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ABSTRACT 

Brain–computer interface technologies, such as steady-state visually evoked potential, P300, and 

motor imagery are methods of communication between the human brain and the external devices. Motor 

imagery–based brain–computer interfaces are popular because they avoid unnecessary external stimuli. 

Although feature extraction methods have been illustrated in several machine intelligent systems in 

motor imagery-based brain–computer interface studies, the performance remains unsatisfactory. There 

is increasing interest in the use of the fuzzy integrals, the Choquet and Sugeno integrals, that are 

appropriate for use in applications in which fusion of data must consider possible data interactions. To 

enhance the classification accuracy of brain-computer interfaces, we adopted fuzzy integrals, after 

employing the classification method of traditional brain–computer interfaces, to consider possible links 

between the data. Subsequently, we proposed a novel classification framework called the multimodal 

fuzzy fusion-based brain-computer interface system. Ten volunteers performed a motor imagery-based 

brain-computer interface experiment, and we acquired electroencephalography signals simultaneously. 

The multimodal fuzzy fusion-based brain-computer interface system enhanced performance compared 

with traditional brain–computer interface systems. Furthermore, when using the motor imagery-relevant 

electroencephalography frequency alpha and beta bands for the input features, the system achieved the 

highest accuracy, up to 78.81% and 78.45% with the Choquet and Sugeno integrals, respectively. Herein, 

we present a novel concept for enhancing brain–computer interface systems that adopts fuzzy integrals, 

especially in the fusion for classifying brain–computer interface commands. 
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I. INTRODUCTION 

Brain-computer interfaces (BCIs) are a method of communication between the human brain and an 

external device [1]. Among existing BCIs, motor imagery (MI) has been popular in recent years as an 

alternative communication pathway, and it is based on an individual voluntarily modulating 

electroencephalography (EEG) signals. In comparison with current existing BCI technologies, such as 

steady-state visually evoked potential [2], [3] and event-related potential [4], MI-based BCIs have the 

advantage of avoiding unnecessary external stimulus as the commands for controlling the external 

devices. BCI users can individually imagine their movements to trigger the MI-based BCI systems, not 

by their actual actions. Furthermore, EEG dynamics reveal the related brain areas when behaviors are 

performed by an individual during MI-based BCI experiments [5]. Because of the characteristics of this 

asynchronous BCI system [6], a variety of feature extraction techniques have been applied to 

differentiate between the EEG dynamics of left- and right-hand imagination. One of the frequently used 

algorithms for feature extraction in MI-based BCI systems is the common spatial pattern (CSP). 

However, the variance of extracted features from two classes of MI-based EEG data distributed by the 

CSP means high BCI classification accuracy is difficult to achieve with only a single classifier. Despite 

feature extraction methods have been illustrated in several machine intelligent systems in MI-based BCI 

studies [4], [7], [8], the overall performance remains unsatisfactory because of inter-participant and 

intra-participant variability. Such variability severely affects the discrimination of the methods between 

left-hand and right-hand MI commands. A recent study demonstrated that EEG modulations can be 

trained through motor learning [9]; however, this is time-consuming, and the limitations of EEG pattern 

recognition remain. Other studies have applied deep-learning techniques to enhance the performance of 

MI-based BCI systems [10], [11]; nevertheless, an enormous EEG dataset is required for performing 

such deep-learning techniques [12]. Therefore, how to extract the appropriate features and enhance BCI 

classification accuracy are the major challenges for developing an MI-based BCI system, especially 

among the different varieties of dynamic EEG data. Consequently, novel algorithms must be adopted for 

enhancing BCI performance. 

There is increasing interest in the use of fuzzy integrals [13]-[15], because of their wide applicability. 



 

   

The most relevant examples of fuzzy integrals are the Choquet [16] and Sugeno integrals [14]. Both 

make use of a fuzzy measure to consider the relevance of possible coalitions (i.e., the possible links 

existing between data). This feature of fuzzy integrals makes them highly appropriate for applications in 

which fusion of data while considering their possible interactions is a relevant step, such as in cases of 

image processing [17], [18]; classification [19]-[22]; or decision making [23]. Some of the most widely 

used averaging functions, such as weighted means or the ordered weighted averaging (OWA) operators, 

are specific cases of fuzzy integrals (see [13]). 

 Furthermore, several generalizations of the classical notion of fuzzy integrals have been introduced 

in the literature, specifically relaxing linearity in the definition of the Choquet integral. Of note are the 

CF [21], [24] and CF1, F2 [19] integrals. These generalizations have proven successful in classification 

problems, where they are able to obtain results as effectively as state-of-the-art classifiers (see [19] and 

[21]). An advantage of these generalizations of the Choquet integral is that monotonicity is not required 

as in usual aggregation functions; however, in many cases, the Choquet integral is directionally 

monotone (that is, increasing along a fixed direction, see [25], [26]), which provides it with greater 

flexibility than other fuzzy integrals.  

