1

(xik − xjk)zkij +
n∑

i<j

wijδ
2
ij

=
m∑

k=1

m∑
l=1

n∑
i=1

xikxil

n∑
t=1,t�=i

witzkitzlit

−
m∑

k=1

m∑
l=1

n∑
i=1

n∑
j=1, j �=i

xikxjlwijzkijzlij

− 2
n∑

i=1

m∑
k=1

xik

n∑
j=1, j �=i

wijδijzkij +
n∑

i<j

wijδ
2
ij ,

where we can see quadratic, linear and constant parts of the function. Since the function
S(x) is quadratic over polyhedron x ∈ A(P), the optimization problem

min
x∈A(P)

S(x) (3)

can be reduced to the quadratic programming problem (Žilinskas and Žilinskas, 2008)

min
(

− dT x +
1
2
xT Dx

)
(4)

s.t. A0x = 0, (5)

Akx � 0, k = 1, . . . , m, (6)

where d, D, A and Ak are computed from δij , wij , i, j = 1, . . . , n and P. Stress func-
tion (2) is invariant with respect to translation and mirroring. The equality constraints (5)
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Algorithm 1. Local optimization algorithm for MDS with city-block distances
based on quadratic programming
Input: n; m; δij , wij , i, j = 1, . . . , n; xinit

Output: S∗, x∗

1: S∗ ← ∞
2: Compute P representing xinit

3: Compute d, D, A0 and Ak from n; m; δij , wij , i, j = 1, . . . , n and P
4: x∗ = arg min(−dT x + 1

2x
T Dx), s.t. A0x = 0, Akx � 0, k = 1, . . . , m.

5: while S(x∗) < S∗ and ∃k, l Ak
l x

∗ = 0 do
6: S∗ ← S(x∗)
7: for k = 1, . . . , m do
8: for all blocks of consequent active constraints Ak

l x
∗ = 0, i � l � j do

9: for t = 1, . . . , n do
10: if i � pkt � j + 1 then
11: pkt ← i + j + 1 − pkt

12: end if
13: end for
14: end for
15: end for
16: Compute d, D, A0 and Ak from n; m; δij , wij , i, j = 1, . . . , n and P
17: x∗ = arg min(−dT x + 1

2x
T Dx), s.t. A0x = 0, Akx � 0, k = 1, . . . , m.

18: end while
19: for k = 1, . . . , m do
20: if x1k > x2k then
21: for i = 1, . . . , n do
22: xik ← −xik

23: end for
24: end if
25: end for
26: S∗ ← S(x∗)

ensure centering of the image to avoid translated solutions. Polyhedron A(P) is defined
by the linear inequality constraints (6). Any convex quadratic programming method can
be applied to solve the problems (4)–(6).

A local optimization algorithm for MDS with city-block distances based on quadratic
programming is shown in Algorithm 1. A minimum point of a quadratic programming
problem is not necessarily a local minimum point of the initial problem of minimiza-
tion of Stress function (2). This is because Stress function is minimized with respect to
P as well. If a minimum point of a quadratic programming problem is on the border
of a polyhedron A(P), a local minimum point of Stress function is possibly located in
a neighboring polyhedron. Therefore, minimization is continued by solving a quadratic
programming problem over the polyhedron on the opposite side of the active inequal-
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ity constraints. The permutations in P are updated to define the neighboring polyhe-
dron (lines 7–15 in Algorithm 1). If i, . . . , j inequality constraints Akx � 0 are active,
pkt : i � pkt � j +1 are updated to i+ j +1 − pkt. Quadratic programming is repeated
while better values are found, and some inequality constraints are active (lines 5–18 in
Algorithm 1).

In evolutionary optimization it is important to avoid invariant minimum points since
they may be treated as different individuals although they may be exactly the same image
just translated or mirrored in the embedding image space. To avoid different minimum
points, invariant with respect to mirroring in the embedding space, we change the result-
ing local minimum point if x1k > x2k so that x1k � x2k (lines 19–25 in Algorithm 1).

3. Multimodal Evolutionary Algorithm for Multidimensional Scaling

Multimodal evolutionary algorithm (MEAL) uses terms from genetics and evolutionary
theory. A candidate solution (with some region around) is called an individual. An in-
dividual can be thought of as a hyper-spherical sub-region of the search domain. It is
defined by the center (ci) and the radius (Ri) (see Fig. 1). The center represents a lo-
cal minimum point and the radius is a positive number which defines the sub-space of
the search domain. Such a definition of an individual has been borrowed from UEGO
algorithm (Jelásity et al., 2001) which has been successfully used in a wide range of ap-
plications (González-Linares et al., 2000; Redondo et al., 2004, 2009, 2012). A particular
individual is not fixed, it can move and shrink as optimization proceeds. The entire set of
individuals is called a population (pop). Basically, MEAL is a method of managing such
a population ensuring the exploration of the search space. Local optimization helps quick
identification of “good” areas in the search space.

