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Abstract—Driver fatigue and stress significantly contribute to 

higher number of car accidents worldwide. Although, different 

detection approaches have been already commercialized and used 

by car producers (and third party companies), research activities 

in this field are still needed in order to increase the reliability of 

these alert systems. Also, in the context of automated driving, the 

driver mental state assessment will be an important part of cars in 

future. This paper presents state-of-the-art review of different 

approaches for driver fatigue and stress detection and evaluation. 

We describe in details various signals (biological, car and video) 

and derived features used for these tasks and we discuss their 

relevance and advantages. In order to make this review complete, 

we also describe different datasets, acquisition systems and 

experiment scenarios.  

 
Index Terms—driver fatigue, driver stress, traffic accident, 

physiological signals, multimodal features 

 

I. INTRODUCTION 

VERY year, more than million injury car accidents happen 

and more than 25 thousands of people die on European 

roads [1], [2]. The World Health Organization (WHO) states, 

that in 2016 (the newest available data) 1.35 million people 

worldwide died during traffic accidents [3] and 20-50 million 

people are injured each year [4]. An outlook for the future is not 

optimistic - traffic injuries will be more common cause of death 

by 2030 (now it occupies the 8th place and will move up on the 

7th place) [3], [5]. Fatigue, drowsiness and sleepiness caused 

between 0.6-22 % of all injury crashes according to Road 

Safety Annual Report 2017 [6] published by Organisation for 

Economic Co-operation and Development (OECD). The 

percentage varied depending on the country and methodology 

(e.g. accident analysis, survey) or used database (e.g. official 

police statistics, in-depth accident studies). The percentage of 

fatal crashes caused by fatigue can reach up to 30 %. Reported 

percentage differs state to state, because it can be difficult to 
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figure out whether fatigue played role in an accident. 

Nevertheless, these numbers can be underestimated. In [6] there 

is noted that fatigue-caused crashes are mostly single-car 

crashes. With accidents, socio-economic costs (including e.g. 

rehabilitation, healthcare, material damages, lost productivity 

compensation) of 120 billion EUR per year are connected [4], 

[7]. WHO reported that traffic accidents cost most countries 

3 % of their gross domestic product. 

Fatigue belongs to one of five fatal driving behaviors [8]. 

Fatigue can be caused by lack of sleep, long-time driving, 

driving at night, monotonous driving, drugs, health problems, 

overwork, vibrations, other traffic participants, state of roads, 

passengers, driving under time pressure, driving in unknown 

environment [9], [10], [11]. Fatigue is strongly influenced by 

inter-individual variability [12]. In the context of driver 

research, a trait called fatigue proneness has been described 

[13], [14]. Apart from that, several personality-related features 

and constructs have shown a significant predictable relation to 

driver fatigue, such as lower vitality, locus of control and 

anxiousness [15], and aggressiveness [16]. Just like personality 

traits, individual states and moods are also associated with the 

onset of driver fatigue, e.g. anger, inertia, tension, and hedonic 

tone [15], [16]. Also, some groups of drivers are at higher risk 

- people under 25 and over 50 years, shift workers, males, and 

professional drivers [11]. Fatigue as a general term includes 

sleepiness [10]. Sleepiness is a need to sleep whereas fatigue is 

the need to have a rest (not necessarily to sleep) [10]. The 

irritability, sluggishness, decreasing of concentration and 

slowness, yawning, heavy eyes, daydreaming, impatience are 

early signs of fatigue [10], [18]. Fatigue also slows down 

(prolongs) reaction time, affects judgement, reduces vigilance 

and causes microsleep [18]. The fatigue on the road can be 

partially suppressed by stopping and taking a short nap, 

drinking a coffee or energy drink, airing the car, listening to 

music [17]. The possibilities of fatigue reduction or 

modification depend in a certain degree on the source of fatigue 
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and its characteristics [20]. If the person is already fatigued, the 

only proper solution is sleep [18]. 

Stress while driving could have a number of causes – 

including cognitive, emotional and physiological responses not 

only to some traffic events but also to the specific life situation. 

There has been a number of studies shows the role of driver 

stress as a factor increasing accident risk (e.g. [162], [163], 

[181], [182], [183], [184]). The hypothesis that stress and 

related psychological states elevate crash risk was tested by 

Legree et al. [181]. The results demonstrate strong relationships 

between emotionally disturbing events and related states with 

driver at-fault crash status. Emotional stress as a result of 

divorce in relation to the violation and crash rate was analyzed 

by McMurray [182]. People involved in divorce process have 

double accident rate. Increasing accident risk connected with 

the personal responses to the stressful life events (as marital 

separation or divorce, child leaving home, partner 

hospitalization) was proved [183].  

According to the theory of allostatics [24], stress can be 

defined as a complex and at the same time non-specific reaction 

of the organism including both physical expressions and mental 

as well as emotional experience. The aim of the reaction is to 

adapt physiological and behavioral reactions to the 

requirements of the environment and re-establish the balance 

(so called allostasis). Stress reaction is related to the activity of 

autonomous nervous system (sympathicus, parasympathicus), 

changes of which can be tracked by biosignals and derived 

features [21]. Specifically, mental stress is connected to activity 

of sweat glands [22], heart activity, blood pressure (BP), 

respiration rate [23] and many others. Driver stress can be 

caused by many stressors such as: mood changes, biorhythm, 

fatigue, boredom, disease, drugs, traffic (e.g. busy city [26]), 

weather, night driving, problems in job/family, workload [21], 

[27], [9]. In spite of the possibility to introduce a list of the most 

frequent stressors in drivers or according to the classical 

theories [28], a high inter-individual variability is typical for the 

start of the stress reaction [29], [13]. Neuroticism [30], 

aggressiveness, and dislike of driving [13] are among stable 

personality features taking part in the start and character of the 

stress reaction. The inter-individual variability in the stress 

reaction is also influenced by the subjective importance 

attributed to the stressor in the context of the given situation as 

well as the length of the period during which allostatic functions 

of the brain are activated (so called allostatic load). 

Consequences of the stress reaction resolved by operational 

reactions with the purpose of re-establishing the allostasis differ 

from the consequences of the stress reaction allostatic load of 

which is accumulated on the background [32]. Stress may 

negatively impact on decision making, performance, 

awareness, distance judging, concentration [21], [9]. However, 

the importance of the non-linear (U-shaped) relation between 

the impacts of the stressors and the development of negative 

stress consequences is considered [33]. While both U-tops are 

related to the so called distress (representing the lack of or the 

over-stimulation by the stressors), the U-basis is connected to 

an optimum rate of stimulation called eustress. Characteristics 

of the complex eustress reaction are considered as positive 

because they cause e.g. improved brain metabolism [34] or 

improved immunity and executive functions [35], [36] and can 

also be considered a kind of biosignals.  

The topics related to drivers’ fatigue and stress detection are 

still challenging which confirms number of publications and 

reviews during last decades, e.g. [9], [11], [17], [37]. Also car 

manufacturers are producing different cockpit fatigue detection 

systems and assistive technologies as the road safety is one of 

the priorities. Fatigue monitoring is also important in specific 

applications, e.g. transport of dangerous vehicles [19]. 

This review is aimed at different aspect of driver’s fatigue 

and stress assessment with the focus on features extracted from 

acquired data. Section II introduces available datasets related to 

driving and also selected non-driving physiological datasets 

related to stress or fatigue. Section III describes different types 

of data – vehicle data, physiological signals and features, and 

also driver behavior-related data. Experiment scenarios are 

described in Section IV. Few remarks about method used in 

mass-produced cars are noted in Section V. Discussion and 

Conclusion summarize this paper in Sections VI and VII, 

respectively.  

 

II. TEST DATABASES 

There is currently no freely available database containing 

complex driver and vehicle data along with proper annotations 

of stress and/or fatigue. The ideal database should contain 

biosignals (ECG, PPG, respiratory signal, EDA, brain activity, 

body temperature, and blood pressure), vehicle data (utilization 

of the acceleration and brake pedals, the pressure on 

acceleration pedal, turning the steering wheel) and 

stress/fatigue rating. However, there are datasets from different 

research groups, which contain various physiological signals, 

videorecordings and vehicle data and are available for other 

researches in order to stimulate research in this field. Here we 

briefly describe the datasets which are commonly used for 

driver’s stress and fatigue analysis. Furthermore, stress and 

fatigue related features can be analyzed also in general dataset, 

not related to driving. Therefore, we start with description of 

four databases with data from drivers and continue with seven 

databases unrelated to driving, but useful for stress/fatigue 

analysis. 

Stress Recognition in Automobile Driver database 

(DRIVEDB) [38] is available from PhysioNet [39]. This 

database includes electrocardiogram (ECG), electromyogram 

(EMG) measured on right trapezius, respiration, and 

electrodermal activity (EDA) measured on the hand and foot 

(EDA is sometimes ambiguously referred to as galvanic skin 

resistance or galvanic skin response, GSR; for the sake of 

clarity, we will use the term EDA in this text). However, a 

major limitation of the DRIVEDB is that the stress ratings are 

not publicly available. The article about this database has 673 

citations (September 2019) which indicates a great interest in 

the database with automobile driver data. 

Haouij et al. [40] created a database containing 14 driving 

datasets from 10 drivers. It includes EDA; skin temperature; 

heart rate (HR); respiration rate; luminosity; environment 
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temperature, pressure and humidity; sound. This database is 

publicly available. The authors have also annotations related to 

stress. 