Considering the advantages, we adopted the fuzzy integrals after classification of the traditional BCI 

system, which can consider possible links for EEG signal processing, classification, and control 

commands. Our previous study [27] demonstrated the feasibility of implementing the fuzzy integral 

with particle swarm optimization to improve BCI performance. However, the proposed algorithm in 

reference [27] was only considering the varied features of different EEG frequencies, but not 

considering the features from different classifiers. In addition, EEG signal has time-variant and 

individual difference properties such that we intend to apply fuzzy integrals to solve the problem. 

Therefore, adopting fuzzy integrals could compensate for using different EEG frequencies and 

classifiers during classification in the present study. The proposed novel classification framework, 

which named as the multimodal fuzzy fusion (MFF)-based BCI system, is illustrated in Section II. 

The experimental results in Sections III and IV show that adopting fuzzy integrals into the BCI system 

can enhance BCI performance in comparison with traditional BCI systems. Furthermore, using the 



 

   

MI-relevant EEG frequency alpha and beta bands as the input features fed into the proposed MFF-based 

BCI system maximized accuracy. Therefore, we present a novel concept of adopting fuzzy integrals in a 

BCI system, especially in the fusion for classifying BCI commands.   



 

   

II. MULTIMODAL FUZZY FUSION-BASED BRAIN COMPUTER INTERFACE SYSTEM 

 

 

 

To enhance MI-based BCI performance, we proposed to apply a multimodal fuzzy fusion framework 

to an MI-based BCI system in this study. Fig. 1 shows the system architecture of the proposed BCI, 

which consisted primarily of two parts: the first part follows the traditional BCI structure, and the other 

part contains the MFF framework embedded into the MI-based BCI. The following sections detail the 

data analysis approaches.  

A. Traditional BCI Structure 

The traditional BCI system structure included four parts: (1) EEG data acquisition and preprocessing, 

(2) fast Fourier transform (FFT), (3) a feature extraction method utilizing the CSP, and (4) control 

command by classifiers. The first step in developing the traditional BCI system was acquiring the EEG 

data from the commercial EEG device and performing band-pass filtering and artifact removal on the 

collected EEG signals. The second step was EEG feature transformation and feature extraction. We 

Fig. 1. System architecture of the proposed MFF-based BCI system. 



 

   

adopted FFT as the feature transformation to transfer the time-series EEG signals to different frequency 

bands, including the delta, theta, alpha, and beta bands. Subsequently, the CSP was used for feature 

extraction to extract the maximum spatial separability from the different EEG signals corresponding to 

the control commands. Last, pattern classification was performed on the extracted EEG signals using 

different classifiers to differentiate the commands for controlling the peripheral control device. Data 

analysis for each part is described as follows. 

1.) EEG Data Acquisition and Preprocessing  

Thirty-two EEG signals were collected by the Neuroscan system developed by Compumedics 

Ltd. (VIC, Australia). The sensor placements followed the standard international 10–20 system, 

and the reference channels were on the left and right mastoids. Contact impedances of all EEG 

electrodes must be below five kΩ. We selected four EEG channels placed at C3, C4, CP3, and 

CP4 to cover the motor cortex and sensorimotor cortex. After data acquisition, EEG signal 

preprocessing, including band-pass filtering with cutoff frequencies above 50 Hz and below 0.5 

Hz, was conducted manually using the open source toolbox EEGLAB [28], [29]. The concept 

for the MI-based BCI experiment design is described in Section III. 

2.) FFT  

FFT was used in this study to reduce the complexity of discrete Fourier transform computation 

and to rapidly transform the EEG signals into different frequency components. FFT analysis 

transformed the time-series EEG signals in each channel into the frequency range from 1 to 30 

Hz, covering the delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz) bands 

using a 50-point moving window segment overlapping 25 data points. 

3.) CSP 

The CSP, which is a well-known mathematical procedure commonly used in EEG signal 

processing, was used in this study to transform multivariate EEG signals into well-separated 

subcomponents with maximum spatial variation [30], [31]. We adopted the CSP to transform the 

MI-based BCI datasets with two classes into a well-separated feature map for classifying BCI 

commands. Thus, the EEG feature vectors of four channels extracted through the CSP with 



 

   

different frequency bands respectively in each EEG sample were estimated as the posterior 

probability in the classification step to evaluate MI-based BCI performance. 

4.) Classifications 

Three different classifiers, linear discriminant analysis (LDA), quadratic discriminant analysis 

(QDA) and k-nearest neighbors classification (k-NNC), were adopted to classify the transformed 

MI-based BCI data. Using these classifiers, we observed which classification had optimal 

performance for MI-based BCI classification. LDA is a popular linear classification method 

widely applied in statistics and machine learning. Mean vectors and covariance matrices of 

distinct classes are the main parameters of LDA, which are calculated for searching the 

appropriate discrete features and separating them into two or more classes. QDA is a common 

multivariate classification similar to LDA. Unlike LDA, which employs a linear boundary 

between the data points of distinct classes, QDA separates the estimates of two or more classes 

with a quadric surface. The k-NNC is a nonparametric method for BCI classification. An 

unlabeled testing data point is classified by estimating the k neighbors (k=9 in this study) nearest 

to the testing data point among the training samples. 

