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Abstract

Fake news with textual and visual contents has

a better story-telling ability than text-only con-

tents, and can be spread quickly with social

media. People can be easily deceived by such

fake news, and traditional expert identification

is labor-intensive. Therefore, automatic detec-

tion of multimodal fake news has become a

new hot-spot issue. A shortcoming of exist-

ing approaches is their inability to fuse multi-

modality features effectively. They simply

concatenate unimodal features without consid-

ering inter-modality relations. Inspired by the

way people read news with image and text,

we propose a novel Multimodal Co-Attention

Networks (MCAN) to better fuse textual and

visual features for fake news detection. Ex-

tensive experiments conducted on two real-

world datasets demonstrate that MCAN can

learn inter-dependencies among multimodal

features and outperforms state-of-the-art meth-

ods.

1 Introduction

The rapid growth of social media has created fer-

tile soil for the emergence and fast spread of fake

news (Zhao et al., 2015), resulting in serious conse-

quences. For example, during the U.S. 2016 pres-

idential election, the most popular fake news was

more widely spread than the most popular authen-

tic news on Facebook, which confused people and

broke the authenticity balance of the news ecosys-

tem (Shu et al., 2017). To mitigate the negative

effects caused by fake news, it is crucial to detect

fake news on social media automatically.

Tweets with images are getting popular on social

media recently, which have richer information and

attract more viewers than tweets with only texts

(Jin et al., 2017). Fake news also makes full use of

this advantage to draw and mislead readers. Figure

1 shows three examples of fake news from Twitter.
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Sharks in the mall! After 
the hurricane sandy!

Lenticular Clouds over 
Mount Fuji.

Woman, 36, gives birth 
to 14 children from 14 
different fathers.

Figure 1: Some fake news from Twitter.

In the left example, both text and image indicate

it is likely to be fake. The text of the middle one

provides little evidence that it is fake news, but the

image is obviously forged. In the right example, the

image seems normal, while the textual contents in-

dicate that it is probably fake. A hypothesis drawn

from these examples is that combining text and the

attached image is more conducive to detecting fake

news.

Recent works have a growing interest in using

multimodal (text + image) information to detect

fake news. Jin et al.(2017) utilize local attention

mechanisms to fuse features of image, text, and

social context. Some studies explore to learn the

joint representations of text and image, based on

auxiliary adversarial networks (Wang et al., 2018)

and variational autoencoders (Khattar et al., 2019).

Nevertheless, they are not fine-grained enough in

feature extraction and feature fusion. First, some

studies require labor-intensive extra information,

such as social context (Jin et al., 2017) and event

category (Wang et al., 2018), to help detect fake

news, which increases the cost of the detection.

Second, except for texts in tweets, the methods

mentioned above all focus on characteristics of im-

ages at the semantic level (e.g., emotional provoca-

tions), which can be reflected in the spatial domain.

However, these methods ignore the individual in-

formation of fake images at the physical level, e.g.,

re-compression artifacts, which is reflected in the

frequency domain (Qi et al., 2019). Third, some
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models (Wang et al., 2018; Khattar et al., 2019) ob-

tain fused representations by simply concatenating

multi-modality features. Although leverages local

attention mechanism, the attention values of att-

RNN (Jin et al., 2017) are only obtained from joint

textual-social representations, which cannot reflect

the similarity between textual-social representa-

tions and visual representations. Intuitively, when

people judge news credibility with text and image,

they often observe image first and then read text

(Wang et al., 2020). This process may be repeated

several times. In this process, people understand

image according to the textual information, and

understand text according to the associated image

information. So the information of one modality is

conditionally fused with that of another modality

for once or multiple times. Intuitively, there are

inter-modality attention relations between image

and text. However, existing state-of-the-art meth-

ods are weak to fuse multimodal features due to

their neglect of inter-modality interactions.

To address the aforementioned challenges, we

propose the Multimodal Co-Attention Networks

(MCAN) for fake news detection by considering

multimodal features. In our proposed model, we

first extract spatial-domain features and frequency-

domain features from image, as well as textual

features from text. Then we develop a novel fusion

approach with multiple co-attention layers to learn

inter-modality relations, which fuses visual fea-

tures first, and then the textual features. The fused

representation obtained from the last co-attention

layer is used for fake news detection.