Schneegass et al. [41] created a publicly available database 

of biological signals (EDA, temperature, ECG, derived HR, and 

heart rate variability (HRV)) and data from smartphone (GPS, 

brightness level, and acceleration). The data come from 10 

drivers. The annotations regarding workload are available as 

well. 

Taylor et al. [42], [43], [44] created The Warwick-JLR 

Driver Monitoring Dataset focused on different workload effect 

monitoring. The biological part of the database contains 13 sets 

of ECG and EDA signals and their derivatives - heart rate, heart 

rate variability, skin conductance level, frequency of EDA 

responses and action labels. The vehicle data part contains 8 

sets each of 189 signals including steering wheel angle, pedal 

positions and speed. The headings of the signals are available 

on request. 

The following datasets are not related to drivers, but contain 

complex data from subjects during stress episodes. These are 

the Non-EEG (Non-electroencephalographic) Dataset for the 

Assessment of Neurological Status (Non-EEG) [45], 

ASCERTAIN Dataset [46], Database for Emotion Analysis 

using Physiological Signals (DEAP) [47], Multimodal 

Database for Affect Recognition and Implicit Tagging 

(MAHNOB-HCI) [48], MEG-Based Multimodal Database for 

Decoding Affective Physiological Responses (DECAF) [49], 

Stress Level and Emotional State Assessment Database 

(SLADE) [50] and Dataset for Affect, Personality and Mood 

Research on Individuals and Groups (AMIGOS) [51]. 

The Non-EEG database contains EDA, acceleration, HR, 

temperature and arterial oxygen level (SpO2) from 20 healthy 

subjects. All of these signals were captured on the wrist. This 

database contains also the neurological status of all subjects in 

every moment. The neurological status can be relaxation (20 

minutes for each subject), physical stress (5 minutes for each 

subject), mini-emotional stress (40 seconds for each subject), 

cognitive stress (3 minutes for each subject) and emotional 

stress (6 minutes for each subject). This database was used to 

analyzing multimodal data in studies [52], [53], [54]. Non-EEG 

database is freely available. 

ASCERTAIN Dataset [46] contains EDA, ECG, 

electroencephalogram (EEG) and facial activity data from 58 

subjects. All subject watched 36 videos (mean length 80 

seconds) to evoke different emotional states. Emotional self-

ratings is available from each subjects after each video. Dataset 

contains also personality scores for the Big 5 Personality traits 

to examine the impact of personality differences on affect 

recognition. Subramanian et al. [46] analyzed this database. 

They predicted emotional self-ratings and the Big 5 Personality 

traits from measured physiological signals. This database was 

also used in studies [55], [56]. The ASCERTAIN Dataset is 

available on request. 

DEAP contains GSR, blood volume pressure, respiration, 

skin temperature, EMG, EOG and EEG. In total, 32 subjects are 

included. Emotions were induced by watching 40 one-minute 

videos. This dataset is publicly available [47]. 

MAHNOB-HCI contains EEG, videos of face and body, eye 

gaze and audio signal for 27 subjects. Emotions were induced 

by watching 20 videos. The database is available to the 

academic community [48]. 

DECAF contains magnetoencephalogram (MEG), near-

infra-red (NIR) facial videos, EOG, ECG and EMG. In total, 30 

subjects are included. Emotions were induced by watching 40 

one-minute videos and 36 movie clips. The database is 

available on request [49]. 

SLADE contains EEG, ECG, skin temperature, and GSR. 

Emotions were induced by watching one-minute videos [50]. 

This dataset is not publicly available. 

AMIGOS contains EEG, ECG, GSR, and full-body and 

depth videos for 40 subjects. Emotions were induced by 

watching 16 short videos and 4 long videos. The dataset is 

publicly available [51].  

III. STRESS AND FATIGUE DETECTION METHODS 

Detection and classification of stress and fatigue usually 

consists of five steps [21], [57].  

1. Data recording - in this step, various signals from vehicle 

behavior (e.g. steering wheel angle, lane deviation), over the 

most popular physiological signals (e.g. ECG, EMG, EDA) to 

data of driver behavior (e.g. video record from on-board 

camera, eye tracker) are measured. These three groups of 

signals are described in sections 3.1, 3.2 and 3.3 in detail. For 

acquisition, various mass-produced as well as experimental 

devices are used as described in section 3.5. The signals can be 

measured on diverse body parts. Some databases of these 

signals are available to scientists as well, more details can be 

found in section 2.  

2. Preprocessing of the signals - usually includes filtration of 

various types of noises. In [22] it includes also 4-stage 

algorithm to distinguish between valid and noisy data. Only 

valid data are used for further analysis.  

3. Feature extraction - features can be extracted in various 

domains (time, frequency, time-frequency) using linear or 

nonlinear methods. Sometimes also normalization of features is 

used to reduce inter-driver variance as in [22].  

4. Feature selection and reduction - increases the effectivity 

and accuracy of classification and decreases computation time 

and energy costs.  

5. Classification - is the last step to predict the level of stress 

or drowsiness of the driver. 

These steps are slightly different if deep learning approaches 

are used (steps 3 to 5 are merged). 

Usually, various sensors are used for data collection and thus 

more features are used for more robust and accurate detection 

and classification of stress and fatigue levels [9]. On the other 

hand, such system can be less comfortable for the driver and 

thus influences the driver’s comfort and increases 

computational time of subsequent processing and analysis. 

Each parameter has its pros and cons and therefore it is 

encouraged to use their combination [17]. 

A. Vehicle Data 

Vehicle movement and vehicle control are commonly used 
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indicators for fatigue detection. Steering or lane-keeping 

measurements are mostly used. Other parameters such as 

utilization of the acceleration and brake pedals or the pressure 

on acceleration pedal [37], [58], [179], yaw rate [174], [189] 

monitoring the road via camera [9], and GPS localization could 

be also used for driver state monitoring.  

Steering behavior is influenced by the driving task 

characteristics, particularly road infrastructure (e.g. curvature, 

road quality). Even during driving without stress or fatigue 

drivers constantly perform small, smooth driving micro-

corrections. During fatigue the frequency of steering wheel 

micro-corrections is reduced [59], [60], [61]. A wide variety of 

steering-based features are used for driving behavior analysis, 

namely: steering wheel angle (SWA) [190] or movement 

(SWM) [62], [176], steering wheel pressure [27], steering 

reversal rate (SRR) [63], [64], [176] and mean and standard 

deviation of small steering reversal rate [176], frequency of 

steering error [65], steering exceeding threshold [66] and many 

more. These features reflect a driver’s ability to control the 

steering wheel (and the car) in a stable manner. For the 

elimination of lane changes, Otmani et al. [67] used as a SWM 

indicator only angles between 0.5° and 5°. In [66] an increase 

of SWM amplitude occurred as a function of the time-on-task 

effect, the frequency of smaller SWM (from 1° to 5°) decreases 

significantly over time (P < 0.001) and the frequency of large 

SWM ranging from 6° to 10° increases (P < 0.001). These 

results show that frequency of large SWM is suitable for fatigue 

detection. Using SWA it was possible to detect drowsiness at 

least 6 s prior to a fatigue-induced lane departure [177]. 

Desmond et al. [68] described that fatigue influences steering 

performance and lateral position on straight road sections much 

more than in curved road sections. Bekiaris et al. [173] also 

stated that in Daimler Chrysler there was tested an algorithm 

for driver drowsiness detection using longitudinal speed data, 

lateral position and SWA. The algorithm was validated in field 

and simulator studies. Dingus et al. [189] proved that 

YAWMEAN (mean yaw deviation calculated over a three-

minute interval) and YAWVAR (yaw deviation variance 

calculated over a three-minute interval) are affected by driver 

fatigue and could be used as an indicator of fatigue detection. 

During drowsy driving the yaw rate increases or decreases by 

more than 2,5°/s2 [185]. Li et al. [186] verified in real road 

driving test, that fatigue identification using SWA and yaw 

angle time series has higher robustness and reliability.  

Especially large speed variations - excessive or insufficient 

speed according to the given speed limit and running-off-road 

incidents were defined as indices for occurring drowsiness in a 

Campagne et al. [187] driving study. 

Lane deviation of the vehicle is widely monitored and used 

as a variable for fatigue analysis (e.g. [58], [59], [63], [65], [66], 

[69], [70]). Standard deviation of lane position (SDLP) can 

reflect a driver’s ability to maintain driving at a safe position to 

avoid unintentional lane departure or lane crossing. Attwood et 

al. [188] use combination of lane position median/range and 

accelerator position reversal for a multivariate prediction model 

of driver fatigue. In spite of relative easiness of SDLP 

measurement and evaluation, there are some difficulties, which 

make this feature unreliable. As stated in [71], [72] SDLP or 

lane crossing could be also influenced by alcohol or distraction, 

which is the main disadvantage of these indicators. Sahayadhas 

et al. [37] summarize that many studies stated that vehicle-

based only measures should not be used as a reliable fatigue 

predictor. Zhang et al. [73] confirmed that lane position and 

steering features are inconsistent. Krajewski et al. [74] describe 

large inter- and intra-individual differences in fatigued driving 

patterns, based on literature review. 

Reliability of lane position data is also dependent on the lane 

edge marking detection accuracy, which could be influenced by 

weather such as rain or snow covering. The detection system 

could also fail due to poor quality or inconsistency of lane 

markings. The value of these indicators could be also 

influenced by road geometry. 