The classification accuracies of the MI-based BCI were calculated as the mean of the classification 

result for each sample. Statistical significance was estimated by paired t-test, with significance indicated 

by a p-value lower than 0.01 (p < 0.01). The posterior probabilities of left-hand and right-hand MI 

acquired from each classifier described previously were then fused using the Choquet or Sugeno fuzzy 

integral through the proposed MFF structure. 

 

B. Multimodal Fuzzy Fusion Framework 

To enhance the BCI performance, we proposed the MFF framework with the Choquet or Sugeno 

integrals to fuse the posterior probability obtained from the results of different classifiers. We 

considered that the EEG power changes of different frequencies affected the BCI performance more 

than using different classifiers did. Therefore, we implemented the frequency-based fuzzy fusion first 

before implementing the classifier-based fuzzy fusion to enhance the BCI performance for left-hand or 



 

   

right-hand classification commands. The following sections define the fuzzy integrals adopted in this 

study. 

1.) Choquet Fuzzy Integral Fusion  

The Choquet integral is a generalization form of an integral using fuzzy (nonadditive) measures. 

In a discrete setting, if 𝑔: 2𝑁  → [0, 1] (where 𝑁 = {1, . . . , 𝑛}) is a fuzzy measure (a set-valued 

increasing function such that 𝑔(∅) = 0  and 𝑔(𝑁) = 1), the Choquet integral is an aggregate 

function 𝐶𝑔: [0, 1]𝑛 →  [0, 1] defined, for each 𝑥 = (𝑥1, … , 𝑥𝑛) ∈  [0, 1]𝑛   and each 

membership function ℎ, as: 𝐶𝑔(ℎ) =  ∑ (ℎ(𝑥(𝑖)) −  ℎ(𝑥(𝑖−1)))𝑛𝑖=1  ⋅   𝑔(𝐴(𝑖)),    [M − C1]    (1) 

where 0 ≤  ℎ(𝑥(1)) ≤  …  ≤  ℎ(𝑥(𝑛)) , with the convention that ℎ(𝑥(0)) = 0 , and 𝐴(𝑖) ={(𝑖), … , (𝑛)} is the subset of indices of 𝑛 − 𝑖 + 1 largest components of (ℎ(𝑥1), … , ℎ(𝑥𝑛)). 

As stated in the introduction, the weighted arithmetic mean and OWA operators are special 

cases of the Choquet integral, Choquet integral-based aggregation functions represent a larger 

class of aggregation functions. Recall that, given a vector (𝑤1, … , 𝑤𝑛) ∈  [0, 1]𝑛  with 𝑤1 + ⋯ + 𝑤𝑛 = 1, the OWA operator associated to this vector is the function OWA: [0, 1]𝑛  [0, 1]𝑛 defined by OWA(𝑥1  , … , 𝑥(𝑛))  =  𝑤1𝑥(1) + … + 𝑤𝑛𝑥(𝑛),                                         (2) 

where 𝑥(1) ≥ ⋯ ≥ 𝑥(𝑛) is a decreasing reordering of the inputs (𝑥1, … , 𝑥𝑛) [8].  

In order to generalize the Choquet integral to obtain a pre-aggregation function (i.e., a 

function with the same boundary conditions as an aggregation function but that is only 

increasing along some fixed direction; see [25], [26]), two distinct approaches (approach A and 

approach B) are considered as follows. 

First, the approach A is to replace the product with a more general operation F [21]. In this 

sense, for a fuzzy measure 𝑔: 2𝑁 →  [0, 1]  and a function 𝐹: [0, 1]2 →  [0, 1], we define the 𝐶𝐹 integral as the function 𝐶𝑔𝐹: [0, 1]𝑛 →  [0, 1]  given by 𝐶𝑔𝐹(ℎ) =  ∑ 𝐹 (ℎ(𝑥(𝑖)) −  ℎ(𝑥(𝑖−1)), 𝑔(𝐴(𝑖)))𝑛𝑖=1 .                  (3) 



 

   

If 𝐹(𝑥, 𝑦) = 𝑥 ⋅ 𝑦, then we recover the standard Choquet integral as given by [M-C1]. For a 

general choice of F, the function 𝐶𝑔𝐹  is not required to be an aggregation function as 

monotonicity can be violated. If the function 𝐹 is such that either 

(i) 𝐹(0, 𝑥) = 0  and  𝐹(𝑥, 1) = 𝑥, or 

(ii) for all  𝑥 ∈  [0, 1],  𝐹(0, 𝑥) = 0,  𝐹(1, 1) = 1, and  𝐹  is  (1, 0)-increasing (i.e.,  𝐹(𝑥′, 𝑦) ≥  𝐹(𝑥, 𝑦)  if  𝑥′ > 𝑥  for every 𝑦 ∈  [0, 1]), 
then, for any fuzzy measure  𝑔, the  𝐶𝐹  integral defined by (3) is a pre-aggregation function 

(which is not generally an aggregation function). This is the case if we consider 𝐹 as the 

Hamacher t-norm: 𝑇𝐻(𝑥, 𝑦) = { 0,   if  𝑥 = 𝑦 = 0𝑥𝑦𝑥+𝑦−𝑥𝑦 , otherwise,                    (4) 

Denote the resulting function as [M-C2]. 