In MEAL, every individual is intended to occupy a local minimum point of the ob-
jective function. Although the total number of local minima points in the search do-
main is not known in advance, the user should specify a maximum number of individuals
(maxPop) allowed.

Initially, a population of a single, randomly generated individual is created. Later,
an iterative process is carried out. The number of iterations is given by another input
parameter maxIter.

Fig. 1. Concept of both individual and population.
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At each iteration, a new offspring is generated through evolutionary operators. A sin-
gle individual can create a new sub-population without participation of the remaining
ones. The reproduction operators are applied inside the sub-region defined by its radius.
This means that exploration is carried out in the area defined by the radius.

Every time a new individual is created, it is associated with a radius whose value de-
pends on the current iteration. Individuals created at later iterations have a smaller radius,
which means that they examine a relatively smaller area of the search domain. Therefore,
they are able to differentiate between local minima points that are relatively close to each
other. As the algorithm progresses, the optimization process is directed towards smaller
regions by creating new sets of individuals defining smaller sub-domains. It is important
to mention that individuals with different radii can coexist in the population.

Additionally, an improvement method is deployed. Every created individual is im-
proved by a local optimization algorithm. If a new point with a better objective function
value is found during local optimization, then the new point becomes the center of the
individual. As a consequence, the individuals move towards the locations of better local
minima points.

The individuals compete among themselves to belong to the population at the next
iteration. The fitness (objective function value) is used to determine the relative merit of
each individual.

3.1. Input Parameters

MEAL has three user given parameters:

• maxIter: the maximum number of iterations of the algorithm.
• maxPop: the maximum allowed population size.
• RmI : the radius associated with the last iteration of the algorithm.

The radius of an individual created at iteration i, is given by the following exponential
function:

Ri = R1

(
RmI

R1

) i−1
maxIter −1

, i = 2, . . . , maxIter,

where R1 is the diameter of the search domain (the largest radius) and RmI is the small-
est radius given by the input parameter. The maximum number of function evaluations
allowed when creating new individuals in each iteration is 6 · maxPop. The budget of
function evaluations allowed per current individual is bci = 6 · maxPop/length(popi).

3.2. Stages of the Algorithm

The structure of MEAL is given in Algorithm 2. The key stages of the algorithm are as
follows:

• Init_population: In the beginning a population list containing one individual is
created. Local optimization is applied from a random point in the search domain.
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Algorithm 2. Algorithm MEAL
1: Init_population
2: for i = 2, . . . , maxIter do
3: Generate_offspring(Ri, bci)
4: Select_new_population(Ri, maxPop)
5: end for

The found local minimum point defines the center of the initial individual. The
diameter of the search domain defines the radius of the initial individual.

• Generate_offspring(Ri, bci): In terms of evolutionary computation, the procedure
can be interpreted as creation of offspring. An individual generates new individuals
that are within its sub-region, though later on new individuals can move away.
For every individual in the population, random trial points are generated in the
area defined by its center and radius. For every pair of trial points, the middle of
the segment connecting the pair is computed. Local optimization algorithm is then
applied to all trial points. As a consequence, points can move towards local minima
points. If a better fitness value is found than that of the current individual, the center
of the individual is set to the better point. The same radius of the current individual
is kept.
The minimized members of the pair are inserted into the population list if the fitness
value at the minimized midpoint is worse than that at the corresponding minimized
members (see Fig. 2, left). On the contrary, if the minimized midpoint is better than
the extreme points, then it will be included into the population (see Fig. 2, right).
Every new inserted individual is assigned the current radius value (Ri). As a result
of this procedure the population list eventually contains several individuals with
different radii.
Every individual in the population list has a fixed number of evaluations for the
creation of new points bci. Notice that each individual is allowed to generate more
trial points when the number of individuals in the population list length(popi) is
small. The number of trial points is smaller when the population list contains more
individuals.

Fig. 2. Individual generation procedure.



Multimodal Evolutionary Algorithm for Multidimensional Scaling 609

Algorithm 3. Algorithm Select_new_population(Ri, maxPop)
1: Merge_individuals(Ri)
2: radius = Ri

3: while length(pop) > maxPop do
4: radius := radius ∗ 2
5: Merge_individuals(radius)
6: end while

Fig. 3. Merging procedure.

