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ABSTRACT

Depression is a common, but serious mental disorder that affects

people all over the world. Besides providing an easier way of di-

agnosing the disorder, a computer-aided automatic depression as-

sessment system is demanded in order to reduce subjective bias in

the diagnosis. We propose a multimodal fusion of speech and lin-

guistic representation for depression detection. We train our model

to infer the Patient Health Questionnaire (PHQ) score of subjects

from AVEC 2019 DDS Challenge database, the E-DAIC corpus. For

the speech modality, we use deep spectrum features extracted from

a pretrained VGG-16 network and employ a Gated Convolutional

Neural Network (GCNN) followed by a LSTM layer. For the textual

embeddings, we extract BERT textual features and employ a Con-

volutional Neural Network (CNN) followed by a LSTM layer. We

achieved a CCC score equivalent to 0.497 and 0.608 on the E-DAIC

corpus development set using the unimodal speech and linguistic

models respectively. We further combine the two modalities using

a feature fusion approach in which we apply the last representation

of each single modality model to a fully-connected layer in order

to estimate the PHQ score. With this multimodal approach, it was

possible to achieve the CCC score of 0.696 on the development set

and 0.403 on the testing set of the E-DAIC corpus, which shows an

absolute improvement of 0.283 points from the challenge baseline.
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· Computing methodologies→Machine learning; · Applied

computing → Health care information systems.
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1 INTRODUCTION

Depression is one of the most common mental disorders in the

United States (US). In fact, according to the data collected from

the 2017 National Survey on Drug Use and Health (NSDUH) [1],

an estimate of 7.1% of all adults in the US had at least one major

depressive episode. Although considered quite common all over the

world and among a wide range of ages [27], this disorder cannot

be neglected since it can cause severe and negative impacts. The

abilities of a person in performing daily activities can be degraded

and depression can result in undesirable effects in their thoughts,

feelings and actions [5]. Furthermore, depression can also be a sign

that someone is suffering from a neurocognitive disorder, such as

dementia [4]. Therefore, the development of newmethods and tools

to support a fast and precise depression diagnosis is undoubtedly

necessary.

In this regard, several studies [2, 14, 19ś21, 41] proposed

computer-aided solutions for seeking an automatic and objective

depression detection method. This is important to reduce subjective

biases, to popularize the diagnosis of this condition and to aid the

diagnosis in complex situations, such as the ones presented by some

elderly people [12].

Even though the automatic depression detection has been widely

investigated from different perspectives, it is still considered a chal-

lenge. In fact, the 2019 edition of the Audio/Visual Emotion Chal-

lenge and Workshop (AVEC 2019) [13] proposes the Detecting

Depression with AI Sub-Challenge (DDS). This sub-challenge aims

the automatic depression severity assessment of US Army veter-

ans from audiovisual recordings of their interaction, in a clinical

interview setting, with a virtual agent, which can be controlled by

a human as a Wizard-of-Oz or an artificial intelligence (AI). Thus,

besides the automatic depression severity evaluation, the DDS also

seeks the comprehension of how the absence of a human controlling

the virtual agent impacts on this automatic evaluation.

In this paper, we present a multimodal approach for automatic

depression detection that combines highly representative speech
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and textual features acquired with gated convolutional and con-

volutional neural network based models. Moreover, the proposed

architectures used for the extraction of these features employ a

Long Short-Term Memory (LSTM) layer in order to characterize

the data’s temporal behaviour. Our proposed multimodal model

achieves the best result of 0.403 evaluated with the Concordance

Correlation Coefficient (CCC) in the DDS test partition.

The remainder of this paper is organized as follows. In Section 2,

we summarize relevant related works. In Sections 3 and 4, we respec-

tively introduce the dataset used for the AVEC 2019 DDS and the

evaluation metric employed in this challenge. Sections 5 and 6 are

respectively dedicated to the description of the proposed method-

ology and to the presentation of the conducted experiments and

the corresponding results. Finally, Section 7 concludes this paper

and discusses future improvements to the methodology presented

in Section 5.

2 RELATED WORKS

This section presents a summary of the current state-of-the-art

with respect to topics related to the method of automatic depression

detection conducted in this work.