The contributions of this paper can be summa-

rized as follows: (1) We propose a novel end-to-end

approach to detect fake news on social media only

using the text and the attached image, without any

extra information and auxiliary tasks. (2) The pro-

posed MCAN model stacks multiple co-attention

layers to fuse the multimodal features, which can

learn inter-dependencies among them. (3) Our

MCAN model is a general framework for fake news

detection, and the components of MCAN are flexi-

ble. The sub-networks used to extract multimodal

features can be replaced by different models. More-

over, the modular fusion process of MCAN allows

our model to handle more modalities conveniently.

(4) We evaluate MCAN on two large scale real-

world datasets. The results demonstrate that our

model outperforms the state-of-the-art models.

The rest of the paper is organized as follows:

In Section 2, we summary previous related work

on fake news detection. In Section 3, we detail

our proposed model. The datasets, baselines, and

experiment results are presented in Section 4. We

conclude the study in Section 5.

2 Related Work

Following the previous work (Ruchansky et al.,

2017; Shu et al., 2017), we specify that fake news

is the news that is intentionally fabricated and

can be verified as false. Existing methods for fake

news detection can be divided into unimodal ap-

proaches and multimodal approaches.

2.1 Unimodal Fake News Detection.

Textual features are extracted from text content,

including statistical features, such as the number

of paragraphs in the text (Volkova et al., 2017),

the percentage of negative words (Potthast et al.,

2017; Bond et al., 2017), the number of punctuation

and emojis (Castillo et al., 2011), and semantic

features, such as writing styles (Chen et al., 2015)

and language styles (Feng et al., 2012). However,

these features are hand-designed, bringing bias and

design difficulty. To address this problem, many

studies use deep learning technologies, such as

RNN (Ma et al., 2016), CNN (Yu et al., 2017), and

GAN (Ma et al., 2019), to identify fake news. Their

results show that deep learning methods perform

better.

Visual features are important for news verifi-

cation (Jin et al., 2016; Shu et al., 2017), such as

clarity score (Jin et al., 2016), the number of im-

ages (Wu et al., 2015; Jin et al., 2016). However,

these features are manually crafted and just learn

simple patterns, hardly applying to real images. Qi

et al. (2019) design a CNN-based model to capture

image patterns, but their model only works in the

case of large samples. So the applicable scope is

very limited.

Social context features are born in the social

connection between users and tweets, such as user

profile and the number of posts. Liu et al. (2018)

use user profiles on the news propagation path

to determine the truth of the news. Some other

works model propagation patterns as tree structures

based on kernel methods (Wu et al., 2015; Ma et al.,

2017). However, social context features are hand-

crafted, incomplete, and unstructured.

The above work embodies the limitations of uni-

modal features in detecting fake news. In this paper,
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Figure 2: The architecture of our MCAN model.

we consider multiple modalities simultaneously

when detecting fake news.

2.2 Multimodal Fake News Detection.

Recent works explore to fuse multimodal features.

Jin et al. (2017) use local attention mechanism

to fuse textual, visual, and social context features.

Wang et al. (2018) learn event-invariant features

by an aided adversarial network. Khattar et al.

(2019) utilize autoencoders coupled with a detector

to learn the shared representation of the text and

the attached image. However, they ignore the char-

acteristics of fake images at physical level (e.g., re-

compression artifacts), and the fused features they

learned lack correlations across multiple modali-

ties.

To overcome the limitations of existing works,

we propose MCAN to learn inter-dependencies

among modalities. We extract spatial-domain and

frequency-domain features of image, and textual

features. Then we fuse them through a deep co-

attention model inspired by a realistic scenario.

3 Methodology

3.1 Model Overview

Our model aims to learn multimodal fusion repre-

sentations by considering dependencies across the

modalities. As shown in Figure 2, the proposed

model has three major procedures: feature extrac-

tion, feature fusion, and fake news detection.