As evidenced from the AWAKE project [173] – the most 

promising approach is the combination of physiological and 

behavioral (traffic task related) parameters. The hypovigilance 

diagnosis module for analysis of fatigue in real-time is based on 

combination of vehicle data (lane tracker, steering wheel, 

gas/brake) and driver characteristics (eyelid, steering grip). The 

big advantage of using vehicle data is the contactless detection 

and absence of driver discomfort. On the opposite side there is 

the influence of vehicle type and weather/driving condition 

[174]. 

 

B. Physiological Features 

Physiological features are the most important ones, because 

they are robust, reliable and directly connected with the 

physical and psychical state of the driver [9]. Moreover, the 

acquisition is not directly disturbed by artefacts due to the 

changing weather conditions or lighting [9] unlike camera-

based ones. 

The sensors which are used for sensing of physiological 

signals should be as much comfortable as possible [57]. They 

should be noninvasive of course. Some sensors can be 

integrated in steering wheel or seat [75]. The sensors should not 

influence or limit the behavior of the driver. The stress event 

manifests in the physiological signal with some delay 

depending on the measured signal [57]. These delays are 

insignificant with respect to overall fatigue or stress detection 

system but can be significant in some critical situations. 

Furthermore, some fluctuations of feature values are not 

necessarily connected with stress [57]. They can be connected 

with emotions, and other physical or psychical states of the 

driver [58]. It is favorable to combine more physiological 

measures because some of them (e.g. EDA) vary among people. 

In the next subsections we shortly describe physiological 

features based on (1) heart rate, (2) photoplethysmography and 

electrocardiography, (3) respiration, (4) electrodermal activity, 

(5) brain activity, (6) body temperature, and (7) blood pressure. 

 

1) Heart Rate 

It has been shown elsewhere that HR increases during stress 

[26]. HRV signal is usually obtained from ECG signal using 

filtering at the preprocessing stage followed by QRS detection 
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[26], [21], [57]. Advanced processing is also used, e.g. integral 

pulse frequency modulation model [77] with time varying 

threshold and the smoothed pseudo Wigner-Ville distribution 

(details are in [78]). Besides ECG, the HR and HRV signal can 

be also obtained from photoplethysmogram (PPG) [79], [80]. 

Photoplethysmography can be applied in non-contact manner 

(based on digital cameras) or a contact manner (usually finger 

or earlobe sensor). In case of PPG signal, preprocessing is 

necessary as well and typically includes filtering, squaring and 

differentiation [80]. Thereafter, PPG peaks are detected [80]. 

HRV features are extracted from HRV signal in various 

domains (time, frequency, time-frequency) using linear or 

nonlinear methods [21], [27]. 

a) Time Domain HRV Analysis 

The statistical time domain features have been proved to be 

suitable for stress detection [79]. The most relevant features are: 

maximum of RRI (RR interval); minimum of RRI; median of 

RRI; mean of RRI; HR mean; HR standard deviation (STD); 

STD of the RR (SDNN) - two variants are used: (i) SDNN index 

(SDNNi) where STD is calculated from RR intervals in 5-min 

segments and then mean STD is calculated, and (ii) SDANN 

where mean RRI in each segment is calculated at first and then 

one STD is computed; root mean square of successive 

differences of the RRI (RMSSD); the number of successive 

differences greater than 50 ms (NN50); the percentage of total 

intervals that successively differ by more than 50 ms (pNN50); 

the percentage of total intervals that successively differ by more 

than 20 ms (pNN20); difference between maximal and minimal 

RRI; and median absolute deviation [26], [81], [82], [21], [22], 

[77], [79]. 

The group of geometrical features includes HRV triangular 

index and triangular interpolation of RR interval histogram 

(TINN) [21]. In [57], Heart Rate Variation from Baseline 

(HRvB) feature is proposed as a difference between current 

heart rate and a baseline calculated within averaging window.  

b) Frequency Domain Features 

Frequency domain features can be derived from Lomb 

periodogram [81]. From the power spectra many features, 

relevant for stress detection, can be extracted. This group covers 

mainly absolute spectral powers in different frequency bands - 

aVLF (very low frequency band), aLF (low frequency band) 

and aHF (high frequency band) and TP (total power); 

percentage of the sum pLF and pHF; normalized values nLF 

and nHF; peak frequencies pVLF, pLF, pHF [26], [27], [81], 

[82], [21], [22], [77], [79]. Rigas et al. [164] uses ratio of VLF 

energy to total signal energy, ratio of LF energy to the total 

signal energy minus VLF energy, ratio of HF to the total signal 

energy minus VLF energy, LF/HF ratio, and spectrum entropy. 

HF is connected with parasympathetic activity whereas LF 

reflects activity of sympathetic nervous system [83]. The 

spectral centroid is also used in [22]. Different combinations 

can be used in order to locate the stress period. For example, the 

value of LF/HF feature significantly increases during stress 

period [26]. De Nadai et al. [27] showed that during driving this 

ratio also increases near the critical points such as crossroads 

and traffic lights. 

c) Time-frequency Domain Analysis 

Typically wavelet transform (WT) or short time Fourier 

transform (STFT) are applied on HRV signal and consequently, 

spectral parameters are extracted. Munla et al. [21] extracted 

VLF, LF, and HF features. 

d) Non-linear Analysis 

This group includes the following advanced features: sample 

entropy [21]; detrended fluctuation analysis DFA-α1 and DFA-

α2 [21]; STD of the short-term and long-term RR interval 

variability (SD1, SD2, respectively) derived from the Poincaré 

plots [21]. 

HR and HRV are one of the most significant indicators of stress 

[27], [57], [76]. The original signal is inexpensive and not 

difficult to record [75] and can be relatively easily measured 

inside the cockpit.  

 

2) PPG and ECG non-HR Features 

The features extracted directly from PPG and ECG signals 

rather than HRV signals, are also used. These are related mainly 

to magnitude, energy and signal entropy. 

In [22], the authors use original PPG with DC (direct current) 

component to estimate DC amplitude of PPG, and filtered PPG 

(without DC) to calculate mean of pulse amplitudes, ratio of 

these two features, STD of pulse amplitudes, STD of 

amplitudes differences between pulses, difference between 

maximal and minimal amplitude, mean of time from PPG 

valley to its peak (rise time), STD of rise time, mean of time 

from PPG peak to its valley (fall time), STD of fall time, mean 

of ratio rise/fall time, STD of ratio rise/fall time, PPG signal 

energy. Also range of frequencies containing most of the energy 

(bandwidth) and Shannon entropy are calculated, using 

equation (1) and (2), respectively [22], 

 

                     𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
1

2𝜋
√

∑ (𝑋(𝑖)−𝑋(𝑖−1))2𝑁
𝑖=2

∑ 𝑋(𝑖)2𝑁
𝑖=2

, (1) 

 

          𝑆ℎ𝑎𝑛𝑛𝑜𝑛 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  − ∑ (𝑋(𝑖) ⋅ 𝑙𝑜𝑔2𝑋(𝑖))𝑁
𝑖=1 , (2) 

 

where X(i) is the i-th sample of PPG signal and N is the length 

of PPG signal in samples. 

Using both PPG and ECG signals, another feature - pulse 

arrival time (PAT) - can be extracted [79]. 

Jiang et al. [84] calculated Kolmogorov entropy (level of 

system chaos) from ECG signal after lifting WT and showed 

that this entropy decreases with increasing fatigue. 

Singh et al. [81] extracted 6 statistical features for stress 

assessment: mean, energy, time duration, bandwidth, product of 

time duration and bandwidth, dimensionality; and five features 

related to morphology: peak height, rise time, fall time, cardiac 

period and instantaneous HR. 

Keshan et al. [85] used 14 features extracted from ECG 

signal which are based on the ECG signal annotations - average 

QRS, RR, QQ, SS, QR, RS intervals, and others. These features 

were used for detection of stress level (3 states - low, medium, 
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high stress) with 88.24 % accuracy. 

Some of these non-HR features seem to have promising 

additional discrimination value. Therefore, if PPG or ECG 

signal is measured, these features should be considered for 

driver monitoring. 

 

3) Respiratory Features 

Breathing rate or respiratory rate is another significant 

indicator of stress [57] and drowsiness [58]. For the purpose of 

breathing rate estimation, contact and non-contact devices can 

be used.  

Devices from contact group such as chest/abdomen belts and 

temperature nasal probes are generally considered as less 

comfortable but more precise [58] than non-contact methods 

based mostly on digital cameras.  

Chest/abdomen belts are based on plethysmography 

principle [58]. Several features can be extracted from breathing 

rate signal. For example, in studies [38], [86] six parameters 

were estimated for stress evaluation. In the time domain the 

mean value and standard deviation of breathing rate could be 

easily evaluated by analysis of local maxima and minima in the 

signal. In frequency domain the spectral powers in different 

frequency bands (0-0.1 Hz, 0.1-0.2 Hz and 0.3-0.4 Hz.) are 

promising features for breathing assessment. Several features 

can be also extracted from inspiration and expiration dynamics. 

Inspiration and expiration duration, slope of the inspiration and 

expiration peaks and the angle formed by them were analyzed 

in connection with stress in study [87].  

The camera-based techniques include the preprocessing 

stage of acquired data using contrast improvement, filtering, 

image stabilization and elimination of flares from cars and 

outdoor public lights [58]. Then the respiratory related signal is 

extracted from region of interest (ROI) and the breathing rate is 

obtained after STFT as the mean of dominant frequencies [58]. 