2.1 Audio Representation

Audio data can be described by features of diverse nature, such as

spectrograms, power, mel-frequency cepstral coefficients (MFCCs)

and deep spectrum representations. A robust speech representation

can be used to solve various paralinguistic tasks, which are related

to events beyond linguistic [37]. Handcrafted representations of

speech [34ś36, 38] have been widely used to solve paralinguis-

tic problems such as emotion, health state and personality traits

recognition.

Recently, deep neural networks have been employed to extract

discriminative features from speech [3, 6]. Compared to statisti-

cal functions designed from handcrafted feature sets, deep neural

networks are able to learn a more robust data representation due

to their data generalization ability. Although many advances in

deep learning have occurred, spectrogram images are widely cho-

sen as the input to audio representation models as opposed to raw

speech input, because learning from raw data is still considered a

challenging problem.

In order to learn a task-specific representation from the two-

dimensional speech description (i.e. spectrogram images), deep

neural networks, such as convolutional neural networks (CNNs),

have been often employed [18]. Due to their sparse weight con-

nections, one of the main advantages of CNNs is the temporal

information understanding without compromising the generaliz-

ability. Moreover, CNNs with a gating mechanism [8] show better

results for the dementia detection task [42] due to their ability to

overcome the vanishing gradient problem.

2.2 Natural Language Processing

Natural language processing (NLP) is the field of computer science

concerned with the human-computer interaction through natural

language. Recently, the introduction of distributional vectors (or

word embeddings) [26, 31] as textual data representation in the

NLP field made the high-accuracy solution of many challenging

NLP tasks, such as the ones related to question answering [43, 44],

sentiment analysis [33, 39] and natural language inference (NLI)

[29], feasible.

Recent state-of-the-art works in the NLP field have been ex-

ploring techniques, such as model pre-training and bidirectional

language representation, in order to grasp the semantic complexity

of a language. [32], for example, proposes a bidirectional word rep-

resentation from the combination of both forward and backward

language models, thus achieving the state-of-the-art on six NLP

tasks.

However, as opposed to [32], the recently proposed Bidirectional

Encoder Representations from Transformers (BERT)[10] was de-

signed to pre-train deep bidirectional representations from unla-

belled text under a masked language model.

Pre-trained BERT models can be fine-tuned with a single addi-

tional output layer, thus achieving state-of-the-art results without

drastic task-oriented architecture modifications. In fact, these mod-

els can achieve the state-of-the art on eleven natural language

processing tasks. Therefore, due to their powerful language repre-

sentation, pre-trained BERT models were chosen to extract textual

features from interview transcripts in this work.

2.3 Multimodality

Recent works have shown promising results in numerous tasks

due to the adoption of multimodal approaches. [11], for example,

proposes a speaker-independent audio-visual model for speech sep-

aration that outperforms audio-only and audio-visual models on

classic speech separation tasks. Moreover, [28] also considers the

fusion of audio and visual signals to build a multisensory represen-

tation of videos, which can be satisfactorily applied to sound source

localization, audio-visual action recognition and on/off screen au-

dio source separation. The underlying hypothesis held by [11, 28]

and other multimodal approaches is that information of different

nature acquired from the same source can be extremely valuable to

understand the problem’s context and, thus, find its best solution.

2.4 Depression Detection

It is worth mentioning other attempts and studies conducted to

develop automatic depression detection systems. [21], for instance,

studies the contribution of upper body movement to the depression

detection, while [19] analyses the influence of the whole body

movement relatively to its parts on the same task. Both [21] and

[19] represent the body movement in a bag-of-words approach

and they both apply Space-Time Interest Points (STIP) to assist the

feature extraction. The results of these works show that both the

relative body and the upper body (head and shoulders) movements

are significant for the depression detection and they also show the

importance of the fusion of multiple features.

Similar to [19, 21], [2] analyses the influence of the head pose in

the depression detection. According to the results shown in [2], the

head pose holds effective cues in this disorder diagnosis, since their

proposed model achieves an average accuracy of 71.2% on this task.

