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Multimodal Hippocampal Subfield 
Grading For Alzheimer’s Disease 
Classification
Kilian Hett  1,2,3, Vinh-Thong Ta1,2,3, Gwenaëlle Catheline4,5, Thomas Tourdias6,7,9, 
José V. Manjón8, Pierrick Coupé1,2,3 & Alzheimer’s Disease Neuroimaging Initiative*

Numerous studies have proposed biomarkers based on magnetic resonance imaging (MRI) to detect 
and predict the risk of evolution toward Alzheimer’s disease (AD). Most of these methods have focused 
on the hippocampus, which is known to be one of the earliest structures impacted by the disease. To 
date, patch-based grading approaches provide among the best biomarkers based on the hippocampus. 
However, this structure is complex and is divided into different subfields, not equally impacted by 
AD. Former in-vivo imaging studies mainly investigated structural alterations of these subfields using 
volumetric measurements and microstructural modifications with mean diffusivity measurements. The 
aim of our work is to improve the current classification performances based on the hippocampus with 
a new multimodal patch-based framework combining structural and diffusivity MRI. The combination 
of these two MRI modalities enables the capture of subtle structural and microstructural alterations. 
Moreover, we propose to study the efficiency of this new framework applied to the hippocampal 
subfields. To this end, we compare the classification accuracy provided by the different hippocampal 
subfields using volume, mean diffusivity, and our novel multimodal patch-based grading framework 
combining structural and diffusion MRI. The experiments conducted in this work show that our new 
multimodal patch-based method applied to the whole hippocampus provides the most discriminating 
biomarker for advanced AD detection while our new framework applied into subiculum obtains the best 
results for AD prediction, improving by two percentage points the accuracy compared to the whole 
hippocampus.

Alzheimer’s disease (AD) is an irreversible neurodegenerative process leading to mental dysfunctions. Subjects 
presenting mild cognitive impairment (MCI) have a higher risk of developing AD1. To study the preclinical phase 
of the disease, the Alzheimer’s disease neuroimaging initiative (ADNI) has been set up based on two MCI defini-
tions: early MCI (eMCI) and late MCI (lMCI). Subjects with eMCI have milder cognitive impairment than those 
with lMCI, both suffering from amnesic MCI2. Such clinical symptoms are caused by changes like synaptic and 
neuronal losses that lead to structural and microstructural alterations. Neuroimaging studies performed on AD 
subjects reveal that when an AD diagnosis is made, alterations of brain structure are already advanced, emphasiz-
ing the need to study the early stages of the disease.

The improvement of medical imaging techniques such as magnetic resonance imaging (MRI) has enabled the 
development of efficient biomarkers capable of detecting alterations caused by AD3. Over the past years, many 
methods have been proposed to perform automatic detection of alterations associated with AD. First, studies 
proposed methods based on specific regions of interest (ROI) capturing alterations at an anatomical scale. Among 
structures impacted by AD, previous investigations have been focused on the hippocampus4–6, entorhinal cortex 
(EC)7–9, parahippocampal gyrus, amygdala10, or parietal lobe11,12. Alterations of these structures are usually esti-
mated using volume13,14, shape15,16, or cortical thickness17,18 measurements. Beside ROI-based methods, whole 
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brain analysis performed on structural MRI (s-MRI) has been proposed to detect areas impacted by AD at a 
voxel scale. These methods are usually based on voxel-based morphometry (VBM) or tensor-based morphometry 
(TBM) frameworks19. It is interesting to note that both VBM and ROI-based studies confirmed that the medial 
temporal lobe is a key area in detecting the first signs of AD20–25. These studies also showed that the hippocampus 
is one of the earliest regions altered by AD in the medial temporal lobe26. Moreover, the hippocampus volume 
is one of the criteria that can be used to confirm the diagnosis of AD in clinical routines27. Recently, advanced 
methods were proposed to capture subtler structural alterations of the hippocampus9,28–30. Those techniques 
demonstrated an increase in detection and prediction performances at different AD stages when compared to 
volume-based methods30. Among them, patch-based grading (PBG) methods demonstrated competitive results 
to detect the earliest stages of AD before a clinical diagnosis can be made9,29,31. The main idea of this approach 
is to capture inter-subject pattern similarities via non-local comparisons between two groups of subjects. Such 
methods have shown their ability to predict AD more than seven years before the conversion to dementia32 and 
might enable a differential diagnosis33,34.

Thus, the hippocampus has been one of the most studied structures to diagnose AD. However, this structure 
is not homogeneous, so it is usually subdivided into different subfields. Initial efforts to define the hippocampus 
subfields were mainly based on cell size, shape, and connectivity35. The terminology differs across segmentation 
protocols36, but the most recognized definition37 divides hippocampus into the subiculum, the cornu ammonis 
(CA1/2/3/4), and the dentrate gyrus (DG). The CA1 subfield represents the biggest area in the hippocampus. It is 
composed of different layers called the stratum radiatum (SR), the stratum lacunosum (SL), the stratum molec-
ular (SM), and the stratum pyramidale (SP). Interestingly, studies have shown that hippocampal subfields could 
have different functional specializations. It has been suggested that CA3 and DG might be responsible for encod-
ing early retrieval38,39 while CA1 is responsible for consolidation, late retrieval and recognition40–42. Furthermore, 
hippocampal subfields are not equally impacted by AD43–49. Indeed, several MRI studies demonstrated that sub-
fields are impacted differently according to AD stages. Postmortem and in vivo imaging studies showed that the 
CA1SR-L-M are the subfields impacted with the greatest atrophy in advanced AD45,46,48. Recently, it has been 
shown that the subiculum is the earliest affected hippocampal region49,50.