Second, in the approach B, we are considering the distributivity of the product, the standard 

Choquet integral [M-C1] can be written as 𝐶𝑔(ℎ) =  ∑ (ℎ(𝑥(𝑖)) ⋅   𝑔(𝐴(𝑖)) −  ℎ(𝑥(𝑖−1)) ⋅   𝑔(𝐴(𝑖)))𝑛𝑖=1 .       [M − C2]  (5) 

If two general operations, F1 and F2 [19], [24], are such that  

(i) 𝐹1  is  (1, 0)-increasing (i.e., F(x, y) ≥ F(z, y) whenever x > z), 

(ii) 𝐹1(0, 𝑦) = 𝐹2(0, 𝑦)  for every  𝑦 ∈  [0,1], 
(iii) 𝐹1(1,1) = 1, and 

(iv) 𝐹1 ≥  𝐹2, 

then the resulting  𝐶𝐹1,𝐹2 integral is a pre-aggregation function. In particular, this is the case 

considering  𝐹1 = 𝐹2 = 𝑚𝑖𝑛; that is,  𝐶𝑔𝑚𝑖𝑛,𝑚𝑖𝑛(ℎ) =  ∑ min (ℎ(𝑥(𝑖)), 𝑔(𝐴(𝑖))) −  min (ℎ(𝑥(𝑖−1)), 𝑔(𝐴(𝑖)))𝑛𝑖=1 .    [M − C3]  (6) 

This function, contrary to the case of the usual Choquet integral, is not averaging; that is, its 

output is not required to be between the minimum and maximum of the inputs.  

2.) Sugeno Fuzzy Integral Fusion  

As aforementioned, another fruitful generalization of the usual Lebesgue integral is the Sugeno 



 

   

integral [13], [14]. The Sugeno integral over the set 𝐴 = {𝑥1, … , 𝑥𝑛} of a membership function ℎ with respect to the fuzzy measure (confidence) 𝑔 is defined as 𝑆𝑔(ℎ) = sup𝛼∈[0,1] [min (𝛼, 𝑔(𝐴 ∩ 𝐹𝛼))],         [M − S1]   (7) 

where 𝐹𝛼 =  { 𝑥 ∣  ℎ(𝑥) ≥  𝛼 }. Therefore, The Sugeno integral function can be descried as 𝑆𝑔(𝑥) = max{min (ℎ(𝑥(𝑖)), 𝑔(𝐴(𝑖)))  ∣ 𝑖 = 1, … , 𝑛}.                  (8) 

With this definition, if ℎ(𝑥) = 𝑥  for every  𝑥 ∈  [0,1], 𝑆𝑔 is an averaging aggregation 

function.  

In general form, the  𝑆𝐹  integral is the function  𝑆𝑔𝐹  given by 𝑆𝑔𝐹(ℎ) = max{ 𝐹 (ℎ(𝑥(𝑖)), 𝑔(𝐴(𝑖))) ∣ 𝑖 = 1, … , 𝑛}.                  (9) 

  If we consider 𝐹(𝑥, 𝑦) = 𝑇𝐻(𝑥, 𝑦) (the Hamacher t-norm), that is, 𝑆𝑔𝑇𝐻(ℎ) = max { 𝑇𝐻 ( ℎ(𝑥(𝑖)), 𝑔(𝐴(𝑖))) ∣ 𝑖 = 1, … , 𝑛}.     [M − S2]  (10) 

If we consider the pre-aggregation function (but not the aggregation function) 𝐹(𝑥, 𝑦) =𝐵𝑇(𝑥, 𝑦) = 𝑥 ⋅  | 2𝑦 − 1|, that is,  𝑆𝑔𝐵𝑇(ℎ) = max { ℎ(𝑥(𝑖)) ⋅ |2𝑔( 𝐴(𝑖)) − 1| ∣  𝑖 = 1, … , 𝑛}.      [M − S3]  (11) 

 

 

  



 

   

III. MOTOR-IMAGERY-BASED BCI DATA COLLECTION AND ANALYSIS 

In this study, ten participants aged 18-29 years without any neurological diseases were recruited in 

the MI-based BCI experiment. Before the experiment, the participants completed an informed consent 

form. The experimental protocol was approved through the Institutional Review Board of Taipei 

Veterans General Hospital (protocol number VGHUST102-G5-2-1). The participants sat in front of a 

monitor, and the instructions of the experimental protocol were shown to them before the experiment 

began. The participants performed the required tasks for the experiment and we acquired their EEG 

signals simultaneously. During the experiment, four EEG channels at C3, C4, CP3, and CP4 were 

selected for EEG data collection. The following sections describe the experimental procedure, BCI data 

analysis, and comparison of classification performance. 