Breathing rate sensing and estimation may be affected by 

anthropometric parameters, type of breathing 

(thoracic/abdominal), illumination, and clothing [58]. Thus, it 

is necessary to adjust the placement of the camera(s). 

Respiratory signal has a potential to be used as a source of 

additional features for stress and fatigue detection. 

Furthermore, it is possible to extract this signal from video-data, 

but with limited precision.  

 

4) Electrodermal Activity 

EDA is connected with autonomous nervous system, 

specifically with sympathicus [88], which influences activity of 

sweat glands. There exist two types of EDA signals - 

exosomatic and endosomatic [88], [89]. Commonly measured 

exosomatic is an impedance of the skin caused by sweating; in 

this case the source of constant current is used and the skin 

conductance changes are measured as a result of sweating [89]. 

Endosomatic EDA is measured by Ag/AgCl electrodes and in 

this case the electrical activity of nervous pulses which activate 

the sweat glands is measured; the skin potentials are constant 

and the measured current changes [89]. Skin conductance has 

two components - tonic (Skin Conductance Level, SCL) and 

phasic (Skin Conductance Response, SCR). SCL is connected 

with basic activity of sweat glands without any stimuli 

presented and is characterized by slow changes (from 10 s to 

tens of minutes) [89]. SCR changes faster with coming stimuli 

and lasts for a shorter period (typically 1 - 5 s) [89]. Please note 

that the same categorization may be applied to skin potential, 

dividing it to skin potential level (SPL) and skin potential 

response (SPR); see for example [90]. 

Different features can be extracted from EDA signal in order 

to evaluate stress and/or fatigue. Among others, two features 

were extracted from EDA signal in 10 s window in [22]: mean 

and standard deviation for stress, fatigue, drowsiness and 

normal state distinction. In [76] the EDA signal was used 

together with temperature and ECG filtered signals for stress 

detection (not in driver). EDA signal was filtered using 

Butterworth low pass filter with cut-off frequency of 5 Hz. Then 

it was separated into tonic and phasic components. Tonic 

component was obtained as a straight line which in 15 s window 

approximates EDA signal with the least-square error. Phasic 

component was calculated as a difference between filtered EDA 

and tonic component. From filtered EDA signal, tonic and 

phasic components several features were calculated, namely: 

mean, variance, difference between maximum and minimum 

(range), ratio of range to absolute mean, ratio of standard 

deviation to mean and thresholds for which 10%, 25%, 50%, 

75% and 90% of data values are smaller than these thresholds 

[76]. 

In [57] the authors use mean of the first absolute differences 

(MFAD) computed from EDA as in (3): 

 

             𝑀𝐹𝐴𝐷(𝑡) =
1

𝑀
∑ |𝑒𝑑𝑎𝑡(𝑘 + 1) − 𝑒𝑑𝑎𝑡(𝑘)|𝑘=𝑀

𝑘=1 , (3) 

 

where M is the size of the segment (500 samples). This signal 

is together with ECG used for stress detection in drivers.  

Affanni et al. [88] use endosomatic EDA as a single biosignal 

to reveal stress events. For this purpose, the adaptive filtration 

is done at first, then the Smooth Nonlinear Energy Operator 

(SNEO) was applied and this SNEO signal was used for stress 

event detection via thresholding. 

Taylor et al. [44] extracted two EDA features for workload 

evaluation - absolute value of the signal and number of spikes 

in the signal (frequency of EDA responses). 

Singh et al. [81] extracted six statistical features: mean, 

energy, time duration, bandwidth, product of time duration and 

bandwidth, dimensionality; and eight morphological features: 

peak rise time, peak amplitude, half-recovery time (time from 

the occurrence of the EDA peak to its half height), peak energy, 

average rise rate, average decay rate, percentage decay, number 

of EDA peaks (details are in [81]). 

EDA signal can be measured on feet and hands [9]. 

Measuring from wrist as reported in [22] may not be sensitive 

enough. Furthermore, EDA is sensitive to ambient temperature 

[17], which limits its application. Also, the hand movements (if 

measured on the wrist) [88] limit its application together with 

lagged response after the stimulus [75]. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

5) Brain Activity 

It has been shown that specific EEG features are associated 

with driver’s fatigue or stress and several approaches of EEG 

analysis have been developed over the past 15 years. Both, 

stress and fatigue are investigated with help of EEG signals. 

Borghini et al. [91] have evaluated EEG activities during a 

monotonous driving session in delta (0.5-3 Hz), theta (4-7 Hz), 

alpha (8-12 Hz) and beta (13-30 Hz) bands. Delta and theta 

activities proved to be stable over entire driving session. Slight 

decrease in alpha activity and a significant decrease in beta 

activity (p < 0.05) were observed. All these results, especially a 

significant decrease in beta activity, point to driver fatigue [91]. 

Simon et al. [92] have investigated EEG alpha spindles, 

defined as short narrowband bursts in alpha band, to assess 

driver fatigue under real driving conditions. Their algorithm 

was tested on simulated data and then this method was applied 

to real data acquired while driving in real traffic. Their results 

were compared with the performance of traditional EEG fatigue 

measures (i.e. alpha-band power). They found out that EEG 

alpha spindle parameters increase both fatigue detection 

sensitivity and specificity. Furthermore, alpha spindles are 

superior to EEG band power measures for assessing driver 

fatigue under real traffic conditions. 

In a study published in [93], authors measured 16-channel 

EEG signals, which were transformed into three spectral bands 

(theta, alpha and beta). Then 12 types of energy parameters 

were estimated. Based on Grey Relational Activity, the number 

of significant electrodes was reduced using Kernel Principle 

Component Analysis. The final evaluation model for driver 

fatigue was established using the regression equation based on 

the EEG data from two significant electrodes (Fp1 and O1). 

Current studies deal with EEG-based driver fatigue 

classification [94], [95], [96].  Study of Chai et al. [96] is 

focused on EEG-based driver fatigue classification among 

fatigue and alert states and its improvement. Their classification 

is based on autoregressive modeling as the feature extraction 

algorithm and sparse-deep belief networks (sparse-DBN) as the 

classification method. Their classification consists of two kinds 

of measurements, i.e. psychological (brief psychometric 

questionnaires) and physiological (video measurement of the 

face, EEG, eyetracking, etc.).  

Stress is also associated with specific EEG features as well 

as fatigue. One of the older non-driver study published by Haak 

et al. [97] discussed eye blinking artefacts in the brain activity 

with respect to stress. They correlated eye blink frequency with 

experienced stress. They observed higher frequency of eye 

blinks in stressful situation. Nevertheless, recent studies are 

focused on design and analysis of EEG-based features in order 

to characterize driver’s mental stress or workload. 

Car following test was used in [98] in order to discriminate 

between braking intention and normal driving. Simple time 

domain features (temporal average) from EEG signals were 

classified using support vector machine (SVM) and 

convolutional neural networks (CNN). They achieved averaged 

(seven participants) recognition of emergency braking intention 

almost 72 % for both classifiers. An attempt to characterize 

driving workload by EEG variations during specific tasks 

(turning left or right, U-turns, rapid acceleration, rapid 

deceleration, and changing lanes) is presented in [99] on group 

of 74 drivers in urban environment. Time features extracted 

from raw EEG signals were used. Halim and Rehan [100] 

published a study on subjects who underwent driving-related 

tasks in laboratory conditions. Several EEG features were tested 

– time domain (EEG average, standard deviation, 1st and 2nd 

differences etc.) and frequency domain (power in standard 

spectral bands). The driving-induced stress was detected with 

97.95% accuracy on 50 subjects. A complex experiment was 

conducted with electrical vehicle, which served as stressors 

[101]. Various data was acquired including EEG to identify 

stress from driving electrical vehicle. Information-theoretic 

framework was proposed to evaluate mutual information 

between physiological and operational data from car and GPS. 

Although acquisition and analysis of EEG is very useful 

method to describe brain activity (and also stress and fatigue), 

it is limited to laboratory conditions. In real driving conditions 

the acquired EEG signals are affected by noise and artefacts, 

which make them unusable for reliable analysis.  

 

6) Body temperature 

Body temperature is also connected with stress - the 

temperature decreases with increasing stress, because of worse 

peripheral perfusion [9]. It can be measured on specific place 

on the body or using a thermal camera. Using point sensors, 

body temperature is usually measured on driver's finger [9], 

forehead or ear [17]. More complex data could be obtained by 

thermal imaging. The common areas of interest are different 

regions on human face. The change of the nose temperature in 

time could be used for the stress evaluation. Engert et al. [102] 

proved the correlation between decrease of the nose tip 

temperature and other physiological parameters (e.g. HR, 

LH/HF) during the Cold Pressor Test and Trier Social Stress 

Test. The application for driver´s data both from simulator and 

real traffic was reported by Or and Duffy [103]. Decrease in the 

nose tip temperature was confirmed for the dataset from 

simulator. 

Anusha et al. [76] extracted seven different thermal features 

based on evaluation of thermograms of finger and wrist: mean 

temperature, minimum and maximum of temperature, its 

standard deviation, difference between maximum and 

minimum of temperatures (range), ratio of range to absolute 

mean and ratio of standard deviation to mean. These features 

were used with features from ECG and EDA (total of 61 

features) for detection of psychological stress. The use of 

physiological signals was proven as a sufficient for stress 

detection. 