Given news with text and image, we first utilize

three different sub-models to extract features from

spatial domain, frequency domain, and text. Then

the multi-modality features are fused through a

deep co-attention model, which consists of multiple

co-attention layers. At last, the output of the co-

attention model is used for judging the truth of the

input news.

3.2 Feature Extraction

…
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Figure 3: The detailed architecture of feature extraction

in frequency domain.

Spatial-Domain Feature. To learn the semantic-

level characteristics of the given image, we employ

the VGG-19 network (Simonyan and Zisserman,

2014) to extract visual features from spatial domain.

After the second of the last layer of VGG-19, we

add a fully connected layer (denoted as “s-fc” in

Figure 2) with ReLU activation function to generate

a d × 1 dimensional feature representation of the

input image in spatial domain, which is denoted as

RS ∈ R
d×1.

Frequency-Domain Feature. Fake-news im-

ages are often re-compressed images or tampered

images that show periodicity in frequency domain

(Qi et al., 2019), which can be easily captured by

CNNs. Thus we design a CNN-based sub-network

to extract features from frequency domain, as in

Figure 3. The image is transformed from spatial
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domain to frequency domain through discrete co-

sine transform (DCT) as in Qi et al. (2019). After

that, we obtain 64 vectors H0, H1, . . . , H63, which

are then sampled to the fixed size 250. For parallel

computation, we pick 64 250-dimensional vectors

into a matrix HF ∈ R
(64×250), which is fed to the

CNN-based network later. The CNN-based sub-

network consists of a major network along with

multi-branch networks. The earlier parts of the ma-

jor network have three convolutional blocks and a

max-pooling layer. The multi-branch networks are

the same as architectures in Inception V3 (Szegedy

et al., 2016). The last parts of the major network are

a max-pooling layer followed by a convolutional

block. Each convolutional block is comprised of

a two-dimensional convolutional layer with batch

normalization and ReLU activation function. After

adding a fully connected layer with ReLU activa-

tion function (denoted as “f-fc” in Figure 2), we

obtain the feature representation of the image in

frequency domain RF ∈ R
d×1.

Textual Feature. The text content of the tweet

is a sequential list of words denoted as T =
[T1, T2, . . . , Tn], where n is the number of words

in a tweet, and each word Ti ∈ T is tokenized by a

pre-prepared vocabulary (Devlin et al., 2018). Re-

cently, the BERT model (Devlin et al., 2018) which

is pre-trained on a large language corpus, has been

proven to perform very well in multiple natural

language processing tasks. Thus we utilize BERT

to obtain the aggregate sequence representation as

textual features we desired. The textual feature is

then resized to be a d × 1 dimensional represen-

tation (denoted as RT ) by a fully connected layer

with ReLU activation function.

3.3 Feature Fusion

Intuitively, people often look at the image first and

then read the text when reading the news with im-

age and text. This process may be repeated sev-

eral times, continuously fusing image and text in-

formation. Therefore, we develop a novel fusion

approach to simulate this process. Before present-

ing the fusing process, we first introduce its ba-

sic unit, the co-attention (CA) block. We achieve

feature fusion by cascaded stacking multiple CA

layers, which consists of two parallelly connected

CA blocks.

Co-attention block. Co-attention block (Lu

et al., 2019) is a variant of the standard multi-head

self-attention (MSA) block (Vaswani et al., 2017),

Multi-Head

Attention

Add & Norm

Feed Forward

Add & Norm

𝐕𝐊𝐐
(a) Self-attention block

Multi-Head

Attention

Add & Norm

Feed Forward

Add & Norm

𝐕𝐊𝐐
(b) Co-attention block

Figure 4: Illustration of the self-attention block and the

co-attention block.

which can capture global dependencies of all po-

sitions in a sequence and is widely used in NLP

and VQA tasks (Nguyen and Okatani, 2018; Gao

et al., 2019). The MSA block showed in Figure 4(a)

consists of a multi-headed self-attention function

and a fully connected feed-forward network, both

wrapped a residual connection followed by layer

normalization. The input of MSA is first used to

compute (d × 1)-dimensional queries, keys, and

values packed into matrixes Q, K, V , respectively.

The similarity of the dot product between Q and

K determines the attention distribution on the V .