• Select_new_population(Ri, maxPop): During each successive generation, a pro-
portion of the current population is selected to breed a new generation. Individuals
are selected through a fitness-based process, where fitter individuals (as measured
by a fitness function) are selected. However, although an individual may be weak in
terms of its fitness function value, it may include some components, i.e., the radius,
which could be useful later in the optimization process. In our particular selection
procedure, information about weaker solutions can also survive and be considered
in the next stage of the algorithm.
Initially, a merging procedure is carried out: if the centers of any pair of individuals
from the population list are closer to each other than Ri, the two individuals are
merged. The center with the better function value is chosen as the center of the new
individual. The larger radius of the original individuals is retained (see Fig. 3).
Nevertheless, in spite of the execution of the merging procedure, the length of the
population can be larger than the maximum allowed, i.e., maxPop. In such a case,
the number of individuals has to be reduced. To this aim, the merging procedure
is repeated with a progressively increasing radius (see Algorithm 3). Note that the
points with the best objective function values are maintained as the centers and
larger radii are preserved. There always exists an individual with the radius equal
to the diameter of the search domain. This helps us to keep a wide population
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diversity and prevent premature convergence to poor solutions.

4. Computational Experiments

MEAL and HA (Žilinskas and Žilinskas, 2008) have been implemented in C++, and
g++−4.3 has been used for compilation. The experiments using these two algorithms
have been performed on a LINUX computer with AMD Athlon(tm) 64 X2 Dual Core
Processor 4200+, 2200 MHz, 2 GB RAM. Only Windows executable of the algorithm
GENSSCAL (Vera et al., 2007) was available to us. Therefore, the experiments with this
algorithm have been performed on a Windows Vista computer with AMD Athlon(tm)
64 X2 Dual Core Processor 5000+, 2600 MHz, 4 GB RAM. Both computers are quite
similar, although the latter is around 15% faster. This is acceptable since the proposed
algorithm runs on a slower computer and is in a less favorable situation in comparison.

4.1. Test Problems

In order to have an overall view of the performance of the algorithms, several data-sets
of multidimensional data have been used in the experiments.

Some data-sets can be obtained from well understood multidimensional geometric
objects: vertices of simplices and hyper-cubes. Data of various dimensionality can be
generated. In the case of simplices dimensionality of multidimensional data is by one
smaller than the number of vertices. One class of data-sets corresponds to the vertices of
the standard simplex. The distances between any two vertices of the standard simplex are
equal in any norm. Such data-sets are referred to as ‘r8’, ‘r12’, ‘r16’ and ‘r20’, where
the number indicates the number of vertices. Another class of data-sets corresponds to
the city-block distances between the vertices of the unit simplices. One vertex of the
unit simplex is at the origin and the others are at the unit distance from the origin in
each coordinate direction. Such data-sets are referred to as ‘u8’, ‘u12’, ‘u16’ and ‘u20’,
where the number represents the number of multidimensional objects – vertices of the unit
simplex. Finally, the city-block distances between the vertices of the multidimensional
unit cubes are called ‘c8’ and ‘c16’, where the number represents the number of vertices.
Therefore, ‘c8’ is the usual three-dimensional cube and ‘c16’ is the four-dimensional one.

Another class of data-sets are error-perturbed distance data proposed by Groenen
et al. (1999). The data is generated using uniformly distributed random points in m-
dimensional space, whose pairwise dissimilarities are computed by

δij =
m∑

k=1

∣∣x(e)
ik − x

(e)
jk

∣∣,

where x
(e)
ik = xik + N(0, e(xik)), and N(0, e) denotes the normally distributed random

variable with zero mean and standard deviation e. Eight problems defined by all com-
binations of the parameters (n = 10, 20; m = 2, 3; e(x) = 0.15x, 0.3x) have been
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generated and are referred to as ‘gABC’ in the results below. A represents m, B repre-
sents n (B = 1 means n = 10 and B = 2 means n = 20), and C represents e (C = 1
means e(x) = 0.15x and C = 3 means e(x) = 0.3x).

Another class of empirical data-sets is obtained from pharmacological binding affin-
ity data (Žilinskas, 2006). The binding affinity data is represented through a matrix, one
dimension formed by different ligands tested in a series of experiments while the other
dimension represents different proteins. Heuristic analysis can be performed visualiz-
ing data as properties of proteins or ligands. Dissimilarities of proteins are computed
as the city-block distances between vectors of the log10-transformed binding affinities
representing proteins. Dissimilarities of ligands are computed as the city-block distances
between vectors of the log10-transformed binding affinities representing ligands. We re-
fer to dissimilarities of three human and five zebrafish α2-adrenoceptor proteins obtained
from binding affinity data of (Ruuskanen et al., 2005) as ‘ru1’ (n = 8) and dissimilarities
of n = 20 ligands obtained from the same binding affinity data as ‘ru2’. Dissimilari-
ties of human, rat, guinea pig and pig α2-adrenoceptor proteins obtained from binding
affinity data of (Uhlén et al., 1998) are referred to as ‘uh1’ (n = 12). Dissimilarities
of ligands obtained from binding affinity data of (Hwa et al., 1995) are referred to as
‘hw12’ (n = 9) while dissimilarities of wild type and mutant proteins obtained from the
data of (Hwa et al., 1995) are referred to as ‘hw21’ (n = 12).