These studies indicate that a subfield analysis of hippocampus alterations at a finer scale with an analysis of 
the subiculum could provide better tools for AD detection and prediction. The subiculum lies between CA1 and 
the entorhinal cortex in the medial temporal lobe. It shows a columnar organization (parasubiculum, presubic-
ulum, postsubiculum, prosubiculum) combined with a laminar organization and is the main output of the hip-
pocampus. Aside from those from CA1, several other extrinsic afferents terminate within the subiculum from the 
temporal lobe cortex (entorhinal cortex, perirhinal cortex, parahippocampal cortex, and amygdala). The anterior 
thalamic nuclei also project densely upon the subicular complex. In terms of efferent pathways, the subiculum 
projects to more extrinsic sites than any other hippocampal area. Notably, the subiculum shows dense extrinsic 
projections toward the anterior thalamic nuclei, the mammillary bodies, and the retrospinal cortex. Regarding 
its function, the subiculum is implicated in working memory. Several rodent behavioral studies also have shown 
that subiculum lesions impair spatial memory tasks with spatial working memory having a higher sensitivity than 
reference memory51.

Although structural MRI is a valuable imaging technique for measuring global structural modifications, such 
modality is not able to capture microstructural degradation. However, the microstructural modifications caused 
by AD are believed to occur before the atrophy measured by structural MRI. Therefore, diffusion MRI (d-MRI) 
appears as a potential candidate in detecting the earliest sign of AD. Several diffusion tensor imaging (DTI) stud-
ies proposed automatic methods for detecting modifications of diffusion parameters into the whole white matter 
volume using machine learning techniques52–54. Others studies showed modifications of diffusion parameters for 
AD patients into specific white matter structures such as the corpus callosum55,56, the fornix57, the cingulum55, 
and also in gray matter tissues such as the hippocampus58. More advanced d-MRI studies using brain connectivity 
and fiber tracking have been proposed to extract features describing axonal fiber alterations57,59,60. Finally, it has 
been shown that the hippocampal mean diffusivity (MD) is correlated to pathology progression and thus could be 
used as an efficient biomarker of AD61. Moreover, it was demonstrated that MD increases with the development 
of AD in the gray matter62–64. Therefore, in previous work, we showed that patch-based features applied to DTI 
demonstrated competitive performances to classify the early stages of AD65. Although some studies showed the 
superiority of MD over volumetric measurement to detect early sign of AD, this difference remains unclear66,67. 
However, several methods showed the possibility of using volumetric and MD measurements to capture early 
alterations caused by AD68,69. Recently, a study combining volumetric measurements and mean diffusivity of hip-
pocampus subfields demonstrated that the CA1 and subiculum are the most impacted subfields in late AD stage50.

All these elements indicate that a multimodal method based on hippocampal subfields using an advanced 
image analysis framework could improve AD detection and prediction. Consequently, in this paper, we propose 
the study of hippocampal subfield efficiencies using s-MRI and d-MRI modalities for AD detection and predic-
tion. To that purpose, we have developed a novel multimodal patch-based grading fusion scheme to better cap-
ture such structural and microstructural alterations. First, we compare the performance of our novel method with 
volume and MD within the whole hippocampus. Secondly, we demonstrate state-of-the-art performances com-
pared to more advanced d-MRI based methods. Finally, we study the efficiency of each hippocampal subfields in 
improving AD detection and prediction using volume, MD, and our multimodal patch-based grading method. 
Our results show that while PBG based on s-MRI obtains the best performance for AD diagnosis, d-MRI obtains 
the best performance for AD prognosis. Our novel multimodal patch-based grading method based on these two 
modalities obtains the best scores for both AD detection and prediction. These results highlight that our multi-
modal patch-based grading provides more robust features than PBG based on only a single modality. Moreover, 
we demonstrate that the study of the hippocampus at a finer scale improves AD prediction. The experiments 
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conducted with our new multimodal patch-based grading show that the whole hippocampus provides better 
results for AD detection, but the subiculum is the best area for AD prediction.