Multi-head attention function with m heads has

m self-attention functions in parallel. For the i-th
head, the inputs are transformed from Q, K, and

V as follow:

Qi = QWQ
i , Ki = KWK

i , Vi = VW V
i (1)

where WQ
i ,WK

i ,W V
i ∈ R

1×dh are the projection

matrices for the i-th head, dh = d/m is the dimen-

sionality of the output feature of each head.

The calculation process of multi-head self-

attention function can be presented as follows:

MA(Q,K, V ) = hWO (2)

h = h1⊕ h2⊕...⊕ hm

hi = A(Qi,Ki, Vi) = softmax(
QiK

T
i√

dh
)Vi

where WO ∈ R
mdh×1, ⊕ denotes concatenation

of vectors.

The fully connected feed-forward network con-

sists of two linear transformations with a ReLU

activation function in between,

FFN(x) = max(0, xW1)W2 (3)
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where the dimensionality of input and output is

d× 1, and the inner-layer dimensionality is dff .

The co-attention block (denoted as ”Co-Attn”) is

extended from the MSA block, as shown in Figure

4(b). For a Co-Attn block, the queries are from one

modality while keys and values are from another

modality. Especially, the query matrice is used as

a residual item after the multi-head attention sub-

layer. The rest architectures are the same as MSA.

The Co-Attn block produces an attention-pooled

feature for one modality conditioned on another

modality. If Q comes from text and k and V come

from the attached image, the attention value calcu-

lated using Q and K can be used as a measure of

the similarity between the text and image, and then

weights the image. Just like humans, after reading

the text, they will pay more attention to the areas

in the image that are similar to the text. We believe

that co-attention can simulate this process and learn

inter-dependencies between different features.

Co-attention layer. We obtain a CA layer by

connecting two Co-Attn blocks in parallel, as

shown in Figure 2. Giving two Co-Attn blocks

different features, the CA layer computes queries,

keys, and values for each Co-Attn block as in a

MSA block. Then the keys and values of one Co-

Attn block are passed as input to another Co-Attn

block. The outputs of two Co-Attn blocks are con-

catenated together and then fed into a fully con-

nected layer to get the fused representation. The

CA layer models dense interactions between input

modalities by exchanging their information.

Multiple co-attention stacking. In order to fuse

multimodal features deeply, we stack 4 CA layers

in depth. The fusion process is progressive, and

the output of each CA layer is one of the inputs of

the next layer (see Figure 2). We first fuse spatial-

domain representation RS and frequency-domain

representation RF in first CA layer and obtain R
(1)
C .

Then RF are enhanced to fuse with R
(1)
C in the sec-

ond CA layer which outputs R
(2)
C . In the third and

fourth layers, the inputs are the output of the previ-

ous layer and text representation RT , and outputs

are R
(3)
C and R

(4)
C , respectively. The output vector

of each CA layer is d-dimensional.The calculation

processes are formulated as follows. Due to the

page limit, we only show the calculation processes

in the first CA layer and skip the repeated calcula-

tion details of other layers.

RCS←F
= RS +MA(RS , RF , RF ) (4)

R
C
′

S←F

= RCS←F
+ FFN(RCS←F

)) (5)

RCF←S
= RF +MA(RF , RS , RS) (6)

R
C
′

F←S

= RCF←S
+ FFN(RCF←S

) (7)

R
(1)
C = (R

C
′

S←F

⊕R
C
′

F←S

)W
(1)
C (8)

where R
C
′

S←F

∈ R
d is the attention-pooled feature

for spatial domain conditioned on frequency do-

main, R
C
′

F←S

∈ R
d is the attention-pooled feature

for frequency domain conditioned on spatial do-

main, and W
(1)
C ∈ R

2d×d is the projection matrice

of the first CA layer. R
(1)
C is transformed to be a

(d × 1)-dimensional representation before being

input to the next CA layer. Specifically, the first

and the third CA layers share parameters, and the

second and the fourth CA layers share parameters.