Another usage of the thermal images is estimation of specific 

physiological parameters from small changes in video-

thermograms. Cardone and Merla [104] reviewed applications 

for estimation of cardiac pulse, breathing rate, cutaneous blood 

perfusion and sudomotor response and consequent using of 

these indirectly estimated physiological parameters in 

physiological and stress monitoring.  

The main advantage of temperature monitoring is the 

possibility of non-contact acquisition. Nevertheless, the main 
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disadvantage of the temperature measurement is its sensitivity 

to ambient temperature [17], particularly in a case of car air 

conditioning. Furthermore, the thermal imaging is relatively 

costly solution, due to high price of thermal cameras. 

 

7) Blood Pressure 

Many studies have examined the effect of the fatigue or stress 

on hemodynamic parameters. According to [105], where 142 

individuals participated in a study, there was no significant 

effect of the fatigue on BP between three fatigue level groups. 

Moreover, research suggested that neither HR is related to the 

fatigue level. However, even if these simple parameters are not 

fatigue dependent, stroke index and cardiac index derived from 

stroke volume and cardiac output are decreasing with 

increasing fatigue. The same study also tested stress effect on 

the HR and BP, concluding dependency of these parameters on 

the stress factor. In another study [106], chronic fatigue 

syndrome, which has currently no effective treatment, was 

examined. The patients suffering from chronic fatigue 

syndrome exhibited lower BP and also lower mean arterial 

pressure. Barendregt et al. [107] focused on relating BP with 

fatigue in patients with primary Sjogren’s syndrome (SS). In the 

group of 125 patients (49 with SS, 44 patients with rheumatoid 

arthritis and 32 healthy women), no statistic dependency was 

found between fatigue and BP. Finally, last study [108] 

examined effect of the fatigue on several physiological, 

biochemical, vision and psychological markers of 24 city bus 

drivers. Tests were made before and after 7 h of driving. This 

study found a slight dependency of the diastolic BP on the 

fatigue. 

Comparing to the fatigue, stress dependency is much more 

evident in BP. Because there is no study, which relates the 

driving-related stress to BP, we present two different studies, to 

show the usefulness of BP acquisition for stress detection.  

In a limited study [109] with 12 females, HRV and BP were 

examined as a reaction on a stress factor (participant must key 

in the six digits, which were presented on the screen, during 

4 s). BP was measured continuously during the experiment, 

showing a statistically significant dependency.  However, stress 

showed to be correlated with HR more than BP, whereas BP is 

more influenced by the local changes caused by muscles 

contractions. One of the largest studies [110] was designed to 

test whether it is possible to predict hypertension as a result of 

high BP response to stress factor at young age. The sample was 

large, counting more than 4100 people. One of the intermediate 

results consists of proving that each of the three different stress 

factors (cold pressor, star tracing and video game task) caused 

measurable change in systolic and diastolic BP.  

Because there is not a single type of stress, various stimuli 

might cause different stress reactions. In [111], researchers 

studied the effect of three different stress tasks (the cold pressor, 

a pornographic film, random electric shock) on the systolic and 

diastolic BP. Moreover, experiment participants were split into 

two groups, the first had possibility to avoid the stress agent, 

and the second one had not. Results showed that each of the 

stress factors ended with increased systolic and diastolic BP. 

However, systolic BP had larger absolute change and might be 

more dependent on the type of the stress factor. In one of the 

last study [112], which was directly connected to the drivers’ 

profession, researchers examined 34 male taxi drivers using a 

Holter ECG and Holter BP (with 30 minutes period). According 

to the results, taxi drivers showed higher systolic and diastolic 

BP while being at work. Afterwards, on the first day-off, both 

BP dropped (p < 0.05) and slightly increased the next day, 

which was also non-workday. Authors concluded that long duty 

taxi driving raised BP and increased further cardiovascular risk. 

From these studies we may conclude that there is no 

significant dependency of the BP on fatigue, but the stress is 

connected with an increase of the BP. The rate of an increasing 

is dependent on the stress type, but in general, all types of stress 

may be linked to the increase of the BP. However, response on 

the stress is more easily observable on the HR, with the same 

increasing mechanism connected with autonomous nervous 

system. Even if the fatigue cannot be connected with the higher 

pressure, more complicated hemodynamic parameters can be 

correlated with fatigue, like stroke index or cardiac index [105]. 

C. Driver Behavior 

The methods based on measuring of physical changes are 

nonintrusive, thus suitable and easily applicable for real driving 

condition analysis. Most behavioral metrics are measured based 

on facial expression (such as mouth or eye state analysis) or 

body movements (especially head or hand movements). For the 

purpose of driver behavior analysis, accelerometers (ACC) and 

video based techniques are commonly used. In order to analyze 

driver fatigue at night, infrared illumination was used in some 

studies [113]. 

Driver behavior features based on (1) facial expression, (2) 

eyetracking, (3) reaction time, and (4) body movements will be 

presented in this section. 

 

1) Facial Expression 

Facial expression can provide valuable information about 

driver status, including fatigue and drowsiness. Two main steps 

of facial expression recognition algorithms are extraction of 

features related to the face geometry and classification of 

expressions. In [114] entropy analysis was used for the 

extraction of salient face regions. Furthermore, Discrete WT 

(DWT) was performed to divide the input into frequency bands 

and transfer the fine details of expressions. To further 

performance improvement, Discrete Cosine Transform (DCT) 

was applied. Jabon et al. [169] applied a machine learning 

approach for prediction of minor and major accidents (on 

driving simulator) using various facial expression-based 

features merged with data from vehicle dynamic. There are also 

papers [170,171] where the authors applied facial expression 

analysis methods on video data from car cockpit, but without 

relation to stress or fatigue during driving.  

Besides parameters of eye behavior currently connected with 

fatigue analysis, the driver emotional state (including stress and 

fatigue) could be also estimated by analysis of some selected 

characteristic points on the face (eye corners, mouth corners or 

eyebrows). Panda et al. [175] described feature selection for 

analysis of driver drowsiness using eye movement to detect eye 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

opening. Among evaluated methods (Canny Edge, Local 

Binary Patterns, Gabor Filter Bank, etc.), Histogram of 

Oriented Gradients was the most accurate one. For the analysis 

of emotional state e.g. distance from eye to mouth or eyebrows 

or mouth curvature could be used [120]. 

Generally, facial expression analysis is recently a hot 

research topic with various applications. It can be expected that 

in connection with deep learning approaches, it will provide a 

valuable tool for driver fatigue and stress detection.  

 

2) Eyetracking 

Nowadays, the majority of eye-tracking methods is based on 

combination of the video-imaging and corneal reflection 

techniques. As stated in [121], attaching electrodes and 

biosignals measuring devices to the drivers for the purpose of 

fatigue monitoring would not be practical for the vehicle 

manufacturers, thus video-based eyetracking methods are 

considered as the only option of fatigue assessing.  

Eyetracking methods are commonly used to measure a view 

direction or eye movements relative to the head and allow 

monitoring, detecting and evaluating of visual sequences of 

drivers [122], [123], [124].  

Various features are used for fatigue quantification, e.g. 

percentage of eyes closure (PERCLOS), blinking duration 

(BD), blinking speed, saccadic movements, pupil diameter, 

gaze, and slow eye movements [58]. PERCLOS was proposed 

in 1994 as the proportion of time for which the eyelid remains 

closed more than 80 % within a predefined time period. It 

reflects slow eyelid closures rather than blinks. PERCLOS is 

used very often in driving studies dealing with fatigue detection 

in real environment as the most valid drowsiness measure (e.g. 

[119], [121], [125], [126], [127]). As stated in [128], PERCLOS 

showed the clearest relationship with performance on a driving 

simulator compared to a number of other potential drowsiness 

detection approaches including two EEG algorithms, a head 

tracker device, and two wearable eye-blink monitors. Bergassa 

et al. [117] showed high robustness of PERCLOS assessment - 

they obtained a total correct percentage of PERCLOS detection 

about 93.12 %. Dasgubta et al. [180] tested the algorithm for 

PERCLOS calculation also in nighttime condition. The 

algorithm was cross-validated using EEG signal. The system 

was found to be quite robust in terms of speed and accuracy. 

Another published parameters used for the fatigue or stress 

analysis are: PERSAC (percentage of saccadic movement), 

AECS (average eye closure/open speed) [119], GAZEDIS 

(gaze spatial distribution over time), BD, BF (blink frequency) 

[119], PerLPD (percentage of large pupil dilatation), etc. The 

relation between stress and GAZEDIS, AECS was analyzed in 

[129] - correlation between stress and GAZEDIS and PerLPD 

are positive, whereas between stress and AECS it is negative. 

As stated in [119], features related to the eye opening speed and 

PERCLOS perform the best potential for fatigue detection. The 

BD values are also related to the driver’s advanced drowsiness 

level, but the results are distorted by vertical looks to the 

dashboard recognized as blinks [119]. 

Eye tracking is already used in some cars for fatigue/alertness 

detection (e.g. SmartEye project). It can be expected that it will 

become a standard approach soon, also due to its relatively low 

cost. Furthermore, the advanced image processing approaches 

will probably lead to increase of robustness of this method in 

the near future.  