Materials
Dataset. Data used in this work was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset (http://adni.loni.ucla.edu). ADNI is a North American campaign launched in 2003 with the aim of provid-
ing MRI, positron emission tomography scans, clinical neurological measures, and other biomarkers. This dataset 
includes AD patients, MCI, and control normal (CN) subjects. The group of MCI is composed of subjects who have 
abnormal memory dysfunctions. In this work, we used data from the ADNI-2 campaign that proposes eMCI and 
lMCI stages. The eMCI and lMCI subgroups were obtained with the Wechsler Scale-Revised Logistical Memory 
I and II tests in accordance with the education levels of each subject. ADNI-2 provides T1-weighted (T1w) MRI, 
DTI scans for 54 CN, 79 eMCI, 39 lMCI, and 47 AD subjects. Only patients who have T1w and DTI images were 
selected in our work. Hence, in this work, we used 52 CN, 99 MCI composed of 65 eMCI, 34 lMCI, and 38 AD 
instead of the whole initial ADNI-2 dataset. All MRI data and clinical status were collected at the baseline. The list 
of subjects involved in our experiments is available (http://bit.ly/scirep_mpbg_dataset). Table 1 shows the distri-
bution of the data for each group. The s-MRI and d-MRI scans used for all considered subjects in this study were 
acquired with the same protocol (https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_GE_3T_22.0_
T2.pdf). T1w MRI acquisition protocol was done with the 3D accelerated sagittal IR-SPGR, according to the ADNI 
protocol70. The d-MRI is composed of 46 separate angles, 5 T2-weighted images with no diffusion sensitization 
(b0 images) and 41 directions (b = 1000 s/mm2). The d-MRI protocol was chosen to optimize the signal-to-noise 
ratio in a fixed scan time71. The native resolution of s-MRI and d-MRI was set to 1 mm3 and 2 mm3, respectively.

MRI processing. T1w images were processed using the volBrain system72 (http://volbrain.upv.es). This sys-
tem is based on an advanced pipeline providing automatic segmentation of different brain structures from T1w 
MRI. The preprocessing is based on (a) a denoising step with an adaptive non-local mean filter73, (b) an affine reg-
istration in the MNI space74, (c) a correction of the image inhomogeneities75 and (d) an intensity normalization.

Afterward, segmentation of hippocampal subfields was performed with HIPS76 based on a combination of 
non-linear registration and patch-based label fusion77. This method uses a training library based on a dataset 
composed of high-resolution T1w images manually labeled according to the protocol proposed by Winterburn 
et al.37. To perform the segmentation, the images are up-sampled with a local adaptive super-resolution method 
to fit the training image resolution78. The method provides automatic segmentation of hippocampal subfields 
gathered into five labels: Subiculum, CA1SP, CA1SR-L-M, CA2-3, and CA4/DG (see Fig. 1). Then, the segmen-
tation maps obtained from the up-sampled T1w images were down-sampled to fit the MNI space resolution. All 
the following experiments were carried out with images into the MNI space. Finally, an estimation of the total 
intra-cranial volume was performed79.

DTI processing. The preprocessing of the diffusion-weighted images is based on (a) a denoising step based 
on the LPCA filter80 and (b) a correction of the head motion using an affine registration. Afterward, we performed 
several steps to first obtain the mapping between the DWI native space and the MNI space and then to estimate 
the MD in the MNI space.

 (1) Estimation of the mapping between DWI native space and MNI space: First, a diffusion tensor model81 
estimated at each voxel using Dipy library82. The resulting MD is first linearly registered to the CSF map 
obtained from the T1w in the MNI space. Then, the MD (in the MNI space) is non-linearly registered to 
the CSF map (in the MNI space) to compensate for echo-planar imaging (EPI) distortions74. Afterward, the 
affine transformation and the non-linear deformations are concatenated into a single transformation to ob-
tain the final mapping (including EPI distortion correction) from the DWI native space to the MNI space. 
It must be noted that the MD map estimated in the DWI native space is only used to estimate the mapping 
between both spaces.

CN eMCI lMCI AD P value

Number of subjects 52 65 34 38

Age (years) 72.6 ± 5.9 73.0 ± 7.7 73.5 ± 6.6 73.8 ± 8.7 p = 0.80a

Gender (female/male) 29/23 39/26 21/13 20/18
χ2 = 3.12, 
p = 0.37b

MMSE 28.9 ± 1.2 28.2 ± 1.5 27.3 ± 1.8 23.4 ± 1.7 p < 0.01a
*

CDR-SB 0.0 ± 0.1 1.2 ± 0.6 1.7 ± 0.8 4.6 ± 1.4 p < 0.01a
*

RAVLT 45.4 ± 9.7 36.5 ± 10.2 30.7 ± 8.9 22.6 ± 7.0 p < 0.01a
*

FAQ 0.2 ± 0.9 2.3 ± 3.7 4.3 ± 4.8 14.6 ± 6.6 p < 0.01a
*

ADAS11 5.2 ± 3.0 8.1 ± 3.6 12.5 ± 4.9 20.2 ± 7.6 p < 0.01a
*

ADAS13 8.4 ± 4.4 13.3 ± 5.4 20.2 ± 6.7 30.0 ± 9.0 p < 0.01a
*

Table 1. Description of the dataset used in this work. Data are provided by ADNI. MMSE: Mini-Mental State 
Examination; CDR-SB: Clinical Dementia Rating-Sum of Boxes; RAVLT: Rey’s Auditory Verbal Learning Test; 
FAQ: Functional Activity Questionnaire; ADAS(11/13): Alzheimer’s Disease Assessment Scale. *Significant at 
p < 0.05. aChi-square test (df = 3). bKruskal–Wallis test (df = 3).
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 (2) Estimation of the MD in the MNI space: The deformation field estimated at the previous step is used to 
register the b0 and each DWI direction from their native space into the MNI space using b-spline inter-
polations74. This is done to limit interpolation artifacts and to correct partial volume effect (PVE). It has 
been shown that up-sampling each DWI direction individually using interpolation before estimating DTI 
parameters enables the reduction of PVE present in DTI greatly83. Thus, the final diffusion tensor model is 
estimated in the MNI space using all the non-linearly registered DWI and b0.