A frequently used test problem for MDS algorithms is based on experimental testing
of n = 10 soft drinks (Green et al., 1989), where dissimilarities are measured by means
of psychological experiments. This problem is referred to as ‘cola’. The thirteen (n = 13)
ethnic sub-groups data (Funk et al., 1974) is referred to as ‘funk’.

To check the reliability of different algorithms, it is interesting to have test problems
with the known global minima. Algorithms are usually compared on the best objective
function value they have found. However the minimum of S(x) depends on the problem
(n and δij , i, j = 1, . . . , n) and is not very convenient when comparing accuracies of
scaling for different sets of objects. To reduce this undesirable impact, a relative error
(normalized Stress function)

f(x) =

√√√√S(x)
/ n∑

i<j

wijδ2
ij

is used when presenting the results. In Table 1, the best known values of relative er-
ror for the considered test problems are presented. Bold font numbers indicate the exact
global minima found by explicit enumeration with avoidance of symmetries (Žilinskas,
2007) for vertices of simplices (‘u8’, ‘u12’, ‘r8’, ‘r12’) and by a branch and bound algo-
rithm (Žilinskas and Žilinskas, 2009a) for vertices of cubes (‘c8’) and empirical data-sets
(‘g211’, ‘g213’, ‘ru1’, ‘hw12’, ‘hw21’, ‘cola’). Of course, the exact solution requires
enormous computational resources and it is not possible for larger problems. A parallel
branch and bound algorithm solves ‘hw21’ with m = 2 in 10 hours and ‘hw12’ with
m = 3 in more than 60 hours on 16 processors (Žilinskas, 2012).
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Table 1

The best known values of relative error for the considered test problems

Data n min f , min f ,

m = 2 m = 3

u8 8 0.2569 0.0992

u12 12 0.3167 0.1874

u16 16 0.3439 0.2243

u20 20 0.3595 0.2455

r8 8 0.2825 0.1250

r12 12 0.3300 0.2013

r16 16 0.3525 0.2321

r20 20 0.3657 0.2505

c8 8 0.2245 0.0000

c16 16 0.2965 0.1590

gm11 10 0.1293 0.0906

gm13 10 0.2711 0.1298

gm21 20 0.1868 0.1610

gm23 20 0.2966 0.2284

ru1 8 0.1096 0.0188

hw12 9 0.0000 0.0000

uh1 12 0.0825 0.0356

hw21 12 0.0497 0.0183

ru2 20 0.0518 0.0243

cola 10 0.1675 0.0676

funk 13 0.2275 0.1074

4.2. Comparing the Reliability and Performance of the Algorithms for Short Runs

In this section, an exhaustive computational study has been carried out to compare the
robustness and efficiency of GENSSCAL, HA and MEAL algorithms.

The set of problems described in Section 4.1 have been solved with all the heuristics,
i.e., GENSSCAL, HA and MEAL. The default parameters provided by the authors have
been used for the executions of GENSSCAL algorithm. The average computational time
of GENSSCAL has been used as a stopping criterion for HA for each problem. Notice
that we want to determine which is the best algorithm for this set of problems. Hence, in
order to have a fair comparison, both the reliability and performance of the algorithms
have to be compared when they are allowed to run a similar (averaged across all instances)
amount of time. Since each run of a randomized algorithm may provide a different solu-
tion, each algorithm was run 40 times for each problem. The input parameters of MEAL
were chosen so that the CPU times were, on average (when considering the whole set of
problems), similar to the CPU times used by both GENSSCAL and HA. In particular, the
considered set of parameters was: maxPop = 5, maxIter = 10, RmI = 0.02.

For each execution, we obtain the minimal relative error f ∗ provided by the algo-
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rithm, the point at which this value is attained and the CPU time (in seconds). With this
information, for a given algorithm and a given problem, we compute the average comput-
ing time Av(t) (in seconds) and the minimum relative error found in 40 runs (min f ∗).
The number of times (in percentage: At%) the algorithm has found the min f ∗ value has
also been computed. Notice that a success is considered when the difference between
f ∗ and min f ∗ is less than 10−6. Table 2 summarizes the results obtained by the three
algorithms.