3.4 Model Learning

We have obtained the multimodal feature represen-

tation R
(4)
C fused features of text, spatial domain,

and frequency domain. Let f = R
(4)
C , which is

used to predict. The output of the proposed MCAN

is the probability of a tweet being fake:

ŷ = softmax (max(0, fWf )Ws) (9)

where Wf is parameters of the fully connected

layer, and Ws is parameters of the linear layer in

the softmax layer. The loss function is devised to

minimize the cross-entropy value:

L (Θ) = −y log (ŷ)− (1− y) log (1− ŷ) (10)

where y is the ground truth, with 1 representing

fake news and 0 representing real news, and Θ
denotes all learnable parameters in the proposed

model.

4 Experiments

4.1 Datasets

To evaluate the effectiveness of the proposed

MCAN, we conduct experiments on two public

real-world datasets, which are collected from Twit-

ter and Weibo, respectively. The Twitter dataset

was released for Verifying Multimedia Use task

at MediaEval (Boididou et al., 2016). The Weibo

dataset is collected by Jin et al. (2017). In the
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Twitter Weibo

# of fake news 8199 4211

# of real news 6681 3639

# of images 512 7850

Table 1: Statistics of two datasets.

Weibo dataset, the real news is verified by an au-

thoritative news agency in China, Xinhua News

Agency. The fake news is verified by the official

rumor debunking system of Weibo. The tweets in

each dataset contain texts, attached images/videos,

and social context information. In this work, we

focus on text and image information. So we re-

move the tweets with videos and the tweets without

texts or images. In Twitter dataset, 512 images are

shared by the remaining data. When preprocessing

the Weibo dataset, the steps we used are similar to

that in the work (Jin et al., 2017). We keep the same

data split scheme as the benchmark on these two

datasets. The detailed statistics of the two datasets

are listed in Table 1.

4.2 Experimental Settings

The max length of the text is 25 on Twitter and

160 on Weibo. The hidden size of ”s-fc”, ”f-fc”

and ”t-fc” are 256. We set d=256, m = 4, and dff
= 512. The hidden size of ”p-fc” is 35. The pa-

rameters of VGG-19 and BERT are frozen when

training on Twitter dataset due to overfitting, but

not on Weibo dataset. The BERT model used on

Twitter dataset is multilingual cased BERT-based

model and the one used on Weibo dataset is Chi-

nese BERT-based model. Our proposed model is

trained for 100 epochs with early stopping. We

use Adam (Kingma and Ba, 2014) and AdaBelief

(Zhuang et al., 2020) as optimizers on Twitter and

Weibo datasets, respectively, to seek the optimal

parameters of our model. The optimal hyperparam-

eters of our model are determined by grid searching,

and the selection criterion is accuracy. The hyper-

parameters of baselines are the same as those in

respective studies.

4.3 Baselines

To validate the effectiveness of MCAN, we choose

two categories of baseline models: unimodal mod-

els and multimodal models, which are listed as

follows: (1) Text: a BERT model coupled with the

decision network in MCAN, using textual informa-

tion. (2) Spatial: a model consists of a VGG-19

model and the decision network of MCAN, utiliz-

ing image information in spatial domain. (3) Freq:

proposed MCAN only has the part of dealing with

frequency-domain features. (4) VQA (Antol et al.,

2015): a model aims to answer questions accord-

ing to the given images. For fair comparisons, we

use a one-layer LSTM. (5) NeuralTalk (Vinyals

et al., 2014): a deep recurrent framework for image

caption. The joint representation of image and text

is obtained by averaging the output of RNN at each

timestep. (6) att-RNN (Jin et al., 2017): att-RNN

utilizes local attention to fuse textual, visual, and

social context features. For a fair comparison, we

remove the part dealing with social context infor-

mation. (7) EANN (Wang et al., 2018): A neural

network based on the adversarial idea to remove

the event-specific features. In EANN, event iden-

tification is an auxiliary task, and event labels are

not in original datasets. For a fair comparison,

we removed the event discriminator. (8) MVAE

(Khattar et al., 2019): MVAE learns shared rep-

resentations of text and image using a variational

autoencoder coupled with a binary classifier. We

use the same model as in the original work (Khattar

et al., 2019). (9) MCAN-A: MCAN without the

part of fusing multimodal features. Spatial-domain

features, frequency-domain features, and textual

features are simply concatenated for prediction.