[2] extracted head pose and movement features from videos using a

3D model projected on a 2D Active Appearance Model (AAM) and

created a Gaussian Mixture Model (GMM) for each subject, which,



combined with the SVM classifier, composes the hybrid classifier

used for the depression detection.

Moreover, [20] proposes the fusion of bags of audio and visual

features for the depression diagnosis. These bags of features are

then applied to a Support Vector Machine (SVM) classifier. The

audio features include the fundamental frequency f 0, loudness,

intensity and mel-frequency cepstral coefficients (MFCC), while

the visual features are related to the intra-facial muscle movements

and the movements of the patient’s upper body.

Although [20] considers audio features for the depression assess-

ment, the work presented in this paper significantly differs from

the one proposed in [20], since we consider the semantic content of

the patient speech by extracting deep bidirectional textual features

with a pre-trained BERT model. In addition, in the presented work,

the audio features are not represented in a bag-of-audio approach,

but as a set of deep spectrum features extracted with a VGG-16 [40]

architecture [13].

3 E-DAIC CORPUS

The dataset adopted in the AVEC 2019 DDS is the Extended Distress

Analysis Interview Corpus (E-DAIC) [9], an extension of the DAIC-

WOZ corpus, which in turn is part of a larger corpus, the Distress

Analysis Interview Corpus (DAIC) [16].

The DAIC corpus contains audiovisual recordings of patients

interacting with an agent conducting a clinical interview designed

to aid the diagnosis of psychological distress conditions such as

anxiety, depression, and post-traumatic stress disorder. In the E-

DAIC corpus, this virtual agent can be aWizard-of-Oz controlled by

a human in another room or it can be fully automated, controlled

by an artificial intelligence. The E-DAIC includes the transcript

of the interactions automatically transcribed with Google Cloud’s

speech recognition service, the participants audio files, their facial

features and each patient PTSD Checklist Civilian Version (PCL-

C) [7] and Patient Health Questionnaire [23] depression module

(PHQ-8) scores.

The PHQ-8 and the PCL-C attempt to assess, respectively, the

depression and the Post-Traumatic Stress Disorder (PTSD) severi-

ties. The PCL-C score ranges from 0 to 85, while the PHQ-8 score

ranges from 0 to 24. The PHQ-8 score’s cutpoints are defined at

5, 10, 15 and 20 for mild, moderate, moderately severe, and severe

depression levels, respectively.

In the E-DAIC dataset, there are 275 subjects, who are US Army

veterans. For the DDS, this dataset was divided into train, develop-

ment and test partitions with 163, 56 and 56 subjects respectively.

In the train and development sets, the interviewer can be either a

human in a Wizard-of-Oz setting or an AI, while, in the test set,

there are only interviews conducted by the AI.

4 EVALUATION METRIC

The performance metric adopted in the AVEC 2019 DDS is the

Concordance Correlation Coefficient (CCC) [24], defined as

ρc =
2ρσxσy

σ 2
x + σ

2
y + (µx − µy )2

, (1)

in which ρ is the Pearson correlation coefficient between the vari-

ables x and y, σx and σy represent the standard deviations of x and

y and µx and µy , their respective means.

The CCC is computed to measure the correlation between the

prediction and the gold standard and it varies from -1 to 1, in which

1, −1 and 0 respectively indicate that the two variables are identical,

exactly opposite and uncorrelated.

5 PROPOSED METHODOLOGY

This section presents the designed models for the AVEC 2019 De-

pression Detection Subchallenge (DDS). Sections 5.1 to 5.3 explore

single modalities representations for feature extraction and for the

depression detection task itself. Section 5.4 presents a model for

feature level fusion of these single modalities for the depression

severity assessment task. Finally, Section 5.5 briefly introduces the

baseline model proposed by [13], to which our approach is com-

pared in Section 6.

5.1 Audio Model

We use a deep spectrum representation extracted from a pretrained

VGG-16 network using spectrogram images as input. For the audio

of each subject, it results in the deep spectrum features Xi ∈ R
T×F ,

in whichT represents the time dimension, which varies according to

the duration of the speech data, and F denotes the feature dimension.

We add zero paddings to the input features so that all input samples

have the same length as the longest speech data duration.