To analyze microstructural modifications, the MD is estimated within each hippocampal subfield and the 
whole hippocampus structure with the segmentation described in the previous section. MD is defined as 
λ λ λ+ +

3

1 2 3  where λ1, λ2, λ3 are the three eigenvalues of the fitted tensor.

Finally, quality control is conducted to exclude data presenting segmentation errors or misregistration after 
MRI and DTI preprocessing step. Thus, 10 CN subjects, 18 eMCI, 5 lMCI, and 9 AD patients have been excluded 
from the initial considered ADNI2 dataset (see the dataset used in our experiments Table 1).

Methods
Patch-based grading. Patch-based grading was first proposed for s-MRI9. The main idea of this exem-
plar-based method is to use the capability of patch-based techniques in order to capture subtle signal modifica-
tions related to anatomical degradations caused by AD. To date, the PBG methods demonstrate state-of-the-art 
performances in the detection of the earliest stage of AD84. To determine the pathological status of the subject 
under study, the PBG methods estimate the state of cerebral tissues at each voxel by a similarity measurement. 
This measurement is performed between the anatomical pattern of the subject under study and those extracted 
from two training populations, one healthy and another one unhealthy.

First, a training library T composed of two datasets of images is built: one with images from CN subjects and 
the other one from AD patients. Next, for each voxel xi of the region of interest in the considered subject x, the 
PBG method produces a weak classifier denoted g

xi
. This weak classifier provides a surrogate of the pathological 

grading at the considered position. The weak classifier is computed using a measurement of the similarity between 
the patch Pxi

 surrounding the voxel xi belonging to the image under study and a set Kxi
 of the closest patches 

extracted from the library T. The most similar patches are found using an approximative nearest neighbor 
method85. The grading value g

xi
 at xi is defined as:

=
∑

∑

∈

∈

g
w P P p

w P P

( , )

( , ) (1)
x

t K x t t

t K x t
i

j xi i j

j xi i j

where Ptj
 is the patch surrounding the voxel j belonging to the training template ∈t T , and w x t( , )i j  is the weight 

assigned to the pathological status pt of the training image t. We estimate w such that:

=







−
−







w P P

P P

h
( , ) exp

(2)

x t

x t
2

2

2i j

i j

where ε= − + h P Pmin x t 2
2

i j
 and ε → 0. The pathological status pt is set to −1 for patches extracted from AD 

patient and to 1 for patches extracted from CN subject. Therefore, the PBG method provides a score representing 
an estimation of the alterations caused by AD at each voxel. Consequently, cerebral tissues strongly altered by AD 
have grading values close to −1 contrary to healthy one with scores close to 1.

Multimodal patch-based grading fusion. The patch-based method presented in the previous section 
was designed to capture structural alterations in T1w MRI. Recently, we proposed the extension this method 

Figure 1. Segmentation of the hippocampal subfields. From left to right, segmentation maps of right 
hippocampal subfields displayed on the axial, sagittal and coronal plane.
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to DTI modality in order to detect microstructural modifications65. We showed the efficiency of MD grading in 
improving the classification of the early stages of AD.

In this study, we propose a new framework to perform multimodal patch-based grading (MPBG). To this end, 
we developed an adaptive fusion of grading maps derived from different modalities (see the example of grading 
maps on Fig. 2). As shown in the following, this fusion provides more robust and accurate biomarkers compared 
to monomodal PBG biomarkers.

As in the previous section, a training library of CN and AD subjects is built for each modality. Next, at each 
voxel within the ROI of the considered subject and for each modality, a set K of most similar patches is extracted. 
This step provides one set K of patches per modality ∈m M , where M corresponds to the set of the different 
modalities provided. Nevertheless, at each voxel, the quality of the grading estimation is not the same for all the 
modalities. Therefore, the degree of confidence is estimated with the function α defined as:

∑α =
∈

w P P( , )

(3)
x

t K
x ti m

j xi m

i m j m,

,

, ,

that reflects the confidence of the grading value g
xi

 for the modality m at the voxel xi. This confidence measure is 

derived from multi-feature fusion86. Thus, each modality provides a weak classifier at each voxel that is weighted 
with its degree of confidence αxi m,

. The multimodal grading denoted g
xi

, is given by:

α

α
=
∑

∑
.

∈

∈

g
g

(4)
x

m M x x

m M x
i

i m i m

i m

, ,

,

In other words, the weights w and Kxi m,
 are estimated independently for each modality and combined after-

ward. Therefore, the proposed combination framework is spatially adaptive and takes advantage of the a local 
degree of confidence αxi m,

 for each modality m. When the matches found for a modality in the training library is 

composed of good candidates (i.e., patches very similar to the patch from the subject under study), our confi-
dence αxi m,

 in the grading estimation for this modality is high. In the end, this modality will have a high weight in 

the mixing procedure described in (4).