 

3) Reaction Time 

Reaction time of driver is one of the most important features 

describing the driver behavior. Older studies focused on driver 

fatigue and stress and their connection with prolonged reaction 

time of driver [66], [130], [131], [132]. According to 

conventional nomenclature of transport experts, driver reaction 

time consists of three main parts - visual, psychical and 

movement reaction time [133]. The first part of reaction time is 

visual reaction time, which is a time necessary for object (e.g. 

pedestrian) recognition. This part of reaction time ends at the 

moment of sharp fixation of the driver's eye on this object (TF), 

see Fig. 1. Psychical reaction time that ends at the moment of 

releasing accelerator (TA) follows. Movement reaction time 

ends at the moment of the first contact between right lower limb 

and brake pedal (TB). For all of the parts of driver reaction time, 

reference values were stated and they are used by the experts 

for decades. With the development of the new technologies and 

methods (e.g. eyetracking, EEG, EMG) it turns out that 

conventional division of reaction time could be stated in 

different way and its tabulated values can be defined directly 

from acquisition of driver’s biosignals as in Table I. 

In order to analyze reaction time more precisely, eyetracking 

methods are combined with electrical potential measurements. 

In laboratory conditions, the electrical potential measurements 

(EEG, EMG, ECG, HRV, etc.) are used especially for fatigue 

detection [134], [135]. These signals are used for verifying or 

calibrating of alertness systems frequently, typically EEG.  

TABLE I 
DIVISION OF DRIVER REACTION TIME, DETERMINATION OF VISUAL, 

PSYCHICAL AND PHYSICAL PARTS ACCORDING TO OLDER AND 

CONVENTIONAL NOMENCLATURE [133] 

 Duration (s) 

Lower 
limit 

(2%) 

Average Upper 
limit 

(98%) 

Visual reaction time of drivers 

(variants): 

a) direct view of the critical 
object 

b) view within 5 degrees 

c) view above 5 degrees  

 

 

0.00 
 

0.32 

0.41 

 

 

0.00 
 

0.48 

0.61 

 

 

0.00 
 

0.55 

0.7 

Psychical reaction time 0.22 0.45 0.58 

Movement reaction time  0.15 0.19 0.21 

Response of vehicle: 

- brake delay 

- braking effect 

Total response of vehicle 

 
0.03 

0.07 

0.10 

 
0.05 

0.15 

0.20 

 
0.06 

0.49 

0.55 

SUM of variants: 

a) direct view 
b) view within 5 degrees 

c) view above 5 degrees 

 

0.47 
0.79 

0.88 

 

0.84 
1.32 

1.45 

 

1.34 
1.89 

2.04 
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Recent study [136] refers to combination of vehicle control 

information (steering wheel pressure) and video capture for 

monitoring facial state change which has been used to 

investigate non-alerted driver response during a pre-crash. 

Combination of eyetracking and EMG allows different and 

more comprehensive analysis of reaction time - visual reaction 

time, time needed to decision and muscle response time. The 

alternative partition of reaction time was proposed in [137] 

(Fig. 1). Visual reaction starts and ends at the same moments as 

visual reaction time (Visual RT) of conventional division 

mentioned above. The second part is time needed to decision 

(interval TD). TD starts at the moment of sharp fixation of 

object appeared in the field of driver’s view (interval TF) and 

ends at the moment of muscle activation (TEMG). TD is a time 

needed to object recognition in the CNS, i.e. time needed to a 

decision about reaction and style of response. The third part is 

muscle response time (MRT) which starts at the moment of 

muscle activation (TEMG, mostly musculus tibialis anterior) and 

ends at the moment of the first contact between right lower limb 

and brake pedal (TB). 

Nowadays, investigation of reaction time is considered very 

important, because it is connected to driver fatigue - during a 

drive, fatigue can cause the prolonging reaction time [59]. 

Therefore, current trend of traffic and transport is focused on 

the new ways how to measure reaction time and its parts. 

 

4) Body Movements 

The signals related to body movements (head or hand 

movements) are also possible source of features for fatigue and 

stress detection. These signals can be measured directly via 

appropriate sensors (e.g. ACC) or indirectly (e.g. steering wheel 

motion).  

Head movements seem to be an early indicator for sleepiness 

[119]. As one of the fatigue signs, yawn detection algorithms 

are used. Reddy et al. [115] used simple segmentation based on 

thresholding for the yawning detection with detection accuracy 

rate of 76 %. In [116], a system aimed to identify yawning by 

measuring physical changes occurring in drivers mouth based 

on circular Hough transform reaches 98 % accuracy. 

Nodding is another useful sign of fatigue assessment [117], 

[118]. During nodding, drivers close their eyes and the head 

goes down. Bergassa et al. [117], however, demonstrated the 

worst results in detected percentage of nodding compared to the 

other parameters such as PERCLOS, eye closure duration, BF 

or face direction. In [119] the head nodding was calculated from 

the head pitch angle and exponentially weighted moving 

variance (EWVAR) and showed relatively small correlation 

coefficient (-0.32) with sleeping score.  

In [22], body movements are sensed by 3-axis ACC and 3-

axis gyroscope integrated in bracelet. In a preprocessing stage, 

the ACC signal is filtered using bandpass filter (0.5-11 Hz), and 

then all the 3 axes are combined into motion information (MI): 

                                    𝑀𝐼 = √(𝑥𝑓
2 + 𝑦𝑓

2 + 𝑧𝑓
2) (4) 

Signals from gyroscope are combined in the same way [22] 

and titled as gyro motion information (GMI). 

Extracted features are: the mean amplitude of 10 s MI 

segment, power of 10 s MI segment, mean amplitude of 30 s MI 

segment, power of 30 s MI segment. The same features are 

extracted from GMI signal. These features are used together 

with other biosignal-based features as an input to classifier. 

The angle of steering wheel motion is also signal suitable for 

stress [82] and fatigue recognition and can be considered as 

body movement-related signal. It can be represented by roll 

orientation, which can be calculated using 9-DOF (degree of 

freedom) IMU (inertial motion unit). From roll orientation 

signal several features are calculated: average; standard 

deviation; variance; median; averaged squared power; root 

mean square; range difference of max and min [82]. After 

applying of DFT on difference of roll orientation signal, ORV 

(orientation rate variability) is obtained. From ORV other 

features are extracted: sum power spectrum energy; Shannon 

entropy energy; mean, peak and median power frequency [82]. 

Two phase-based features are extracted in [82]: percentage of 

points outside the control eclipse and weighting function 

outside the control eclipse.  

Body movement signals can provide important information 

about driver behavior and driving style. However, these signals 

need to be measured in contact way and can be distorted by 

driving on the rough terrain. Furthermore, similar information 

can be obtained from video acquired from cockpit. 

 

D. Summary Table of features and their behavior under 

stress and fatigue conditions 

Summary of the most common and important features are 

shown in Table II with the trend of their behavior under stress 

and fatigue conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Reaction time (RT), TON is the moment when the object just appeared 

in the driver field of vision, TF is the moment of sharp fixation of the driver’s 
eye on this object, TEMG is the moment of muscle activation (musculus tibialis 

anterior), TA is the moment of releasing accelerator, TB is the moment of the 

first contact between right lower limb and brake pedal [137]. 
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E. Stress and Fatigue Evaluation (Classification Methods) 

Recently, traditional and deep learning-based approaches are 

used for detection and classification of drivers’ fatigue and 

stress. The traditional approaches consist of features extraction 

and classification, while deep learning uses original domain 

data to find context in this data and use it for classification as a 

part of this approach. Some recently (years 2018, 2019) 

published methods are briefly summarized in below 

paragraphs. Table in Supplemental files shows the diversity of 

research in this area represented by several examples of 

published papers - various approaches for stress or fatigue 

detection (or prediction) together with different signals and 

features tested on different datasets has been published. 

Choi et al. [22] extracted features from PPG, EDA, ACC and 

gyroscope. After 5 different types of normalization, they 

obtained altogether 190 features. Therefore, they used two 

methods for features selection: 1) ANOVA which selected 25 

features followed by 2) sequential forward floating selection 

(SFFS) algorithm. The SVM with radial basis function (RBF) 

kernel and one of “winner-takes-all” (WTA) and “max-wins 

voting” (MWV) expansions is used. The expansions enable to 

classify into more than two classes (stress, fatigue, drowsiness, 

normal state). The best accuracies of 68.31 % and 84.46 % were 

reached for classification into four classes using SVM MWV 

and classification into three classes (drowsiness and fatigue are 

one class) using SVM WTA, respectively. Anusha et al. [76] 

detect stress using binary classification. Using single modality 

(EDA) features and k-nearest neighbors (kNN) classifier they 

achieve cross-validation accuracy of 93.13 %. The highest 

accuracy (97.13 %) was obtained using EDA and skin 

temperature features and classifier ensemble: quadratic 

discriminant analysis (QDA), SVM, kNN. Chen et al. [142] 

used ECG, hand and foot EDA and respiratory signal for stress 

monitoring and EEG and EOG for vigilance monitoring. 

Features generated from wavelet decomposition, further 

evaluated by filter-based feature selection are an input into 

transfer learning classifier. The reported averaged detection 

accuracy was 89.59 %. Recently, de Naurois et al. [143] 

described the drowsiness detection and prediction model with 

neural network classifier and different physiological and 

behavioral parameters (HR, HRV, respiration rate etc.) and 

vehicle data (SWM, speed etc.). 