A. Experimental Procedure 

 

 

The experimental procedure is shown in Fig. 2. At the beginning of each trial, the screen was blank 

for two seconds (from 0 to 2 secs). Subsequently, a cross was displayed in the center of the screen for 

another two seconds (from 2 to 4 secs). When the cross disappeared, an arrow pointing either to the left 

or right randomly appeared on the screen for the following 10 seconds (from 4 to 14 secs). Upon seeing 

an arrow pointing to the left, the participant needed to imagine left-hand movement. Conversely, the 

participant needed to imagine right-hand movement when the arrow pointed to the right. After finishing 

Fig. 2. Flowchart of MI-based BCI experiment. 



 

   

the movement imagery, a picture was displayed on the screen for a random duration (7–10 secs) in 

which the participant could rest before the next trial started. One trial was complete when the participant 

finished one movement imaginary activity; in total, there were four separate experiment sessions in this 

study. During the experiment, the participants were instructed to perform four sessions of the MI-based 

experiment task, and each session had 40 trials. A 10-min break period was provided between each 

session. EEG data were recorded with the time interval of the whole experiment according to the 

left-hand and right-hand MI-based experiment tasks as epochs from the C3, C4, CP3, and CP4 channels. 

Therefore, we collected 160 EEG samples totally consisting of four features and two labels to constitute 

the EEG datasets for evaluating the proposed MFF-based BCI system.  

Table I shows the collected trials for the left-hand and right-hand movement imagery from each 

participant. We randomly generated ten datasets consisted of 80 training data points and 80 testing data 

points from the collected trials from each participant. Training data comprised 40 left-hand and 40 

right-hand movement imaginary trials that were randomly selected from each participant’s collection, 

and the remaining trials formed the testing data. We performed holdout validation for the proposed 

MFF–based BCI system. Because each participant had ten datasets, we averaged the accuracy from 

these datasets and investigated the stability of our proposed MFF-based BCI system. The following 

sections present the comparison of the classification performance of various BCI systems. 

 

B. Comparison of the BCI performances between using fuzzy fusion and non-fuzzy fusion 

To evaluate the classification performance of the proposed MFF-based BCI system, we first 

compared the experiment results between using fuzzy fusion and non-fuzzy fusion. Here, non-fuzzy 

fusion BCI was the traditional BCI structure, as shown in Fig. 2. The performances of non-fuzzy fusion 

classifiers, the Choquet and Sugeno integrals, are shown in Fig. 3. In non-fuzzy fusion classifiers, LDA, 

k-NNC, and QDA used five frequency bands, including four independent bands (i.e., delta, theta, alpha, 

and beta bands) and one full-band signal (1-30 Hz). In all three classifiers and all frequency bands, CSP 

projection was conducted to extract the EEG features. 

 



 

   

TABLE 1 Collected left- and right-hand MI trials from each participant. 

 LEFT-HAND MI TRIALS RIGHT-HAND MI TRIALS 

SUBJECT 1 85 75 

SUBJECT 2 85 75 

SUBJECT 3 82 78 

SUBJECT 4 74 86 

SUBJECT 5 74 86 

SUBJECT 6 80 80 

SUBJECT 7 80 80 

SUBJECT 8 80 80 

SUBJECT 9 82 78 

SUBJECT 10 84 76 

 

Before applying fuzzy fusion into the traditional BCI system, classification performances of using 

LDA classifier achieved 72.72% accuracy, and using QDA and k-NNC classifiers were below 70% 

accuracy. For the results of using the Choquet integral—one of the fuzzy fusion approaches—three 

cases, namely [M-C1], [M-C2], and [M-C3], were chosen to validate the BCI performance. For another 

fuzzy fusion approach, the Sugeno integral, three cases were chosen, [M-S1], [M-S2], and [M-S3], to 

validate the BCI performance too. 

According to the fuzzy fusion mechanism of the Choquet and Sugeno integrals, the final decision 

was made by integrating classification results of different frequency bands. As shown in Fig. 3, using 

the Choquet [M-C1] and Sugeno [M-S3] integrals achieved the better classification accuracy of 75.93% 

and 76.11%, respectively, outperforming the traditional non-fuzzy fusion BCI system. Furthermore, we 

calculated the information transfer rate (ITR) [32] to evaluate the efficiency of the proposed MFF-based 

BCI system in this study. The index ITR is composed of the accuracy, computation time, and the 

number of classes during the classification process. In Table II, ITR in all case of fuzzy fusion [M-C1], 



 

   

[M-C2], [M-C3], [M-S1], [M-S2], and [M-S3] were higher than the three non-fuzzy classifiers (i.e., 

LDA, k-NNK and QDC). Applying the case of [M-C1] and [M-S3] integrals could achieve the better 

ITR of 39.69 bits per minute and 40.46 bits per minute in Choquet and Sugeno integrals, respectively. 