5.1.1 CNN-based Model. Our first speech model is composed by

stacked convolution blocks followed by fully-connected (dense)

layers. Each convolution block is composed by a 1D convolution

layer followed by batch normalization, the ReLU activation func-

tion and a max-pooling layer to halve the input size. We use nine

convolution blocks, each with a different number N of convolution

filters for their convolution layers. Thus, the number of filters of

each of the nine convolution layers of our model is, from the input

to the output, equal to N = [128, 64, 64, 64, 64, 32, 32, 32, 32]. The

output from the convolution blocks are then flattened and input

to a fully-connected layer with 256 hidden neurons. Finally, the

output of this fully-connected layer is applied to a batch normal-

ization, the ReLU activation function, a dropout layer and another

fully-connected layer composed by one neuron, which outputs the

PHQ-8 score as a single value. This model was trained with the

mean-squared error loss function and the Adam optimizer. The full

CNN model is depicted in Figure 1.

5.1.2 GCNN-LSTM-based model. Besides having the CNN-based

model, we also trained a GCNN-based model composed by stacked

gated convolution blocks followed by a LSTM layer and a fully-

connected layer. This GCNN-LSTM model differs greatly from the

CNN model, because a LSTM layer is added to the GCNN-LSTM

model and the convolution blocks are replaced by gated blocks,

which consist of two convolution layers followed by a gating mech-

anism and a max-pooling layer. For each gated block, the input to

the max-pooling layer is defined as

Y = conv (X ,W ) ⊙ sigm (conv (X ,Z )) , (2)



Figure 1: Our CNN model for speech-based depression as-

sessment with nine convolution blocks.

in which conv represents the convolution operation, siдm is the

sigmoid activation function, ⊙ is the Hadamard product between

two tensors, X is the gated block’s input andW and Z are the

trainable parameters of the respective convolution layers.

For each gated block of the GCNN model, the convolution

filters are, from the input to the output, defined as N =

[512, 256, 256, 128, 128, 64, 64, 32, 32, 16]. These ten gated blocks are

followed by a 32-dimensional LSTM layer and a fully-connected

layer with 512 hidden neurons. The GCNN-LSTM model is also

trained with the mean-squared error loss function and the Adam op-

timizer [22]. A complete representation of our GCNN-LSTM model

is shown in Figure 2.

Figure 2: Our best GCNN-LSTM model for speech-based de-

pression assessmentwith nine gated convolution blocks and

a LSTM layer.

5.2 Textual Model

In this work, it was hypothesized that linguistic features would pro-

vide valuable information regarded to the subject’s mental health

condition, since the semantic content of speech can reveal a per-

son’s habits, their likes and dislikes, their opinions, their emotions

and the quality of their personal relationships, which are elements

that should be considered in a depression diagnosis.

Thus, in order to represent the semantic content of the E-DAIC

corpus interviews by incorporating context information from both

left and right directions (i.e. past and future within the interview),

textual features were extracted from the automatically transcribed

transcripts [9], which are part of the E-DAIC corpus, briefly intro-

duced in Section 3. This textual feature extraction was performed

by the pretrained BERT-large model [10], which has 24 layers (i.e.

Transformer blocks), hidden size equal to 1024 and 16 self-attention

heads, thus totalizing 340 million parameters.

The features were extracted from the last BERT layer and they

were composed by a single feature array for each word token. Thus,

for each subject, BERT-large features can be represented as a matrix

of size K × 1024, in which K is the number of word tokens in the

subject’s transcript. In order to guarantee that all the input samples

to the textual models (i.e. textual features extracted with BERT)

would have the same size, a zero padding was conducted over the

K × 1024 feature matrices so that K would be always equal to the

number of word tokens found in the longest transcript.

Although the BERT model represents textual data by analysing

embeddings in a bidirectional manner, in this work, we hypothesize

that there are remaining temporal correspondences at the last BERT

layer since a feature array of size 1024 is generated for each word

token.

5.2.1 LSTM-based Model. In order to discern the features as a time

series, a simple model composed of a 64 and a 32-dimensional Long

Short-Term Memory (LSTM) layers both with a dropout rate equal

to 0.1 was initially designed for the DDS. A diagram depicting this

model structure is shown in Figure 3.