Features estimation. Features were estimated in each hippocampal subfield and over the whole hippocam-
pus as the union of all hippocampal subfields masks. To reduce the inter-individual variability, all volumes are 
normalized by the total intra-cranial volume87. Afterward, we aggregate weak local classifiers of the grading map 
into a single feature for each considered structure (i.e., hippocampal subfields, and whole hippocampus) by aver-
aging them. Then, patch-based grading features are computed by an unweighted vote of the weak classifiers using 
the segmentation masks (see Fig. 3). Finally, to prevent the bias introduced as the structural alterations due to 
aging, all the features (i.e., volume, mean of MD and MPBG) are age corrected with a linear regression based on 
the CN group88.

Figure 2. The presented results have been obtained using MRI from patients suffering from different severities 
of cognitive impairments. From top to bottom slices on the coronal plane of the segmentation maps, and the 
fusion of T1w and MD patch-based grading (i.e., MPBG: Multimodal Patch-Based Grading) with the proposed 
multimodal patch-based grading method. The blue and red colors represent healthy and altered tissues, 
respectively. To avoid bias due to overlap between training and testing datasets, the library has been constructed 
within a leave-one-out procedure.
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Implementation. We use the OPAL method to find the most similar patches in the training library89. OPAL 
is a fast approximate nearest neighbor patch search technique. This method processes each modality in about 
4 seconds on a standard computer. A leave-one-out procedure was followed to construct the training library. 
Hence, for each test subject, a different training library is built. Consequently, the training library T is composed 
of 37 images from CN subjects and 37 images from AD subjects, for a total of 76 images. The number of patches 
extracted from both training libraries is K = 160 (i.e., 80 from CN subjects and 80 from AD patients) and the 
patch size is 5 × 5 × 5 voxels.

Furthermore, as done in our PBG DTI study65, we used zero normalized sum of squared differences for T1w 
to compute the L2 norm (see Eq. (2)). On the other hand, d-MRI is a quantitative imaging technique. Therefore, 
a straight sum of squared differences is used for MD in Eq. (2) in order to preserve the quantitative information.

Validation. To evaluate the efficiency of each considered biomarker in detection of AD alterations, the CN 
group is compared to the group of AD patients. In addition, to discriminate the impairment severity of MCI group, 
eMCI versus lMCI classification is conducted. The classification step is performed with linear discriminant analysis 
(LDA) within a repeated stratified 5-fold cross-validation with 200 iterations. Mean area under the curve (AUC) and 
mean accuracy (ACC) are computed to compare performance for each biomarker over the 200 iterations.

Statistical analyses. Statistical tests were conducted with an analysis of variances (ANOVA) procedure to 
determine the significance of biomarkers changes, related to the alterations caused by AD. The results of these 
tests have been corrected for multiple comparisons with Bonferroni’s method. Significant changes have been 
tested within six comparisons (i.e., CN-AD, CN-eMCI, CN-lMCI, eMCI-lMCI, eMCI-AD, and lMCI-AD). These 
comparisons have been achieved into each region of the hippocampus and with the three considered biomarkers 
(i.e., the volume, the average of MD, and our newly proposed MPBG). Finally, for each iteration of our stratified 
5-fold cross-validation, we estimated the confidence interval of AUC using bootstrap iterated for 100 iterations90. 
Then an average of the minimum and maximum bounds are computed. The results presented in this paper show 
the average confidence interval based on these average bounds.

Results
In this section, the results are presented in three parts. In the first part, we compare the different approaches 
applied within the entire hippocampus structure to evaluate the performance of our new MPBG compared to 
usual biomarkers such as volume and average MD. In the second part, we compare the accuracy of each con-
sidered biomarker within hippocampal subfields in order to investigate the potential of hippocampal subfield 
analysis to improve the result of AD detection and prediction. Finally, we compare the results of our proposed 

Figure 3. Proposed multimodal patch-based grading framework. At left, the input data: T1w images and MD 
maps into the MNI space. Data represented in this figure belongs to a CN subject. At the middle: a coronal view of 
hippocampal subfields segmentation on T1w, and the corresponding coronal view of a multimodal patch-based 
grading (MPBG) map estimated on T1w and MD. At right, the considered subfield biomarkers for all subjects 
under study. From top to bottom, the features are the volumes, the MPBG values, and the average of MD.
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multimodal biomarker with state-of-the-art methods based on d-MRI to show the competitive performance of 
our approach.

Whole hippocampus. Results of the comparisons over the whole hippocampus are presented in Table 2. 
In this experiment, we compared the results of volume, mean of MD and PBG applied with both modality and 
MPBG over the whole hippocampus.