Therefore, adopting fuzzy fusion could enhance the BCI performance of the system for classifying 

left-hand and right-hand EEG signals. 

 

 

TABLE 2 Information transfer rate of traditional and MFF-based BCI system 

 

SYSTEM CLASSIFICATION MODEL ITR (BITS/MIN) 

TRADITIONAL BCI 

LDA 9.15 

k-NNC 4.84 

QDC 6.94 

MFF-BASED BCI 
CHOQUET [M-C1] 39.69 

CHOQUET [M-C2] 38.05 

Fig. 3. Comparison of classification performance between traditional and MFF-based BCI system. 

The p-value of t-test shows the significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and p 

< 0.001 as “***”. 



 

   

CHOQUET [M-C3] 34.98 

SUGENO [M-S1] 33.84 

SUGENO [M-S2] 36.65 

SUGENO [M-S3] 40.46 

 

As Fig. 3 shows, in every case, the considered fuzzy integrals provided significantly improved 

performance over that obtained from any of the three classifiers considered in our experiments. 

Furthermore, if we focus on the case of the Choquet integral and the considered extensions, we see that 

the standard [M-C1] and generalized [M-C2] Choquet integrals exhibited similar performance. This fact 

shows that consideration of extensions of the classical Choquet integral provides a promising method of 

tackling the fusion problem because the results can likely be improved through ad hoc choice of the 

fuzzy measure, but this was not the object of this study. This possibility is enhanced by the optimal 

performance of the generalized version of the Sugeno integral. In this case, the three cases of [M-S1], 

[M-S2], and [M-S3] not only outperformed the considered classifiers but also contrary to the case of the 

Choquet integral, were the best performers. Remarkably, case [M-S3] was significantly more effective 

than all other methods. However, this analysis is only a first approach to the BCI classification problem. 

We intend to develop a deeper analysis to optimize the choice of both measures and operators in the 

different extensions of the Choquet and Sugeno integrals. These rough approaches were sufficient to 

demonstrate that the introduction of nonlinearity (in the case of the Choquet integral) and of general 

operators instead of the minimum (in the case of the Sugeno integral) leads to a relevant improvement 

in the results. 

 

C. Multimodal Fuzzy Fusion for Enhancing the BCI Performance 

In Section III-B, we demonstrated that using fuzzy fusion achieved higher classification accuracy. 

Thus, we intended to fuse the classification results at different frequencies with the same classifier 

(called frequency-based fuzzy fusion, Fb-FF) and then fuse the results from different classifiers (called 

classifier-based fuzzy fusion, Cb-FF). Considering the simultaneous classification of different EEG 



 

   

frequencies and classifiers, we called this the MFF framework, as shown in Fig. 2. Fig. 4 presents the 

comparison of BCI performance of the different fuzzy fusion approaches in the MFF-based BCI system 

using the Choquet (Fig. 4(a)) or Sugeno (Fig. 4(b)) integrals. We also compared the classification results 

obtained by fusing different EEG frequencies (Fb-FF) and by using a single frequency with different 

classifiers (Cb-FF). The mechanism of fuzzy fusion here was similar to the process of voting. Five 

features were applied to fuzzy fusion in the Fb-FF model for making the final decision; only three 

features were applied in the Cb-FF model. 

Adopting the MFF framework exhibited superior performance in the cases [M-C1], [M-C2], and 

[M-C3] of the Choquet integrals and cases [M-S1], [M-S2], and [M-S3] of the Sugeno integrals when 

compared with Fb-FF and Cb-FF models. Moreover, the performances of MFF and Fb-FF models in the 

cases [M-C1], [M-C2], and [M-C3] of the Choquet integrals and the cases [M-S1], [M-S2], and [M-S3] 

of the Sugeno integrals showed statistically significant differences from the Cb-FF models.  

 As shown in Fig. 4(a) and 4(b), the proposed MFF-based BCI system achieved superior accuracy 

when adopting the Choquet integral (75.93%) and Sugeno integral (76.11%). These results indicated the 

proposed MFF framework could compensate for both posterior probabilities in classification using 

different frequencies and classifiers to yield improved decisions for BCI classification. Another finding 

was that the Fb-FF model outperformed the Cb-FF model. In comparison with the classification of the 

traditional BCI system (Fig. 3), adopting the Fb-FF model can provide better accuracy than the 

traditional BCI system can, but adopting the Cb-FF model cannot. Therefore, we inferred that the 

phenomena associated with the EEG dynamic changes at different frequencies of the neural mechanism 

play crucial roles in BCI classification. Consequently, we further compared the classification results of 

the EEG phenomena of the movement imaginary at different EEG frequencies; this is described in 

Section III-D. 