Figure 3: LSTM-basedmodel for depression assessment with

textual features.

The input features depicted in the diagram of Figure 3 are the

features extracted from the BERT-large model for a single patient.



In Figure 3, the final dense layer (i.e. fully connected layer) is

responsible for converting the representation acquired with the

LSTM layers from the feature space to a single prediction, which

corresponds to the PHQ score of the patient. Besides being used to

predict the PHQ score directly, this model was also employed to

extract highly representative textual features, which served as input

to the fusion model proposed in this work. However, although this

model, when trained to predict the PHQ score, could achieve a CCC

value equal to 0.360 over the validation partition, its performance

over the test set, 0.048 points evaluated with the same metric, was

not satisfactory. Moreover, it is known that, although Recurrent

Neural Network (RNN) models can represent temporal patterns,

they require longer training time when compared to other models

[30].

In order to address this issue, we trained another model for de-

pression assessment using only text features extracted from BERT-

large as the input. This model is presented in the following section.

5.2.2 CNN-LSTM-based Model. We opted for a model that com-

bines CNN layers with one LSTM layer. This choice was founded

on the observation that the usage of only a pair of LSTM layers, as

in the previous model depicted in Figure 3, would not drastically

reduce the features matrices’ dimensionality, making the prediction

task challenging for that model’s dense layer. Moreover, since the

BERT features are structured data in which it is possible to observe

hierarchical patterns, it is natural to choose CNN layers to interpret

the features extracted with BERT [25]. In fact, CNN-based models

have been giving notable results in numerous tasks over the past

few years [15].

Thus, similar to the CNN-based model for audio features pre-

sented in Section 5.1.1, we define seven convolution blocks with

different number of filters N for each convolution layer. These con-

volution blocks have the same structure as the blocks in the CNN-

based model of Section 5.1.1 and their convolution filters size are,

from the input to the output,N = [128, 64, 64, 64, 64, 32, 32]. The out-

put of the last convolution block is then input to a 32-dimensional

LSTM layer followed by a 256-dimensional fully-connected layer.

The output of this fully-connected layer is then applied to a batch

normalization, a ReLU activation function, a dropout layer with a

dropout rate equal to 0.1 and a single dimensional fully connected

layer, which outputs the prediction for the PHQ-8 score. A complete

diagram of this model is shown in Figure 4.

In both models used to assess depression with only textual fea-

tures, we consistently applied a batch size equal to 10, a learning

rate equal to 10−3 and a loss function based on the CCC metric.

However, the optimizer chosen for the LSTM-based model rep-

resented in Figure 3 is the stochastic gradient descent, while, in

the CNN-LSTM model, depicted in Figure 4, is Adam [22] with

parameters β1 equal to 0.9 and β2, to 0.999.

5.3 Visual Model

For the visual model, we utilize a deep visual representation ex-

tracted from a ResNet-50 model [17] as input. We choose the time

dimension T = 6000 for the visual features and apply them to

a GCNN model similar to the GCNN-LSTM model presented in

Section 5.1 except the fact that, in the visual model, there are not re-

current layers. Thus, the visual model can be depicted as in Figure 5,

Figure 4: CNN and LSTM-based model for depression assess-

ment with textual features.

in which, from the input to the output, the convolution filters of the

gated blocks have size N = [512, 256, 256, 128, 128, 64, 64, 32, 32, 16].

Figure 5: GCNN-based model for depression assessment

with visual features.

Similarly to the models presented in Section 5.1, we also use

mean-squared error as the loss function and Adam as optimizer to

train our network.

5.4 Fusion Model

In this work, we use the embeddings obtained from the first dense

layer of each modality. The modality-specific representations are

concatenated as one input vector and this resulting array is then

input to the multimodal network. The fused feature array is trained



on a fully-connected layer with 512 hidden neurons. The multi-

modal network is trained to minimize the mean-squared error loss

between the ground-truth PHQ score and the network prediction.

Adam optimizer [22] is employed during the training. A diagram

representing the fusion model is depicted in Figure 6.