First, the hippocampus volume and its average of MD were compared. For CN versus AD classification, the 
volume obtains 86.6% of AUC, and the average of MD obtains 80.6%. For eMCI versus lMCI classification, the 
volume and the average of MD obtain 59.4% and 55.6% of AUC, respectively. The experiments demonstrate 
that the volume of the hippocampus results in better classification performances than the average of MD for all 
comparison, especially for CN versus AD. Second, PBG biomarkers applied with T1w and MD were compared. 
The results showed that T1w PBG provides better results than MD PBG with 92.6% of AUC for CN versus AD 
classification. However, for eMCI versus lMCI classification MD grading provides the best results with 69.5% of 
AUC. MPBG methods combining both modalities performed similarly to the best results for CN versus AD and 
eMCI versus lMCI with 92.1% and 69.5% of AUC, respectively. Finally, the proposed MPBG biomarker provides 
results similar to the best modalities for all considered comparisons. MPBG improves CN versus AD comparison 
result by 5.5% of AUC and by over 10% of AUC for eMCI versus lMCI comparison. Thus, MBPG biomarker has a 
good capability to capture modifications caused by AD at different stages of severity (see Fig. 2).

Hippocampal subfields. Figure 4 shows the distribution of volumes (A), the average of MD (B), and the 
MPBG (C) for each hippocampal subfield at different AD stages. For each comparison, a p-value was estimated 
with a multi-comparison test91. We can note that for all hippocampal subfields, alterations caused by the disease 
are related to volume and MPBG decrease with MD increase. The subiculum subfield presents the most significant 
differences for CN versus lMCI using volume and MD, for AD versus lMCI using MD, and for eMCI versus lMCI 
using MPBG. Indeed, it is the only subfield providing a p-value inferior to 0.05 for the comparison of CN versus 
eMCI using volume, a p-value inferior to 0.01 for lMCI versus AD using MD and a p-value inferior to 0.001 to 
eMCI versus lMCI using MPBG, which are the most challenging comparisons. The distribution of MPBG shows 
better discrimination between each group for all hippocampal subfields. Indeed, MPBG applied within CA1SP, 
and CA1SR-L-M provides p-values inferior to 0.01 for eMCI versus lMCI. Moreover, MPBG applied within the 
subiculum provides p-value inferior to 0.001 for the same comparison. Thus, MPBG enables AD detection using 
each subfield with an advantage for subiculum for the comparison of eMCI versus lMCI.

To estimate the efficiency of the considered biomarkers for AD detection, we also performed a classification 
experiment. Figure 5 shows the results of two comparisons, CN versus AD (part noted A in the figure) and eMCI 
versus lMCI (part noted B). First, for AD diagnosis (i.e., CN versus AD classification), the subfield providing the 
most discriminant volume is the CA1S-R-L-M with an AUC of 86.0%. Moreover, the most discriminating MD 
biomarker is given by the subiculum with an AUC of 88.1%. For this comparison, the MD of subiculum is the only 
biomarker performing better results than the whole hippocampus. The CA1SP provides the best results using 
MPBG feature with an AUC of 92.1%, followed by the CA1S-R-L-M and the subiculum.

Second, for eMCI versus lMCI classification, the subiculum provides the best results for each considered fea-
ture. Indeed, the subiculum obtained an AUC of 66.1% for the volume, 62.4% for the average of MD, and 71.8% 
for MPBG. Moreover, the subiculum also provided better results than the whole hippocampus for each consid-
ered method. Thus, the experiments conducted with three different biomarkers showed that the use of hippocam-
pal subfields, especially the subiculum, results in better AD prediction than the whole hippocampal analysis.

Comparison with state-of-the-art methods. Direct comparison with other monomodal methods 
applied on ADNI1 is difficult since group definition (stable MCI and progressive MCI) are different. However, 
as recently shown, T1w PBG provides state-of-the-art performance on ADNI1 dataset, even compared to deep 
learning methods92. Consequently, the results presented in this paper with T1w PBG on ADNI2 can reasonably 
be considered competitive and can be used as a reference.

Consequently, to evaluate the performance of the proposed MPBG, we compared it with state-of-the-art mul-
timodal methods using d-MRI. To this end, we used the ACC values published by the authors. Table 3 shows the 
comparison of our proposed biomarkers within the hippocampal area providing the best results (i.e. the whole 
hippocampus and the subiculum) with the state-of-the-art methods using similar dataset based on ADNI-2. We 

Method CN vs. AD eMCI vs. lMCI

Volume 86.6 59.4

MD 80.6 55.6

T1w PBG 92.6 67.5

MD PBG 89.2 69.5

MPBG 92.1 69.5

Table 2. Mean AUC of the different features estimated over the whole hippocampal structure. In bold font, the 
best result for each specific comparison. All results are expressed in percent. The results presented in this table 
show that patch-based grading method (PBG) applied on T1w obtains better result compared to PBG applied 
on MD for CN vs. AD classification while MD PBG obtains best results for eMCI vs. lMCI classification. Finally, 
multimodal patch-based grading (MPBG) applied on T1w and MD obtains similar results compared to the best 
performances of both modalities.
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compared these biomarkers with a method using features based on tractography93, two different methods based 
on connectivity networks of the different brain structures60,94,95, and a voxel-based method that analyzes altera-
tions of white matter96. The results of the comparison show that MPBG over the whole hippocampus obtains the 
best score for AD versus CN with 88.1% of accuracy while the best result is achieved by a voxel-based method 