4.4 Performance Comparison

Table 2 shows the results of baselines and our pro-

posed model on two datasets. We can observe that

the proposed MCAN outperforms all the baselines

over all metrics across two datasets.

There are many similar trends on the two

datasets. MCAN-A performs better than unimodal

models, which indicates that adding features usu-

ally improves model performance, but it is not

always positively correlated. For example, Text

on Weibo dataset is better than MCAN-A. After

adding the process of multimodal fusion, our pro-

posed MCAN beats MCAN-A and other multi-

modal models, which embodies our proposed fea-

ture fusion method is indeed better than the simple

concatenation method.

There are also some differences on the two

datasets. The performance of Text (BERT) and

Spatial (VGG-19) on Weibo dataset is much better

than that on Twitter dataset. The reason is related

to the dataset itself. On Weibo dataset, the average

length of a tweet is about 10 times of that of a tweet
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Dataset Method Accuracy
Fake News Real News

Precision Recall F1 Precision Recall F1

Twitter

Text 0.633 0.656 0.762 0.705 0.587 0.459 0.515
Spatial 0.671 0.841 0.527 0.648 0.574 0.864 0.69
Freq 0.665 0.733 0.656 0.692 0.592 0.677 0.631
VQA 0.631 0.765 0.509 0.611 0.55 0.794 0.65
NeuralTalk 0.610 0.728 0.504 0.595 0.534 0.752 0.625
att-RNN 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN 0.648 0.81 0.498 0.617 0.584 0.759 0.66
MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.73
MCAN-A 0.737 0.840 0.671 0.746 0.65 0.827 0.727
MCAN 0.809 0.889 0.765 0.822 0.732 0.871 0.795

Weibo

Text 0.876 0.885 0.871 0.878 0.865 0.878 0.871
Spatial 0.857 0.85 0.877 0.863 0.863 0.834 0.848
Freq 0.717 0.728 0.724 0.726 0.706 0.710 0.708
VQA 0.736 0.797 0.634 0.706 0.695 0.838 0.76
NeuralTalk 0.726 0.794 0.713 0.692 0.684 0.840 0.754
att-RNN 0.772 0.854 0.656 0.742 0.72 0.889 0.795
EANN 0.782 0.827 0.697 0.756 0.752 0.863 0.804
MVAE 0.824 0.854 0.769 0.809 0.802 0.875 0.837
MCAN-A 0.869 0.868 0.879 0.874 0.869 0.857 0.863
MCAN 0.899 0.913 0.889 0.901 0.884 0.909 0.897

Table 2: The results of different methods on two datasets

on Twitter dataset, which probably makes BERT

perform better on Weibo dataset. Moreover, more

than 70% of tweets on Twitter dataset are related

to a single event. Thus, the training samples of

BERT and VGG-19 are too similar, resulting in

poor performance of model generalization. This is

the reason why we fine-tuned BERT and VGG-19

on Weibo dataset but not on Twitter dataset. They

are easy to overfit on Twitter dataset. But Weibo

dataset has no such imbalanced issue.

On Weibo dataset, the accuracy of fine-tuned

BERT and VGG-19 all exceed 85%. In this case,

our proposed MCAN further improves the accuracy

to close to 90% with the help of cascaded way of

stacking CA layers. Comparing with the situation

on Twitter dataset, we can find that our model per-

forms better in the face of weak unimodal features.

In our MCAN model, the representation ability

of features can be greatly improved by effectively

fusing other features.

4.5 Ablation Analysis

Quantitative Analysis. To evaluate the effective-

ness of each component of the proposed MCAN,

we remove each one from the entire model for

comparison. “ALL” denotes the entire model

MCAN with all components, including spatial-

domain representation (S), textual representation

(T), frequency-domain representation (F), and co-

attention layers (A). After removing each one of

them, we obtain the sub-models “-S”, “-T”, “-F”

and “-A”, respectively. “-F-A” denotes the reduced

MCAN without both frequency-domain representa-

tion and co-attention layers. The results are exhib-

ited in Figure 5.

Figure 5: MCAN ablation analysis in Accuracy.