Surprisingly, not many research papers describe application 

of deep learning approaches for stress or fatigue detection of 

drivers. An EEG-based fatigue detection has been described in 

[144]. CNN was used together with residual learning. Authors 

showed better predictive power (with accuracy slightly over 

84 %) of their approach in comparison to traditional approaches 

(features + classification). A camera based approach using pre-

trained deep neural network (AlexNet, VGG16) has been tested 

in [145] for driver’s emotion recognition, which influences the 

driving behavior. The emotion recognition accuracy varied 

from 97.4 % to 98.8 %, for different datasets. A Deep 

Convolutional Autoencoding Memory Network was used for 

mental fatigue detection in general settings (with possible 

application to drivers) using ECG and EDA signals with 

accuracy of 82.9 % [146].  

IV. EXPERIMENT SCENARIOS 

A. Simulators vs. real conditions 

Car simulators are used in many studies due to many 

advantages - a possibility to control the experimental conditions 

(lighting, temperature, audio noise) [26], [58], low level of 

signal interference [79], safety [22], drive scenario choice and 

setting (traffic density, probability of accidents, sounds, number 

of lanes, day time, curves, environment) [22], [77]. On the other 

hand, the drivers in a simulator do not feel the same level of 

stress as drivers in real conditions, because they feel safe and 

do not necessarily try hard to keep awake [79], [17]. The fatigue 

can be equally studied in both simulator-based and real word 

conditions as shown by Philip et al. [165].  However, the stress 

studies might be influenced when using driving simulator due 

to limited physical and perceptual fidelity. Thus, the 

TABLE II 

SUMMARY TABLE OF FEATURES AND THEIR BEHAVIOR UNDER STRESS AND 

FATIGUE CONDITIONS 

feature fatigue/stress 
increase/ 

decrease 

steering fatigue [59], [177] ↓ 

lane deviation fatigue [60], [69] ↑ 

heart rate stress [26], [27], [75], [76], [81], [82] 

fatigue [17], [75], [89] 

↑ 

↓ 

HRV fatigue [17], [75] 

stress [75] 

↑ 

↓ 

LF (HRV) fatigue [17] ↓ 

HF (HRV) fatigue [17] ↑ 

LF/HF ratio stress [26], [81] 
fatigue [17] 

fighting with fatigue [17] 

↑ 
↓ 

↑ 

Kolmogorov entropy  

of ECG 

fatigue [84] ↓ 

breathing frequency stress [27], [81] 

fatigue [17] 

↑ 

↓ 

the slope of the 

exhalation curve 

stress [87] ↑ 

the slope of the 

inhalation curve 

stress [87] ↓ 

the angle between the 

inhalation and the 

exhalation curve 

stress [87] ↑ 

EDA stress [75], [82] 

fatigue [17], [75], [89] 

↑ 

↓ 

body temperature stress [9] 

fatigue [17] 

↓ 

blood pressure stress [105], [111] 

fatigue [75] 

↑ 

↓ 

blink duration fatigue [119], [174] ↓ 

blink frequency Fatigue [174], stress [119] ↓ 

PERCLOS fatigue [121], [125], [126], [127] ↑ 

yawning fatigue [117] ↑ 

nodding fatigue [117], [178] ↑ 
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conclusions from these studies must be carefully interpreted. 

Simulator can be designed as a full car cabin as used in [58] 

with steering wheel, dashboard, pedals, controls and automatic 

signal transmission. Virtual scenario is projected in front of the 

driver and car behavior is monitored by the computer.  

In some studies, such as [22], low-cost version of the 

simulator is used. It consists of laptop with installed simulation 

software. 

Another way to assemble relatively low-cost driving 

simulator is to use an immersive virtual reality (VR) system 

[147]. Immersive VR utilizes a head-mounted display (HMD) 

with stereoscopic projection. It also allows the user to freely 

move the head to look around. Some VR headsets can also be 

equipped with eye-tracking devices [148]. The two main 

downsides of VR driving simulators are increased risk of 

motion — or more precisely “simulator” — sickness [147], 

[149] and potential incompatibilities of VR setup with 

physiological recordings (for instance, EEG cap cannot be used 

with most headsets, because of the straps holding the HMD in 

place). 

Tests in real conditions (on-the-road) can be conducted in the 

city as described in [27]. In this case there was no special 

scenario - the drivers just drove one route for 10 working days 

with overall 300 km distance travelled. The values of the LF/HF 

feature were then figured in the map (using GPS) to investigate 

the relationship between them [27]. The driver can be alone in 

the car or with other person such as driving instructor [9]. Study 

[26] was conducted in a city in real traffic - the driving 

environment was a busy road including interchanges, two 

tunnels and lots of traffic lights, but there was also no special 

scenario. 

 

B. Fatigue and Stress Induction 

According to Matthews et al. [150], it is possible to 

artificially induce fatigue by prolonged simulator drive, but 

other factors should also be taken into account, especially 

workload factors. Authors discussed that there are two types of 

experimental fatigue induction - active and passive. Active is 

defined by increased demands, while passive is based on 

monotony and boredom. Later studies showed differences in 

effects these two types of fatigue induce. For example, studies 

from Saxby et al. [151], [152] showed that there is significant 

reduction in alertness and reaction times and increase in crash 

probability in passively fatigued drivers. Similar results were 

found by Gastaldi et al. [69], who further pointed out the 

importance of circadian factors. Different way to induce fatigue 

is to expose the subjects to sleep deprivation. Study [153] 

showed that sleep deprivation, among others, leads to higher 

number of inappropriate line crossings and notably influences 

reaction times. Another study [58] compared individuals after 

normal sleep and 24-hour sleep deprivation. Moreover, the 

virtual road scenario was monotonous with low-volume sound 

to enhance drowsiness of the driver. Sleep deprivation was used 

in [77] as well. Person after at least 7 hours of sleep was 

considered as not sleep-deprived, 4 and less hour sleep means 

partial sleep deprivation and more than 20 hours without sleep 

induced full sleep deprivation [77]. In [22], the simulation drive 

was set to two hours of drive on monotonous road without other 

vehicles bolstered by monotonous sounds. 

The stressors can influence the driver differently [79]. While 

for one driver, e.g. the darkness means no stress, it causes high-

level stress in another; there exist individual differences. 

Therefore, different stressors have been used in current studies. 

Busy city roads are by themselves stressful for many drivers 

and were exploited in [26]. Environmental conditions such as 

night driving, driving in a cold (13°C) and hot (40°C) 

environments were applied in [79] as physical stress stimuli. As 

mental stressors, noisy environment (loud music), dark alleys, 

and solving some mathematical problems were used [79]. In 

study [88] the drivers are stressed by unexpected sound effects 

and car crash sound accompanied by black screen instead of 

drive simulation. Crowded roads and vehicle horns also belong 

to stressors [22]. 

C. Acquisition Systems for Drivers Monitoring 

The acquisition systems for complex data monitoring can be 

assembled from single units used for driving data acquisition, 

physiological signals acquisition and video-sequences 

recording.  Below, few examples are described, representing 

different approaches to data acquisition. 

A commercially available systems and their combination are 

used in many studies. For example, versatile Biopac MP100 

(Biopac Systems Inc, Goleta, USA) system was used in [57] for 

ECG (sampling rate fs = 200 Hz) and EDA (fs = 50 Hz) signal 

recording with 12-bit resolution. For 2-leads ECG recording, 

Bitmed eXim Pro device with sampling frequency of 256 Hz 

was used in [77]. For the respiration tracking, the image-based 

Kinect system was used in [58] together with two 1 Mpx 

fisheye infrared cameras Texas Instruments PAC16 PoC and 

MAXIM MAX9271 FRCAM. This study proved high 

correlation (more than 0.98) between Kinect and 

plethysmography belt in laboratory conditions. It was also 

shown that the front position of the camera provides better 

results than lateral position. Haouij et al. [40] used Empatica E4 

wristband for EDA, PPG, skin temperature and motion 

measurement and chest belt Zephyr Bioharness for ECG, 

respiration rate, and skin temperature sensing. They used Intel 

Edison development kit to measure environmental data - 

temperature, humidity, pressure, luminance, sound. Finally, 

two GoPro cameras monitored inner and outer car environment 

and GPS sensor integrated in the smartphone was used for 

position recording. 

The integrated sensors, usually developed by the research 

groups, are also used. They can be integrated into modern 

garment such as T-Shirt with ECG and breathing sensors [27], 

or directly into steering wheel as described in [9], [26], for the 

case of ECG sensors. The advantage of these integrations is no 

need of on-body electrodes, thus it is more comfortable for the 

user [26]. On the other hand, the disadvantage lays in necessity 

of holding the steering wheel usually by both hands or in a 

particular manner, otherwise the accuracy of HRV analysis 

decreases [26], [79]. Nevertheless, the high correlation (> 0.96) 

between the steering wheel integrated sensors and the chest-
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leads system using Biopac MP150 with sampling frequency of 

200 Hz has been shown in [26]. A 9-DOF IMU, which includes 

ACC, gyroscope and magnetometer, was integrated into glove 

together with PPG sensor [82]. Choi et al. [22] designed an 

experimental wearable wrist tracker which records PPG, EDA, 

temperature, acceleration, and rate of rotation using integrated 

gyroscope. The device is comfortable without the necessity of 

electrodes adhering and it does not influence the behavior of the 

driver. Another experimental device, including optical sensor 

for PPG recording and 3-axis ACC was used in [80]. This 

device was placed on the earlobe and worked with sampling rate 

of 100 Hz. 