Figure 4. Distribution of the volume (A), MD (B), and MPBG (C) for the different considered groups. The 
normalized volumes are provided in mm3 in the MNI space for each subfield, MD is the mean of MD values 
into each subfield in mm2.s−1, and MPBG is the mean patch-based grading values into each subfield. Blue, cyan, 
orange, and red colors represent CN, eMCI, lMCI, and AD subjects, respectively. Statistical tests have been 
performed with ANOVA procedure and corrected for multiple comparisons with the Bonferroni’s method. The 
p-values inferior to 0.05, 0.01, and 0.001 are represented with *, **, and ***, respectively.
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Figure 5. AUC computed for CN versus AD (A), eMCI versus lMCI (B) comparisons with the different 
considered biomarkers in each hippocampal area. Results of subfields are grouped by features (i.e., the volume, 
the average of MD and the MPBG). Upper bounds of the confidence interval are represented with vertical bars. 
Whole hippocampus volume biomarker provides the best results with a mean AUC of 86.6% for CN versus 
AD comparison, followed by the CA1S-R-L-M volume that obtains a mean AUC of 86%. Subiculum volume 
provides the best results for eMCI versus lMCI with a mean AUC of 66.1%. The average of MD for subiculum 
obtains the best results for CN versus AD and eMCI versus lMCI with a mean AUC of 88.1% and 62.4%, 
respectively. Whole hippocampus MPBG obtains the best results for CN versus AD with a mean AUC of 92.1%. 
Subiculum MPBG obtains the best results for eMCI versus lMCI comparison with a mean AUC of 71.8%. This 
comparison shows that subiculum is the only biomarker providing better results than the whole hippocampus. 
This figure presents mean AUC and the mean confidence intervals that have been computed for each iteration of 
the stratified 5-fold cross-validation procedure carried out in our experiments.

Method

Subjects

Feature Classifier

Classification ACC

CN eMCI lMCI AD CN/AD eMCI/lMCI

Nir et al.93 44 74 39 23 Tractography SVM 84.9% n/a

Prasad et al.60 50 74 38 38 Connectivity network SVM 78.2% 63.4%

Zhan et al.94 n/a 73 39 n/a Connectivity network SLG n/a 65.0%

Maggipinto et al.96 50 22 18 50 Voxel-based RF 87.0% n/a

La Rocca et al.95 52 85 38 47 Connectivity network RF 83.0% n/a

MPBG hippocampus 62 65 34 38 Patch-based LDA 88.1% 68.8%

MPBG Subiculum 62 65 34 38 Patch-based LDA 86.5% 70.8%

Table 3. Comparison of our proposed MPBG biomarkers with state-of-the-art methods based on s-MRI 
and d-MRI using a similar ADNI2 dataset. All results are expressed in percentage of accuracy. LDA = Linear 
Discriminant Analysis, SLG = Sparse Logistic Regression, SVM = Support Vector Machine, RF = Random 
Forest.
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with a feature selection96 that obtained 87.0% on similar ADNI2 dataset. For the best of our knowledge, the two 
works providing eMCI versus lMCI comparison60,94 using s-MRI and d-MRI from a similar ADNI2 dataset are 
based on a connectivity network and obtained 63.4% and 65.0%, respectively. These comparisons demonstrate 
the relevance of MPBG biomarkers for AD detection and prediction. Indeed, our method provides similar results 
than the best methods with similar dataset for CN versus AD classification and provides the best results for eMCI 
versus lMCI classification. Moreover, the proposed MPBG method based on the subiculum improves the perfor-
mance for eMCI versus lMCI classification with an accuracy of 70.8%, that increases by 2% the accuracy based the 
whole hippocampus and over 6% compared to a connectivity network-based method.

Relationship with cognitive scores. To investigate relationships between cognitive scores and MPBG 
values, we performed a generalized linear analysis with the following model: MPBG = β0 + β1.ages + β2.sex + 
β3.MMSE + β4.RAVLT + β5.FAQ + β6.CDRSB + β7.ADAS11 + β8.ADAS13. We found significant relationship of 
hippocampal MPBG with sex (p < 0.01), MMSE (p < 0.05) and ADAS 13 (p < 0.01). This correlation with MMSE 
and ADAS scores is valid for all subfields of the hippocampus. We found no specific model for a given subfield, all 
presented a similar pattern. These results are in line with relationships obtained between hippocampus subfields 
volumes and MMSE and ADAS97.

Discussion
In this work, multimodal analysis of the hippocampal subfields alterations caused by AD is proposed. First, the struc-
tural and microstructural alterations were captured from two MRI modalities with different methods. Then, the use of 
volume, MD, and the proposed MPBG methods were investigated to achieve this analysis. In this section, the efficiency 
of these different methods applied to the whole hippocampus, and each hippocampal subfield are discussed.