 



 

   

 

 

 

D. Motor imagery related EEG features selected in the multimodal fuzzy fusion BCI system 

For real-world BCI applications, the performance sometimes trades off against efficiency (i.e., 

higher accuracy at the cost of fewer features). Selecting the appropriate EEG features for BCI 

classification is a major challenge. According to past MI-based BCI studies [6]-[11], the alpha and beta 

bands in the motor area are desynchronized while performing movement imagination tasks. Therefore, 

using all bands, the alpha band, the beta band, and both the alpha and the beta bands were considered as 

candidate EEG features for testing the MFF-based BCI system. Fig. 5 compares the classification 

performance of the MFF-based BCI system using those selected EEG features. Fig. 5(a) and 5(b) 

present the results of using the Choquet and Sugeno integrals, respectively. Using the alpha and the beta 

bands for the EEG features exhibited optimal performance among all conditions using either the 

Choquet or Sugeno integrals. Furthermore, the classification when adopting the Choquet integral in the 

alpha and the beta bands exhibited statistically significant differences from those in the beta band in the 

cases [M-C1] and [M-C2] and from those in all bands and the beta band in case [M-C3]. The 

classification results using the Sugeno integrals are shown in Fig. 5(b). Using the alpha band showed 

statistically significant differences from all other conditions in case [M-S1]. Using the alpha and the 

beta bands showed statistically significant differences from those in the beta band in cases [M-S2] and 

[M-S3]. 

 Based on the experiment results and referring to past MI-based BCI studies [6]-[11], [27], the 

alpha band was regarded as the optimal feature for efficiency-performance balance. These classification 

Fig. 4. Comparison of different fuzzy fusion approaches. (A) Choquet fuzzy integral by M-C1, 

M-C2, and M-C3. (B) Sugeno fuzzy integral by M-S1, M-S2, and M-S3. The p-value of t-test 

shows the significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and p < 0.001 as 

“***”. 



 

   

results were also consistent with past EEG findings for MI tasks. Feeding the alpha and the beta bands 

as the optimal features into the proposed MFF-based BCI system exhibited the best classification 

performance (approximately 80%) regardless of whether using the Choquet or Sugeno integrals. By 

contrast, the classification performance using only the beta had a lower accuracy (approximately 65%); 

however, with both the alpha and beta bands used in the proposed MFF BCI system, the classification 

accuracy increased to nearly 80%. Comparison of the classification accuracy is shown in Fig. 5; this 

finding is noteworthy because the proposed MFF-based BCI system optimized performance by 

accessing only one feature (i.e., the alpha band). Based on these findings, the real-world application of 

the proposed MFF-based BCI system is feasible. 

 

 

 

 

 

 

IV. MFF-BASED BCI SYSTEM PERFORMANCE EVALUATION ON THE BCI COMPETITION DATASET 

A. Benchmark Datasets 

Considering the generalizability and the feasibility of the proposed MFF-based BCI system, we 

adopt the benchmark BCI datasets (i.e., datasets of BCI Competition IV [33]) for evaluating the BCI 

performance in this study. The datasets were collected from the cue-based BCI experimental paradigm 

including four-class (left hand, right hand, foot, and tongue) imaginary task as shown in [33] using 

Fig. 5. Comparison of different feature selections. (A) Choquet fuzzy integral by M-C1, M-C2, and 

M-C3. (B) Sugeno fuzzy integral by M-S1, M-S2, and M-S3. The p-value of t-test shows the 

significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and p < 0.001 as “***”. 



 

   

22-channel EEG signals from nine volunteer participants. Two sessions of imagery tasks were recorded, 

each session consisted of six runs; each run was comprised of 48 trials, yielding totally 288 trials per 

session. Trials from four classes were evenly distributed, which meant each class had 72 trials. 

In order to evaluate the proposed MFF–based BCI system, we analyzed four channels out of the 22 

channels (i.e., channel number 8, 12, 14, 18 of benchmark dataset) EEG data which were associated 

with the motor area and selected left- and right-hand imaginary trials of EEG data. We performed 

hold-out validation as well as section III-A by randomly generating ten datasets from each participant to 

estimate the stability of our proposed MFF–based BCI system. There were 72 training data samples and 

72 testing samples consisted of five features, the delta, theta, alpha, and beta bands and the average 

frequency power from 1 to 30 Hz in each dataset. The CSP filter was calculated with four columns, 

which were, contained the second and second last columns. The classifiers (i.e., LAD, k-NNC, and 

QDA) were applied to estimate the classification performance and the accuracy from the means of ten 

datasets of each participant was averaged to perform the proposed MFF–based BCI system evaluation. 

Following sections showed the classification of benchmark datasets, and the evaluation of the proposed 

MFF–based BCI system performance. 