Figure 6: Fusion model. The input features are the concate-

nation of features acquired from the unimodal models pre-

sented in Sections 5.1 to 5.3.

5.5 Baseline Model

The results acquired during this work were compared to the ones

obtained with the baseline model proposed by [13], which is briefly

presented in this section.

The baseline model consists of a 64-dimensional Gated Recur-

rent Unit (GRU) layer with a dropout rate of 0.2 followed by a

64-dimensional fully-connected layer that outputs a single value as

the PHQ score. The loss function used during the train is a CCC-

based loss function and a batch size of 15 is used consistently. All

the available audio and visual features were input to this baseline

model and the fusion of the various audiovisual representations

was obtained by averaging their scores.

6 EXPERIMENTS AND RESULTS

In this section, the main results acquired with the models described

in Section 5 will be presented and discussed. Moreover, experiments

conducted in order to evaluate the number of CNN and GCNN

blocks used in these models as well as the application of different

visual features to themodel presented in Section 5.3 are also exposed

in this section.

6.1 Number of CNN/GCNN blocks 1

In this section, the models presented in Sections 5.1.2 and 5.2.2

were trained with different amounts of GCNN and CNN blocks

respectively in order to identify the ideal model configuration for

the depression assessment evaluated with the CCC metric. Apart

from the number of blocks, the other model hyperparameters were

1The experiments presented in this Section were conducted after the AVEC 2019
DDS submission. Thus, the models presented here were not evaluated in the test
partition, but only in the validation set.

defined as presented in Sections 5.1.2 and 5.2.2. Each model con-

figuration was trained five times and the average CCC and the

maximum CCC on the development partition were acquired.

For the GCNN-LSTM audio model presented in Section 5.1.2,

models with 1 to 10 gated blocks were evaluated with the CCC

metric. For eachmodel configuration, 5 models were trained and the

maximum CCC as well as the average CCC for each configuration

are reported in Figure 7.

Figure 7: Maximum and mean CCC acquired with different

number of gated blocks applied to the CGNN-LSTM audio

model presented in Section 5.1.2. The maximum CCC value

shown in the graph is equal to 0.497 and it was achieved with

the GCNN-LSTM text model with 10 GCNN blocks.

From the graph depicted in Figure 7, it is possible to conclude that

the mean CCC is relatively robust to the audio model configuration.

However, the maximum CCC seems to have its higher values for

models with 6 and 10 gated blocks. Although we have tested models

with only 1 to 10 gated blocks, models with a larger amount of gated

blocks should be further investigated since the graph in Figure 7

seems to show a trend for an increase in the CCC value.

The convolution filters’ configuration for each tested model

was defined in an ablation manner. Thus, the configura-

tion defined in Section 5.1.2 for 10 gated blocks, N =

[512, 256, 256, 128, 128, 64, 64, 32, 32, 16], had its smaller filter re-

moved one by one. Therefore, a 9 gated blocks configuration was

defined as N = [512, 256, 256, 128, 128, 64, 64, 32, 32] and a 4 gated

blocks, as N = [512, 256, 256, 128], for example.

For the text model presented in Section 5.2.2, models with 1 to

12 CNN blocks were trained and evaluated on the development

partition. A graph with the average and the maximum CCC for

each model configuration is depicted in Figure 8.

As it can be concluded from Figure 8, the model configuration

with 8 blocks achieve the best maximum and average CCC values

on the development partition. Moreover, the addition of blocks

seems to improve the performance evaluated with the CCC metric

from the model with 3 CNN blocks until the model with 8 blocks.

However, the addition of extra CNN blocks to the 8 CNN blocks-

LSTMmodel does not contribute to improve the model performance

on the development partition.



Figure 8: Maximum and mean CCC acquired with different

number of CNNblocks applied to the CNN-LSTM textmodel

presented in Section 5.2.2. The maximum CCC value shown

in the graph is equal to 0.685 and it was achieved with the

CNN-LSTM text model with 8 CNN blocks.