Whole hippocampus biomarkers. We first compared the performance of different methods applied to the 
whole hippocampus (see Table 2). The experiments showed that volume and average of MD of the hippocampus 
do not provide the most discriminating biomarkers to detect early stages of AD. Indeed, the proposed MPBG 
method obtains better results compared to the volume and the average of MD. However, for CN vs. AD, our 
MPBG method obtained lower results than T1w PBG when applied to the hippocampus. Therefore, the substan-
tial structural differences between these two populations seem to be better captured using T1w modality. This 
probably comes from the better native resolution of this modality. On the other hand, for eMCI vs. lMCI, MPBG 
and MD PBG obtained the best result. Therefore, the subtle alterations between both populations seem to be 
better captured using DTI modality. This may come from the capability of this modality to measure microstruc-
tural modifications. Finally, when applied on the whole hippocampus, our MPBG demonstrates state-of-the-art 
performances for AD detection and prediction hippocampus compared to recent methods (see Table 3).

These results emphasize the relevance of using more accurate biomarker, such as MPBG, to study the effective-
ness of hippocampal subfields for AD detection and prediction.

Hippocampal subfield biomarkers. The main contribution of this study is the multimodal analysis of hip-
pocampal subfields. Indeed, most of the proposed biomarkers based on the hippocampus focus only on the whole 
structure or study alterations of hippocampal subfields with methods that do not provide sensitive biomarkers 
to detect early modification caused by AD. The lack of work studying alterations of hippocampal subfields with 
advanced biomarkers could be explained by the fact that automatic segmentation of the hippocampal subfields is 
a complex task due to subtle borders dividing each area.

In this work, we compared the efficiency of diffusion MRI and multimodal patch-based biomarkers for AD 
detection and prediction over the hippocampal subfields. Comparisons based on MD, volume and multimodal 
patch-based biomarkers showed that the subiculum is the most discriminating structure in the earliest stage of 
AD providing the best results for AD prediction (see Figs 4 and 5). However, whole hippocampus structure, fol-
lowed by CA1SR-L-M, obtains best results for AD detection.

These results are in accordance with literature studies based on animal model and in vivo imaging combin-
ing volume and MD demonstrating that the subiculum is the earliest hippocampal region affected by AD49,50. 
Moreover, postmortem studies showed that hippocampal degeneration in the early stages of AD is not uniform. 
After the apparition of alterations in the EC, the pathology spreads to the subiculum, CA1, CA2-3 and finally the 
CA4 and DG subfields43,44,49,98. It is interesting to note that the results of our experiments using volume-based bio-
markers are also coherent with the previous in-vivo imaging studies that analyzed the atrophy of each hippocam-
pal subfield at the advanced stage of AD. These studies showed that CA1 is the subfield impacted with the most 
severe atrophy45,46,99,100. Furthermore, studies using the ultra-high field at 7T, enabling CA1 layers discrimination 
showed that CA1SR-L-M are the subfields showing the greatest atrophy at advanced stages of AD47,48.

Comparison with state-of-the-art methods. In the past years, a large number of studies dedicated to 
automatic detection of Alzheimer’s disease have been proposed53,69,93,101. For a fair comparison, we consider only 
methods based on similar modalities and validated on the same ADNI2 dataset. Direct comparison with other 
monomodal methods applied on ADNI1 is difficult because group definition and pathological status definition 
are different. However, we can observe that the results obtained by the proposed method are in line with recently 
published results for AD vs. CN102.

Strengths and limitations. The major strength of our work comes from studying the effectiveness of using 
multimodal hippocampal subfields alterations for AD classification with a novel multi-modal patch-based grading 
framework. Nonetheless, we acknowledge that our multi-modal framework is not without potential limitations. 
The main limitation is the large voxel size of DWI in native space that is prone to PVE by merging signal from 
CSF with the signal from brain tissues. This results in an increase of MD coefficients, especially for structures with 
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severe atrophies. However, to limit this aspect, we corrected the PVE83. Indeed, it has been shown that the use of 
up-sampling methods over individual DWI direction enables reduction of the PVE effect. Nevertheless, this study 
does not aim to provide an interpretation of DTI parameters modification, but to study the effectiveness of the use 
of hippocampal subfields for AD classification with multimodal patch-based grading method. Finally, although our 
method extracts patches independently from both s-MRI and d-MRI modalities to estimate grading maps from 
both modalities, the fusion of the two grading maps requires accurate alignment of images from each modality. 
Consequently, the correction of EPI distortions is crucial in ensuring that each voxel corresponds to the location.

Conclusion
In this paper, we analyzed hippocampal subfield alterations with a multimodal framework based on structural 
and diffusion MRI. In addition, to study tenuous modifications occurring in each hippocampal subfield, we 
developed a new multimodal patch-based framework using T1w and DTI. Our novel MPBG method was com-
pared to the volume and the average of MD over the whole hippocampus. This comparison demonstrated that our 
MPBG method improves performances for AD detection and prediction. Also, a comparison with state-of-the-art 
diffusion-based methods showed the competitive performance of MPBG biomarkers. Finally, volume, average 
MD and MBPG methods were used to analyze hippocampal subfields. Although CA1 is the subfields with the 
greater atrophy in the late stage of AD, the experiments demonstrated that the whole hippocampus provides the 
best biomarker for AD detection while the subiculum provides the best biomarker for AD prediction.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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