The available executable program of GENSSCAL provides the best point achieved
over all runs, but the best point of each run is not printed. To be able to compare the
solutions provided by the GENSSCAL program with the results obtained by both HA
and MEAL algorithms, the relative error of the best point provided by the GENSS-
CAL program is evaluated and presented as min f ∗. For all runs, the program GENSS-
CAL provides normalized minimal function values with 8 decimal digits in each run.
To find the corresponding value of the relative error f ∗, the square root of normalized
minimal function value is computed. These values are used to compute the percent-
age of runs (At%) where this number f ∗ differs from the best f ∗ of 40 runs by less
than 10−6.

The At% values obtained by HA suggest this algorithm has a good behavior in terms
of effectiveness. Nevertheless, for 20 out of 42 test problems, its min f ∗ values were
larger than the ones provided by both GENSSCAL and MEAL. See, for example, prob-
lems ‘g213’ and ‘cola’ with m = 2. For these two problems, the number of times HA has
found its min f ∗ value is relatively high, but the obtained minimum relative errors are
worse than the ones provided by GENSSCAL and MEAL. However, for problems where
the three algorithms have obtained the same min f ∗, the percentages of success reached
by the HA algorithm are larger than the ones obtained by GENSSCAL, in most cases. See
for instance, problems ‘u8’, ‘u12’, ’c8’ with m = 2, 3 to name a few. On the contrary, the
At% values achieved by HA are, in general, worse than those obtained by MEAL. Only
for problem ‘u12’, ‘r12’, ‘ru1’ and ‘uh1’ with m = 2, HA is able to improve MEAL
results.

Notice that GENSSCAL and HA invest the same computing times (although the ex-
periments with GENSSCAL have been performed on around 15% faster computer), while
computing times for MEAL are a bit different (see columns Av(t) in Table 2). This is be-
cause MEAL adapts itself to the difficulty of the problem at hand, whereas HA does
not take the difficulty of the problem into account. HA executes an iterative process until
a CPU time is obtained (in this study, the average execution time of GENSSCAL has been
considered as a stopping criterion for each problem). Nevertheless, computing times for
MEAL are very close to that of other algorithms although for half of the problems they
are a bit shorter while for others they are a bit longer.

MEAL is a clear leader in terms of reliability. It finds the best relative error in many
cases: for 12 of 42 test problems it is able to obtain 100% success, for 22 of 42 At% � 50.
Only for 3 test problems (‘hw21’, ‘ru2’ and ‘funk’ with m = 3) At% = 2.5, i.e., the
algorithm finds the min f ∗ value only once in 40 runs. However, GENSSCAL provides
results differing by more than 10−6 in most of the runs. In fact, for 28 of 42 problems it
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Table 2