More complex solution is described in [79] - the “U-car” 

project. The ECG, PPG, EDA sensors are integrated in steering 

wheel while another ECG and respiration belt in a seat. Among 

others, ECG was recorded also using electrodes in both steering 

wheel and seat. This study also uses reference device Biopac 

MP150; the results from both devices highly correlate (> 0.96) 

[79]. Commercially available complex solutions are also 

available. For example, Vehicle Testing Kit (Ergoneers 

GmbH.) measures and analyzes synchronously behavioral data 

(Eye-Tracking, Video, Audio), driver performance data (CAN 

interface, Mobileye®, GPS) and experimental leader inputs 

(triggers, notes). 

 

D. Annotations 

The annotation of level of stress or fatigue differs in different 

studies in both, the number of levels and a way of stress/fatigue 

evaluation. Typically, the evaluation is subjective, provided by 

observer siting in the car or using a questionnaire. The 

combination of these approaches is also used. But in some 

papers the scale is not clearly defined. Here we describe few 

papers to show different evaluation approaches of stress and 

fatigue. 

In [57] stress is classified into four groups: 0 - no stress, 1 - 

low stress, 2 - medium stress, 3 - high stress. For the final 

annotations, the video and self-annotation of the driver were 

used [57]. A 9-level scale subjective rating of stress according 

to Kakizaki et al. [138] was used to evaluate stress in [139] and 

[140]. This 9-level is based on self-evaluation of stress by 

selecting a number between 1 (not stressful at all) and 9 

(extremely stressful) in a questionnaire every 10 minutes. Self-

evaluation of stress was used in [79]; it was done right after 

each stress condition and was revised after driving. Value 0 was 

for the lowest stress and 10 for the highest stress. Similarly, 

self-evaluation of stress into five levels (1 pleasant, 2 normal, 3 

low stress, 4 medium stress, 5 high stress) each 5 minutes was 

applied in [22]. In [84], the study participants judged their 

mental and physical fatigue every 10 minutes without 

interruption of drive using questionnaire. For the mental fatigue 

they have prepared words uncomfortable/comfortable, 

distracted/concentrated, anxious/quiet and for physical fatigue 

there were stiff/flexible body, sleepy/energetic, bleary/clear. 

The subject should evaluate these states into 7 levels. The level 

of drowsiness was assessed into one of 5 groups (1 not drowsy, 

2 slightly drowsy, 3 moderately drowsy, 4 very drowsy, 5 

extremely drowsy) using on-board camera [22]. The assessment 

was provided visually on the basis of facial expression, eye 

blinking frequency, yawning, mean percent eye closure 

increase. Vicente et al. [77] annotated driver’s state by external 

observes in real time each minute into 3 levels - awake, 

fatigued, and drowsy. External observers take into 

consideration body and face movements and the final decision 

was based on majority ballot [172]. 

 

E. Driving Tasks 

A number of approaches have been used to analyze driver 

behavior. Driving operations are chosen with respect to the 

objectives of the study. Driving tasks are mostly dependent on 

whether the behavior of drivers is analyzed in real-time traffic, 

on a test track with the exclusion of other vehicles or on a 

driving simulator. Another factor influencing applied driving 

tasks is also the technology used for the data collection - 

whether it is physiological measures, behavioral measures, 

vehicle data analysis or the combination of selected parameters. 

In order to analyze fatigue, mostly driving simulator 

scenarios have been used, although many authors point to 

distortions of obtained data. The driving experience on the 

simulator is the most commonly used monotonous 

environment. However, the simulation environment also allows 

for changing the weather for the purpose of behavior analysis, 

for example the assignment of a strong side wind that forces 

driver to regulate vehicle movement to stay in the lane [66], 

[118], [153]. During the monotonous sections, it is not possible 

to analyze some parameters such as muscle fatigue, reaction 

time, speeding, compensatory behavior. Also, a combination of 

monotonous environments with other scenarios has been used, 

e.g. with objects to interrupt monotony. Some approaches also 

use the assignment of objects to which the driver must respond. 

One of the most commonly used techniques is driving behind 

the leading vehicle. The fatigue induction procedure while 

following a lead vehicle was used e.g. in [154], [155]. Thiffault 

and Bergeron [66] used 3 driving scenarios - in the first scenery 

the roadside contained only grass, the second scenery contained 

also pairs of pine trees, the third scenery was intended to be 

monotonous but without repetitive environment including 

houses, farms and pedestrians on the roadside. Matthews and 

Desmond [155] used pedestrian detection task, during which 

participants were asked to detect movements in scene. 

V. METHODS USED IN MASS-PRODUCED CARS 

The driver fatigue detection systems are increasingly built in 

mass-produced cars. Most of the fatigue detection systems 

create a driver profile and detect fatigue due to changes in 

driving pattern. The most commonly used fatigue detection 

parameter is monitoring the driving along white lines marking 

the lane in which car is [156], [157], [158], [159]. When a car 

runs irregularly between the white lines, it means the driver is 

tired. Another parameter for fatigue detection is also the 

reaction time at which the drivers realize that they are close to 

the white line [156], [157]. Another parameter describes how 

much the driver responds to being close to the white line [158]. 
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If the driver is tired, steering wheel rotation will be greater than 

necessary. The above-mentioned parameters are used by 

Mercedes, Volvo and Ford. Volkswagen has developed a 

parameter based on the fact that the relaxed driver still moves a 

steering wheel a little. A tired driver stops these little moves 

[160]. Another approach to detecting fatigue is to monitor the 

driver with the camera [161]. The used parameters for fatigue 

detection are blinking frequency, head orientation, position of 

the driver’s upper and lower eyelids and slackened facial 

muscles. These features are not as widely available; they are 

used by Cadillac, Toyota and Lexus. 

The mass-produced cars usually signal the fatigue by an 

audible or visual alert or as vibrating the steering wheel. There 

exist active mechanisms that help the drivers to eliminate their 

faults and also warn them of danger. If the drivers already fall 

asleep for a while and cross the alert strips, they warn them [17]. 

Some cars do little movements of steering wheel to make the 

drivers driving in their lane (lane assistant). 

VI. DISCUSSION 

Majority of published papers describe driving sessions 

simulated in laboratory environment. The advantage of this 

approach is safety, cheapness, reproducibility, much more 

possibilities for testing different sensing scenarios from placing 

of electrodes to type of road and environment. On the other 

hand, it cannot fully replace real driving. Behavior of the drivers 

is different if they know that it is only simulation and they 

cannot be injured or cause any accident. In case of real driving, 

ethical issues arise. Is it acceptable to drive in normal traffic 

knowingly fatigued? If the drive scenario is planned in a real 

traffic, but in more quiet streets and roads, then the results will 

be probably a little bit distorted or uncomplete. 

Stress and fatigue are related as described in Introduction. 

Sometimes it is difficult or impossible to distinguish between 

them. But both influence negatively the driver performance and 

their influence can be different, which makes the analysis more 

complicated. Therefore, the trend in stress and fatigue detection 

is the data fusion and application of advanced machine learning 

methods. Different types of data such as biosignals, car signals 

and videos of driver and car behavior are fused. Data fusion and 

machine learning methods enable to detect stress and fatigue 

more robustly and accurately. In practice, not all sensors for 

data fusion are acceptable, especially the contact ones. It is 

probably one of the reasons why this approach is still not 

plentifully used in mass-produced cars.  

Even if the fatigue and stress detection systems would be 

perfect, they cannot compel the driver to stop. It is always the 

driver’s decision. In Salmon´s survey [8] which included 316 

participants, 66.5 % of them drove fatigued. The reasons why 

they drove in this risky state were different: time pressure, work 

requirements, shift work, long journeys, and expectations of 

other people. Furthermore, 18 % of people did not realize they 

are fatigued. 

In a spite of high effort of car manufacturer to develop and 

introduce autonomous vehicles, it is now obvious that the way 

to fully autonomous solution will be longer than predicted few 

years ago. There are many obstacles, including social 

acceptance, legal issues of liability, human-vehicle interaction 

and increased cost of car (due to advanced software, hardware 

and sensors, e.g. LIDAR). These hot topics are being discussed 

in order to find solutions for these problems [166,167]. 

Furthermore, 3rd level of autonomous vehicle (classification 

according to National Highway Traffic Safety Administration 

[168]) will still need a driver, ready to intervene and driver’s 

fatigue (or even sleep) needs to be monitored. The 4th level of 

autonomous driving will also need some systems for drivers 

monitoring in order to monitor possible stress. 

VII. CONCLUSION 

High effort of research groups and car manufacturers can be 

observed in the field of drivers’ health conditions monitoring 

during last decade. As the drivers’ behavior is complex process, 

the robust and precise monitoring with real impact on the road 

safety is still a challenging task.  

The acquisition system must not affect the drivers - the non-

contact acquisition method must be used as well as sensors 

integrated directly into cockpit. Small number of contact 

sensors can be probably acceptable, e.g. placed on the wrist, 

chest or in the form of glasses. However, the signal quality and 

availability is difficult to maintain during whole driving time. 

Nevertheless, current development of methods in machine 

learning seems to provide new possibilities of data analysis and 

classification. Particularly, deep learning approaches, which 

became a standard and state-of-the-art approach in many 

classification tasks, are promising also in this area.  

The lack of complex datasets from real driving conditions 

and difficulties connected with the inter-drivers’ variability are 

probably the main obstacles, which limit the better 

understanding to drivers’ physiological processes during 

driving. Such datasets would allow experimental fusion of 

specific biosignals and car features and design of robust 

detection systems for drivers’ stress, drowsiness and fatigue. 
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