Table 1: Size N of convolution filters, from the input to the

output, of each CNN-LSTM text model configuration

CNN blocks Convolution Filters’ Configuration

8 [128, 64, 64, 64, 64, 32, 32, 32]

9 [128, 64, 64, 64, 64, 32, 32, 32, 16]

10 [128, 64, 64, 64, 64, 32, 32, 32, 16, 16]

11 [128, 64, 64, 64, 64, 32, 32, 32, 16, 16, 8]

12 [128, 64, 64, 64, 64, 32, 32, 32, 16, 16, 8, 4]

The convolution filters’ configuration for each CNN-LSTM text

model was also performed in the same ablation manner as in the

GCNN-LSTM audio model starting from the 7 blocks configuration

exposed in Section 5.2.2. For models with more than 7 convolution

blocks, the filter configuration is summarized in Table 1.

6.2 Different visual features 1

The model presented in Section 5.3 was tested with all the visual

features that are available in the database used for the AVEC 2019

DDS. Therefore, features extracted with VGG-16 and ResNet-50

architectures as well as Bag-of-Visual-Words (BoVW) and Facial

Action Units (FAUs) were utilized. As in Section 6.1, models with

1 to 10 gated blocks were evaluated and the best CCC for each

combination of input features and model configuration is presented

in Table 2.

As it can be observed from Table 2, the best model has 7 gated

blocks and it uses VGG-extracted features as input. Moreover, it can

be concluded that, for most of the models’ configurations, a model

that uses features extracted with deep models (VGG and ResNet)

will have better results when compared to the same model using

BoVW or FAUs approaches. This observation can be explained

from the deep models’ ability of extracting highly representative

features and from the challenge of defining significant features in a

handcrafted approach.

Table 2: Best CCC for different combinations of visual fea-

tures and number of gated blocks applied to the visual

model presented in Section 5.3. Cells filled with ‘-’ indicate

that it was not possible to acquire the corresponding results

due to model limitations.

Gated Blocks
CCC

FAUs BoVW VGG ResNet

1 0.110 0.142 0.354 0.222

2 0.109 -0.012 0.365 0.200

3 0.111 0.195 0.365 0.123

4 0.107 0.041 0.283 0.174

5 0.113 0.238 0.152 0.104

6 0.105 0.070 0.257 0.325

7 0.100 -0.035 0.373 0.121

8 0.096 0.154 0.246 0.273

9 - -0.034 0.218 0.311

10 - 0.185 0.277 0.372

6.3 Results

The results are summarized in Table 3. The Concordance Corre-

lation Coefficient (CCC) and the Root Mean Square Error (RMSE)

metrics were calculated for unimodal and multimodal models on

both the development and the test partitions. The test set results

are reported in Table 3 according to the information provided by

the AVEC challenge organizers on four of our models. The CCC and

RMSE results in Table 3 for the baseline model correspond to the

higher values reported in [13] regardless of the model that provided

these results. Thus, the value of 0.336 for the CCC score on the

development set and 5.03 and 6.37 for the RMSE on the respective

development and test partitions were obtained with the baseline

fusion model. Moreover, the result reported as 0.120 for the CCC

metric on the test partition was acquired with an unimodal model

that takes visual features extracted with a ResNet-50 network as

input.

In Table 3, the GCNN-LSTM audio model uses 10 gated blocks

and, although this model configuration achieves the best results

on the development set evaluated with the CCC metric compared

to audio models with less gated blocks, as discussed in Section 6.1,

models with more than 10 gated blocks should be further investi-

gated, since they might give better results.

From Table 3, it can be seen that the best model in both devel-

opment and test sets and in both CCC and RMSE metrics is the

model that fuses audio features extracted from the GCNN-LSTM

model, presented in Section 5.1.2 and text features acquired from

the CNN-LSTM architecture, introduced in Section 5.2.2. Moreover,

it is possible to conclude that, in every situation, the fusion of fea-

tures performed by multimodal models gives better results when

compared to the unimodal models that generated these features.

Thus, these results confirm the premise that multiple modalities

provide a richer characterization of reality when compared to single

modalities representations for the task of depression assessment.

However, the combination of audio, text and visual features

gives worse results when compared to the fusion of audio and text

features only. This discrepancy might be explained from the fact



Table 3: Results evaluated with CCC and RMSE metrics for the development (i.e. validation) and test sets for audio, text,

visual and feature-level fusion models. The audio models denominated by CNN and GCNN-LSTM (with 10 gated blocks) are

respectively introduced in Sections 5.1.1 and 5.1.2 and they use features extracted with a VGG-16 architecture as their input.