Comparison of algorithms: short runs

Data MEAL GENSSCAL HA

Av(t) min f ∗ At% Av(t) min f ∗ At% Av(t) min f ∗ At%

m = 2

u8 0.07 0.2569 100.0 0.19 0.2569 5.0 0.19 0.2569 100.0

u12 0.23 0.3167 82.5 0.34 0.3167 7.5 0.34 0.3167 97.5

u16 0.47 0.3439 65.0 0.52 0.3439 65.0 0.52 0.3445 10.0

u20 0.94 0.3595 50.0 0.73 0.3595 60.0 0.73 0.3611 2.5

r8 0.06 0.2825 100.0 0.17 0.2825 92.5 0.17 0.2825 100.0

r12 0.19 0.3300 90.0 0.31 0.3300 60.0 0.31 0.3300 92.5

r16 0.54 0.3525 42.5 0.47 0.3525 40.0 0.47 0.3533 2.5

r20 0.76 0.3657 27.5 0.67 0.3657 12.5 0.67 0.3670 2.5

c8 0.10 0.2245 100.0 0.22 0.2245 2.5 0.22 0.2245 100.0

c16 0.92 0.2965 27.5 0.60 0.2965 2.5 0.60 0.3001 2.5

g211 0.29 0.1293 100.0 0.27 0.1293 5.0 0.27 0.1293 100.0

g213 0.22 0.2711 100.0 0.28 0.2711 2.5 0.28 0.2713 85.0

g221 1.77 0.1868 100.0 0.78 0.1868 2.5 0.78 0.1872 7.5

g223 1.38 0.2966 65.0 0.78 0.2966 2.5 0.78 0.3090 2.5

ru1 0.08 0.1096 32.5 0.27 0.1096 2.5 0.27 0.1096 85.0

hw12 0.14 0.0000 100.0 0.26 0.0001 2.5 0.26 0.0000 100.0

uh1 0.39 0.0825 55.0 0.43 0.0825 2.5 0.43 0.0825 60.0

hw21 0.41 0.0497 82.5 0.41 0.0497 2.5 0.41 0.0497 55.0

ru2 1.58 0.0518 15.0 1.09 0.0518 2.5 1.09 0.0523 2.5

cola 0.21 0.1675 22.5 0.25 0.1675 5.0 0.25 0.1681 22.5

funk 0.40 0.2275 12.5 0.36 0.2275 2.5 0.36 0.2467 2.5

m = 3

u8 0.24 0.0992 100.0 0.31 0.0992 2.5 0.31 0.0992 100.0

u12 0.76 0.1874 97.5 0.52 0.1874 2.5 0.52 0.1874 47.5

u16 0.95 0.2243 25.0 0.81 0.2243 12.5 0.81 0.2267 2.5

u20 2.65 0.2458 10.0 1.15 0.2455 2.5 1.15 0.2474 2.5

r8 0.29 0.1250 100.0 0.27 0.1250 37.5 0.27 0.1250 100.0

r12 0.45 0.2013 47.5 0.47 0.2013 30.0 0.47 0.2013 22.5

r16 1.06 0.2321 30.0 0.73 0.2321 25.0 0.73 0.2329 2.5

r20 1.30 0.2505 5.0 1.03 0.2505 2.5 1.03 0.2531 2.5

c8 0.21 0.0000 100.0 0.32 0.0001 2.5 0.32 0.0000 100.0

c16 0.60 0.1590 80.0 0.93 0.1590 2.5 0.93 0.1590 52.5

g311 0.61 0.0906 100.0 0.43 0.0906 2.5 0.43 0.0906 97.5

g313 0.64 0.1298 95.0 0.42 0.1298 2.5 0.42 0.1298 90.0

g321 2.05 0.1610 22.5 1.23 0.1610 2.5 1.23 0.1653 2.5

g323 1.95 0.2284 12.5 1.26 0.2284 2.5 1.26 0.2457 2.5

ru1 0.29 0.0188 5.0 0.41 0.0188 2.5 0.41 0.0188 15.0

hw12 0.46 0.0000 100.0 0.40 0.0001 2.5 0.40 0.0000 100.0

uh1 0.74 0.0356 27.5 0.66 0.0356 2.5 0.66 0.0356 2.5

hw21 0.52 0.0183 2.5 0.44 0.0191 2.5 0.44 0.0186 2.5

ru2 2.30 0.0255 2.5 1.67 0.0244 2.5 1.67 0.0252 2.5

cola 0.35 0.0676 7.5 0.38 0.0676 2.5 0.38 0.0771 2.5

funk 0.69 0.1074 2.5 0.55 0.1075 2.5 0.55 0.1328 2.5
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obtains the min f ∗ value only once in 40 runs (At% = 2.5). Regarding HA, At% = 2.5
is obtained for 18 of 42 problems.

4.3. Comparing the Performance of the Algorithms for Reliable Runs

In the previous section, MEAL was tuned to obtain similar running times to the ones of
HA and GENSSCAL, so as to be able to compare all three algorithms. Of course, if the set
of parameters is not reliable enough, the search cannot be exhaustive and the algorithm
may become trapped in attraction regions of bad local minima. This section is aimed at
designing a suitable parameter setting that allows MEAL to explore the search domain
deeper and to provide better quality using reasonable computing times. An analysis of the
effects of the different parameters of MEAL was carried out in order to obtain a robust
parameter setting. From such experiments, it was determined that, for the problem at
hand, a more reliable set of the parameters for MEAL is: maxPop = 50, maxIter = 10,
RmI = 0.02.

Furthermore, the behavior of the HA algorithm is also studied when its running times
are similar to those of MEAL for each problem. Notice that the comparison with GENSS-
CAL is not suitable in this case, since only the default parameters of the program are
available.

Again, each algorithm has been executed 40 times on every test problem. Each prob-
lem has been solved first by MEAL, using the reliable set of parameters. For each prob-
lem, the average computing time Av(t) (in seconds) has been computed and used as a
stopping criterion for HA. For each execution, we obtain the minimal relative error f ∗

provided by the algorithm. For a given algorithm and a given problem, we compute the
minimum relative error found in 40 runs (min f ∗), the average value (f ∗) and the stan-
dard deviation (s.d. f ∗). As a criterion of reliability, we also present the percentage of
runs (At%) where the minimum relative error min f ∗ has been found. Again, success is
considered when the difference between f ∗ and min f ∗ is less than 10−6. The results are
shown in Table 3.