We can see that every component plays a signifi-

cant role in improving the performance of MCAN.

MCAN beats MCAN-F, which reveals that the fre-

quency domain information is indeed helpful to

detect fake news. On Twitter dataset, the contribu-

tion of textual representations to the entire model

is less than that of visual representations, while

the situation on Weibo dataset is opposite. This is

still due to the imbalanced issue and the less av-

erage length of a tweet on Twitter dataset, which

decrease the performance of the textual represen-
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tation. Besides, on Weibo dataset, removing one

or two components, the performance of MCAN

does not drop significantly as on Twitter dataset.

This benefits from balanced data distribution and

the stability of fine-tuned BERT and VGG-19, as

mentioned in Section 4.4.

(a) MCAN-A

(b) MCAN

Figure 6: Visualizations of learned latent feature repre-

sentations.

Qualitative Analysis. To illustrate the effective-

ness of co-attention layers in MCAN, we quali-

tatively visualize the joint representation of three

modalities learned by MCAN-A and the fused rep-

resentation R
(4)
C learned by MCAN on Weibo test-

ing set with t-SNE (Maaten and Hinton, 2008), as

shown in Figure 6. The label of each tweet is real

or fake.

From Figure 6, we can observe that the separabil-

ity of the feature representation learned by MCAN

is much better than its reduced model MCAN-A.

MCAN-A can learn discriminable features, but

many features are still easily misclassified, showing

in Figure 6(a). On the contrary, the features learned

by MCAN are more discriminable with a more sig-

nificant segregated area between two types of sam-

ples, as exhibited in Figure 6(b). This is attributed

to the cascaded way of stacking co-attention layers

in MCAN, which fuses the characteristics of mul-

tiple modalities deeply and boosts to distinguish

fake news and real news.

From the above phenomena, we can conclude

that the proposed method MCAN learns better and

more distinctive feature representations with the co-

attention layers, thus achieving better performance.

4.6 Case Studies

To further illustrate the importance of multimodal

features for fake news detection, we compare the

results reported by MCAN and unimodal models

(Text and Spatial) and exhibit some fake news cor-

rectly captured by MCAN but missed by unimodal

models.

Before washed away by flood, an 
Indian man calmly gave the last 
gesture to a photographer.  

A group of dolphins brought a dog 
that fell into a canal to safe area.

Figure 7: Some fake news detected by MCAN but

missed by Text on the Weibo dataset.

Figure 7 shows two top-confident tweets suc-

cessfully detected by MCAN but missed by text-

only MCAN. The textual contents of the two exam-

ples can provide little evidence that it is fake news.

However, the two attached images seem forged

pictures.

The water mantis lives in sewers. 
Its head has two to three times the 
poison of pufferfish and has no 
antidote.   

Several urban management officers 
are frantically plundering street-
side property worth more than 100 
million yuan.

Figure 8: Some fake news detected by MCAN but

missed by Spatial on the Weibo dataset.
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In Figure 8, the two examples are detected by

MCAN but missed by Spatial. The attached images

in two examples look normal. However, the words

in the tweet seem exaggerated and unbelievable. It

is challenging for spatial-domain-only MCAN to

detect, but with multimodal features, our MCAN

model identifies them correctly.

These comparative cases prove that when a

single-modal model, whether a text-based model or

an image-based model, cannot correctly distinguish

fake news, the proposed MCAN using multimodal

features can give high confidence.

5 Conclusions

In this work, we propose a novel Multimodal Co-

Attention Networks (MCAN) to tackle the chal-

lenge of fusing multimodal (textual and visual) fea-

tures for fake news detection. We utilize three

different sub-networks to extract features from text,

spatial domain, and frequency domain, respectively.

Then the three features are deeply fused by stack-

ing co-attention layers, which is inspired by human

behavior. When people read news with image, im-

age and text are read once or multiple times, and

continuously fused in brain. Experiments on two

public benchmark datasets for fake news detection

validate the effectiveness of MCAN, and the re-

sults show that MCAN outperforms the current

state-of-the-art methods. In the future, we plan to

extend the co-attention based fusion approach in

MCAN to other fake news research, such as fake

news diffusion.
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