 

B. Evaluation of the BCI performances with fuzzy fusion and non-fuzzy fusion 

As the same comparison process in Section III-B, the classification performances of using Choquet 

or Sugeno integrals were shown in Fig. 6. Without applying fuzzy fusion, classification performances of 

all classifiers were below 60% accuracy. The CSP4 method proposed in the reference [33] in which 22 

channel EEG signals were collected achieved 65.20% accuracy. As shown in Fig. 6, the proposed 

MFF-based BCI system of using the Choquet [M-C1] and Sugeno [M-S3] integrals and only 

four-channel EEG signals achieved the classification accuracy of 64.06% and 63.36%, respectively, 

demonstrating that the proposed fuzzy fusion framework outperformed three non-fuzzy classifiers in 

accuracy and classification performance equivalent with the BCI system in reference [33].  

However, our proposed MFF-based BCI system of using only four channel EEG signals is more 

practical and feasible to realize the BCI applications in the real-world environment. Moreover, our 



 

   

proposed MFF BCI system enhanced the performance with the data not only collected from our motor 

imagery experiment but also applied from the benchmark datasets revealed that it is potential to perform 

2-class condition and more BCI applications.  

 

 

 

C. Evaluation of Multimodal Fuzzy Fusion Framework 

As the same comparison process in Section III-C, we further investigate the MFF framework and 

the other different fuzzy fusion approaches such as Fb-FF and Cb-FF models. The proposed MFF–based 

BCI system achieved superior accuracy when adopting the Choquet integral (64.06%) or Sugeno 

integral (63.36%) on the BCI competition datasets (Fig. 7(a) and 7(b)). In the case of comparison with 

the traditional BCI system (Fig. 6), adopting the Fb-FF and the Cb-FF model both can provide better 

accuracy than the traditional BCI system on the BCI competition datasets. These results indicated once 

again that fuzzy fusion could enhance the classification performance in accuracy. Another finding was 

the Fb-FF model outperformed the Cb-FF model that demonstrated that different frequencies features 

Fig. 6. Evaluation of BCI system performance between using fuzzy and nonfuzzy integrals. The 

p-value of t-test shows the significant difference marked p < 0.05 as “*”, p < 0.01 as “**”, and 

p < 0.001 as “***”. The marker of white star means the significant difference (p-value < 0.001) 

between all case of fuzzy fusion and each non-fuzzy classifier. 



 

   

played the crucial roles in BCI classification. This evidence is shown as the same as in the section III-C 

(Fig. 4). Consequently, we demonstrated that the proposed MFF outperform the optimal classification 

performance either testing on the BCI competition datasets or using our BCI motor imaginary datasets 

for classifying left-hand and right-hand EEG signals. 

 

 

 

 

 

In this study, we illustrated a two-class classification problem using the proposed MFF-based BCI 

system. Considering the practical applications in the real-world environment, two-class or multi-classes 

MI-based BCI systems were comprehensively adopted into many applications such as controlling a 

wheelchair, unmanned aerial vehicle, and robotic apparatus for stroke rehabilitation [34]-[37]. In the 

study of 4-class MI-based BCI [38], the accuracy exhibited a significant reduction compared with 

2-class MI-based BCI system. Therefore, we trust that the 2-class MI-based BCI system is more feasible 

and has to promote to human well-being friendly. The major challenges of the MI-based BCI system 

development were to generate the discriminative EEG features from the individual variation of different 

participants. Motor learning [11] can improve the training of MI-based EEG signals, but we still need 

the computational intelligent techniques like the proposed fuzzy fusion methods to enhance the BCI 

performance [27], [39]. 

 

Fig. 7. Comparison of different fuzzy fusion approaches on the BCI competition datasets. (A) 

Choquet fuzzy integrals by M-C1, M-C2, and M-C3. (B) Sugeno fuzzy integrals by M-S1, M-S2, 

and M-S3. The p-value of t-test shows the significant difference marked p < 0.05 as “*”, p < 0.01 as 

“**”, and p < 0.001 as “***”. 



 

   

V. CONCLUSION 

In this study, we proposed a novel classification framework called the MFF-based BCI system. 

Two famous fuzzy integrals named the Choquet and Sugeno integrals were implemented into the MFF 

framework after the classification structure of the traditional BCI system to enhance the classification 

performance. The novelty of the proposed MFF framework was to fuse the posterior probabilities 

obtained from both classification results when using different frequencies and classifiers. Fuzzy 

integrals accounted for the possible relationships between different classification results. Adopting 

fuzzy integrals into the BCI system improved BCI performance over the traditional BCI system. 

Moreover, selecting the alpha and the beta bands in the motor area feeding into the proposed 

MFF-based BCI system achieved the highest accuracy: 78.81% and 78.45% when using the Choquet 

and Sugeno integrals, respectively. Therefore, adopting fuzzy integrals in BCI systems could provide a 

novel method of developing highly accurate BCI systems.  
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