It is important to mention that min f ∗ values obtained by both HA and MEAL co-
incide with the exact global minima found by exact methods (see Tables 1 and 3).
As can be observed in Table 3, MEAL finds the min f ∗ value with 100% success in
most cases (32 out of 42 test problems). In cases where 100% success is not obtained,
the difference between min f ∗ and f ∗ values is very small and the standard devia-
tion is very small too. The worst percentage of success is At% = 20, which is ob-
tained for the problem ‘u20’ with m = 3. HA obtains 100% success only for 20 of
42 test problems. Moreover, there exist two problems, ‘funk’ with m = 2 and ‘r20’
with m = 3, where the At% values are only 2.5. For problems ‘g323’ and ‘hw21’
(with m = 3) the percentage of success obtained by HA is slightly higher than the one
achieved by MEAL. However, the average relative error (f ∗) and the s.d. are smaller for
MEAL for these problems. On average, MEAL obtains 88% success at finding the min-
imum relative error, while HA achieves 77% success. The computing time is the same
for both algorithms. Therefore, it is possible to conclude that MEAL is more reliable
than HA.
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Table 3

Comparison of algorithms: reliable runs

Data Av(t) MEAL HA

min f ∗ f ∗ s.d. f ∗ At% min f ∗ f ∗ s.d. f ∗ At%

m = 2

u8 3.98 0.2569 0.2569 0.0000 100.0 0.2569 0.2569 0.0000 100.0

u12 10.23 0.3167 0.3167 0.0000 100.0 0.3167 0.3167 0.0000 100.0

u16 21.28 0.3439 0.3439 0.0000 100.0 0.3439 0.3440 0.0001 92.5

u20 40.80 0.3595 0.3595 0.0000 100.0 0.3595 0.3596 0.0002 55.0

r8 4.20 0.2825 0.2825 0.0000 100.0 0.2825 0.2825 0.0000 100.0

r12 11.28 0.3300 0.3300 0.0000 100.0 0.3300 0.3300 0.0001 97.5

r16 23.38 0.3525 0.3525 0.0000 100.0 0.3525 0.3527 0.0002 60.0

r20 43.25 0.3657 0.3657 0.0000 100.0 0.3657 0.3661 0.0003 20.0

c8 3.35 0.2245 0.2245 0.0000 100.0 0.2245 0.2245 0.0000 100.0

c16 22.70 0.2965 0.2965 0.0000 100.0 0.2965 0.2966 0.0002 95.0

g211 11.45 0.1293 0.1293 0.0000 100.0 0.1293 0.1293 0.0000 100.0

g213 8.18 0.2711 0.2711 0.0000 100.0 0.2711 0.2711 0.0000 100.0

g221 59.43 0.1868 0.1868 0.0000 100.0 0.1868 0.1868 0.0000 100.0

g223 67.65 0.2966 0.2966 0.0000 100.0 0.2966 0.2966 0.0000 92.5

ru1 4.03 0.1096 0.1096 0.0000 100.0 0.1096 0.1096 0.0000 100.0

hw12 4.45 0.0000 0.0000 0.0000 100.0 0.0000 0.0000 0.0000 100.0

uh1 8.68 0.0825 0.0825 0.0000 100.0 0.0825 0.0825 0.0000 97.5

hw21 10.10 0.0497 0.0497 0.0000 100.0 0.0497 0.0497 0.0000 100.0

ru2 31.93 0.0518 0.0518 0.0000 42.5 0.0518 0.0518 0.0000 35.0

cola 6.85 0.1675 0.1676 0.0002 67.5 0.1675 0.1676 0.0002 35.0

funk 15.93 0.2275 0.2282 0.0013 75.0 0.2282 0.2327 0.0022 2.5

m = 3

u8 7.35 0.0992 0.0992 0.0000 100.0 0.0992 0.0992 0.0000 100.0

u12 27.53 0.1874 0.1874 0.0000 100.0 0.1874 0.1874 0.0000 100.0

u16 70.68 0.2243 0.2243 0.0000 100.0 0.2243 0.2244 0.0004 87.5

u20 134.03 0.2455 0.2457 0.0002 20.0 0.2455 0.2460 0.0004 15.0

r8 11.90 0.1250 0.1250 0.0000 100.0 0.1250 0.1250 0.0000 100.0

r12 40.75 0.2013 0.2013 0.0000 100.0 0.2013 0.2013 0.0000 100.0

r16 85.93 0.2321 0.2321 0.0000 100.0 0.2321 0.2322 0.0003 72.5

r20 177.00 0.2505 0.2506 0.0001 30.0 0.2505 0.2511 0.0005 2.5

c8 8.25 0.0000 0.0000 0.0000 100.0 0.0000 0.0000 0.0000 100.0

c16 68.55 0.1590 0.1590 0.0000 100.0 0.1590 0.1590 0.0000 100.0

g311 16.03 0.0906 0.0906 0.0000 100.0 0.0906 0.0906 0.0000 100.0

g313 27.15 0.1298 0.1298 0.0000 100.0 0.1298 0.1298 0.0000 100.0

g321 239.08 0.1610 0.1610 0.0000 100.0 0.1610 0.1613 0.0005 80.0

g323 268.13 0.2284 0.2285 0.0003 45.0 0.2284 0.2293 0.0023 60.0

ru1 12.35 0.0188 0.0188 0.0000 100.0 0.0188 0.0188 0.0000 100.0