The textmodels indicated by LSTMandCNN-LSTM (7CNNblocks-LSTMand 8CNNblocks-LSTM) are respectively described in

Sections 5.2.1 and 5.2.2 and their input is extracted with a BERT-large architecture. The visualmodel is presented in Section 5.3

andwe report the results acquired with features extracted with a ResNet-50 architecture as discussed in Section 6.2. The fusion

models presented in this table combine highly representative features extracted from the unimodal models in a feature-level

fusion manner, as explained in Section 5.4.

Modality Model
CCC RMSE

Development Test Development Test

- Challenge baseline [13] 0.336 0.120 5.03 6.37

Audio
CNN 0.338 0.199 5.97 7.02

GCNN-LSTM 0.497 - 5.70 -

Text

LSTM 0.360 0.048 4.97 6.88

7 CNN blocks-LSTM 0.608 - 4.51 -

8 CNN blocks-LSTM 0.685 - 4.22 -

Visual GCNN 0.372 - 5.74 -

Fusion

CNN (audio) and LSTM (text) 0.452 0.213 5.08 6.42

GCNN-LSTM (audio) and 7 CNN blocks-LSTM (text) 0.696 0.403 3.86 6.11

GCNN-LSTM (audio), 7 CNN blocks-LSTM (text) and GCNN (visual) 0.624 - 4.86 -

that we used only a portion of the visual features extracted with

the ResNet-50 architecture since applying all features to the models

would be computationally costly. Therefore, from the experiments

conducted with visual features as the input, it was not possible to

validate the significance of this type of features for the depression

severity assessment.

Another conclusion that can be taken from the results presented

in Table 3 is that, for all the models evaluated on the test partition,

the CCC and the RMSE metrics were better when the model was

evaluated on the development set compared to the test set. This fact

indicates that the absence of a human conducting the interviewer

as a virtual agent has a negative impact on the performance of the

automatic depression diagnosis.

Finally, it can be observed that all the models presented in this

paper outperforms the challenge baseline [13] when evaluated over

the development partition with the CCC metric. Moreover, except

for the unimodal text model based on LSTM layers, there is an

improvement in all the reported CCC values for the test partition

when compared to the same baseline. The best model presented

in this paper, the multimodal fusion of audio features extracted

from the GCNN-LSTM model and text features acquired from the

CNN-LSTM architecture, outperforms the baseline in both CCC

and RMSE metrics and over the development and the test partitions.

7 CONCLUSION

In this work, a multimodal approach for automatic depression detec-

tion was presented. First, models that individually consider text, au-

dio and visual features were developed and tested. These unimodal

models were then used as highly representative feature extractors

and the resulting features were thus combined in a feature level fu-

sion manner. The best results presented in this paper, CCC = 0.696

for the development set and CCC = 0.403 for the test set, were

achieved with a multimodal model that combines text and audio fea-

tures. This result indicates that the utilization of multiple modalities

gives a richer representation of reality, from which an automatic

depression severity assessment system could benefit.

Moreover, the lower CCC and higher RMSE values for the test

partition in comparison with the development set for all presented

models reveal that the absence of a human conducting the virtual

agent has a negative impact on the automatic depression assessment

model accuracy.

Future research on more sophisticated fusion methods might im-

prove the overall performance and the robustness of the multimodal

model presented in this work. The possibility of improvement in the

textual feature representation due to a more accurate speech tran-

script should be also further investigated. In addition, although our

visual model gave suboptimal results compared to other unimodal

models in this work, a better way of learning from visual features is

another interesting and promising future direction to be explored

and it could improve our model’s accuracy since previous works

have shown that visual information provides important cues for

depression assessment. Finally, audio models with a larger amount

of gated blocks will also be considered as a future work.

The results presented in this work were submitted to the Au-

dio/Visual Emotion Challenge and Workshop (AVEC) 2019 in order

to compete on the Detecting Depression with AI Sub-Challenge

(DDS).
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