hw12 15.65 0.0000 0.0000 0.0000 100.0 0.0000 0.0000 0.0000 100.0

uh1 26.85 0.0356 0.0356 0.0000 100.0 0.0356 0.0359 0.0007 82.5

hw21 41.50 0.0183 0.0183 0.0001 77.5 0.0183 0.0184 0.0002 92.5

ru2 271.80 0.0243 0.0244 0.0001 70.0 0.0243 0.0245 0.0002 55.0

cola 21.10 0.0676 0.0684 0.0010 37.5 0.0676 0.0688 0.0017 17.5

funk 57.35 0.1074 0.1085 0.0009 27.5 0.1074 0.1099 0.0021 10.0
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5. Conclusions

In this paper, multidimensional scaling was considered. The essential part of this tech-
nique is optimization of an objective function with many adverse optimization properties.
The objective function has many local minima and it is not differentiable everywhere.
Usually, the Euclidean distances are used in the definition of the objective function. How-
ever, in the present study, the city-block distances are considered, since the obtained in-
formation could be more useful for experts. Multidimensional scaling with the city-block
distances is more difficult since the objective function can be non-differentiable at a min-
imum point. Recently, two algorithms have been proposed to cope with this hard-to-solve
optimization problem: GENSSCAL (Vera et al., 2007) and HA (Žilinskas and Žilinskas,
2008). GENSSCAL is based on a multivariate randomly alternating simulated annealing
procedure with permutation and translation phases. HA is a bi-level optimization algo-
rithm which combines evolutionary global search and convex quadratic programming.

Any global optimization algorithm must be able to find the global optimum in the
presence of many deceptive optima. Time should thus be spent on discovering new and
promising regions rather than exploring the same region multiple times. In this study,
a new algorithm with this aim is introduced: an evolutionary multimodal optimization
algorithm called MEAL. A comprehensive computational study has been carried out to
compare MEAL, GENSSCAL and HA. The computational studies show that, in similar
CPU times, the results obtained by MEAL are better than those obtained by both GENSS-
CAL and HA. Furthermore, with a suitable parameter setting, it is able to obtain 100%
success for the majority of the test problems (32 out of 42). When this is not the case, the
standard deviation (s.d. f ∗) is very small, which shows that the algorithm is robust.

In the future, we plan to design a parallel version of MEAL able to obtain solutions
with higher quality using less CPU time.
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Daugiamodalus evoliucinis algoritmas daugiamatėms skalėms su
miesto kvartalo atstumais

Juana López REDONDO, Pilar Martínez ORTIGOSA, Julius ŽILINSKAS

Šiame straipsnyje nagrinėjamos daugiamatės skalės su miesto kvartalo atstumais. Šiam metodui re-
alizuoti reikalingas tikslo funkcijos su daug lokali ↪uj ↪u minimum ↪u tašk ↪u ir galimu nediferencijuoja-
mumu minimumo taškuose optimizavimas. Tyrimo tikslas yra sukurti greit ↪a ir efektyv ↪u globaliojo
optimizavimo algoritm ↪a, peržvelgiant↪i vis ↪a paieškos srit↪i ir randant↪i gerus sprendinius. Siekiant
išvengti stagnacijos bloguose lokaliuosiuose minimuose, daugiamodalinis evoliucinis algoritmas
yra naudojamas globaliajam optimizavimui. Dalimis kvadratinė mažiausi ↪uj ↪u kvadrat ↪u tikslo funkci-
jos su miesto kvartalo atstumais struktūra yra išnaudojama lokaliajam pagerinimui. Pasiūlytas al-
goritmas yra palygintas su literatūroje aprašytais algoritmais. Nuodugniu skaičiuojamuoju tyrimu
parodyta, kad pasiūlyto algoritmo rezultatai yra geriausi. Algoritmas su priderintomis parametr ↪u
reikšmėmis randa global ↪uj↪i minimum ↪a su didele tikimybe.


