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Abstract 
This paper presents a multimodal crisis management sys-
tem (XISM). It employs processing of natural gesture and 
speech commands elicited by a user to efficiently manage 
complex dynamic emergency scenarios on a large display. 
The developed prototype system demonstrates the means of 
incorporating unconstrained free-hand gestures and 
speech in a real-time interactive interface.   
This paper provides insights into the design aspects of the 
XISM system. In particular, it addresses the issues of ex-
traction and fusion of gesture and speech modalities to 
allow more natural interactive behavior. Performance 
characteristics of the current prototype and considerations 
for future work are discussed. A series of studies indicated 
positive response with respect to ease of interacting with 
the current system.  

1. Introduction 
Management of crisis and emergency response tasks re-
quires an operator to process vast amounts of information 
in a time critical manner.  Crisis situations need to be as-
sessed and effective response plans need to be generated in 
a timely fashion. In a real setting these kinds of scenarios 
are usually associated with resource allocation problems. 
To maximize the effectiveness of this process and minimize 
the chance of human error, computers should play an im-
portant role in automating the steps in the involved as-
sessment and decision making process. However, means of 
the traditional human-computer interaction (HCI) (i.e., 
mouse and keyboard interfaces) present a bottleneck at the 
interface level by encumbering the information exchange. 
Meanwhile, humans communicate with each other through 
a range of different modalities with no effort. Hence, the 
ultimate goal of novel interfaces is to mimic expressiveness 
and easiness of everyday human-to-human communication 
in HCI.  

It is well known that speech and gesture compliment 
each other and when used together, create an interface 
more powerful than either of the modalities alone. Integra-
tion of speech and gesture has tangible advantages in the 
context of HCI, especially when coping with complexities 
of the visual environment [1]. Therefore, coverbal gesticu-

lation has the best prospects of achieving effortless and 
expressive HCI.  

Thus, a computer system should have the ability to un-
derstand multiple modalities, i.e., speech and gesture when 
information is somehow distributed across the modalities. 
Up to date there have been several designs of multimodal 
systems. However, the rigidity of Bolt’s "put that [point] 
there [point]" [2] paradigm still prevails in the majority of 
the designs. While there were some advances of including 
speech recognition into limited domains, most of the ges-
ture recognition work is limited to understanding artifi-
cially imposed signs and gestures, e.g. [3, 4 ]. In addition, 
it often involves cyber gloves or electronic pens. The result-
ing systems are far from satisfying the “naturalness of in-
teraction” criterion. For instance, studies on pen-voice in-
terface for information query and manipulation of elec-
tronic maps indicate, that linguistic patterns significantly 
deviated from canonical English [5].  

In contrast, we present a multimodal HCI system that al-
lows a human operator to naturally interact with a large 
screen display through the simultaneous use of speech and 
gesture. The high-resolution display provides real-time 
visualization of current data and events allowing an opera-
tor to maintain an active view of the current state of affairs 
and to establish relationships between events. The opera-
tor’s movements are visually tracked via an active camera 
situated on top of the display. Since previous studies [6] 
[10] have shown that deictic gestures are more suitable for 
a large display manipulation as opposed to symbolic ges-
tures as in sign language, e.g. in  [7], our system is trained 
to recognize unconstrained deictic gesture primitives.   

The XISM system presented in this paper has evolved 
from a previous multimodal speech gesture interface sys-
tem (Campus Map [8]), which was developed based on a 
weather narration keyword/gesture co-occurrence analysis 
[6]. Our system differs from related multimodal systems [9] 
in that the gesture recognition is based on learned statisti-
cal gesture and speech-gesture co-occurrence  models.  

2. Crisis Management System 
The multimodal crisis management system presented in 
this paper is a research prototype system designed to study 
the suitability of advanced multimodal interfaces for typical 



crisis management tasks. The user takes the role of an 
emergency center operator and is able to use speech and 
gesture commands to dispatch emergency vehicles to rap-
idly occurring crisis in a virtually generated city (Figure 1). 
The operator is standing at a distance of about 5 feet from 
the display in the view of a camera located on top of the 
unit. Speech commands are captured with a microphone 
dome suspended from the ceiling.  

The operator has a birds-eye view of the city but has the 
ability to zoom in on locations to get a more detailed view. 
The goal of the operator is to acknowledge and attend to 
incoming emergencies, indicated by animated emergency 
symbols and accompanying audible alarms (Figure 2). 
Alarms are acknowledged by pointing at them and giving 
an appropriate verbal command (“Acknowledge this emer-
gency.” or simply “Acknowledge this!”). The acknowl-
edgement indicates to the system that the operator is aware 
of the crisis and that it will be attended to shortly. The vis-
ual as well as audio signals emitted by the alarm are re-
duced to a lower level. The speed at which each emergency 
is attended to, ultimately determines the final performance 
of the operator. Hence, the emergencies have to be resolved 
as quickly as possible by sending an appropriate emergency 
vehicle to the crisis location. For that, the operator has to 
decide which type of unit to dispatch and from which sta-
tion to dispatch it. Emergency stations (hospitals, police 
and fire stations) are spread throughout the city and have 
limited dispatch capacities. Units are dispatched through 
speech gesture commands such as “Dispatch an ambulance 
from this station to that location.” accompanied with an 
appropriate deictic contour gesture.  
The XISM system allows a variation of the following crisis 
characteristics: 

• city size and urbanization density 
• amount of available emergency stations 
• amount of dispatch units per station 
• alarm occurrence rate 
• deployment time penalty 

This allows the creation of different scenarios ranging from 
sparsely populated country regions with few emergency 
stations to large, densely populated cities with many rap-
idly occurring emer-
gencies. If displayed 
information is too 
dense to perform 
accurate dispatch 
actions, an operator 
needs to be able to 
get more detailed 
views of city loca-
tions. The required 
speech gesture com-
mands to complete 
this task are of the 
form “Show this 
region in more detail.” or “Zoom here.” with an accompa-
nying area or pointing gesture. While the pointing gesture 
enlarges the view to the maximum for a given location, the 
area gesture allows controlling the level of detail by natu-
rally conveying which area to enlarge. 
  

3. System Components 
To capture speech and gesture commands the XISM sys-

tem utilizes a directional microphone and a single active 
camera. A large number of vision (face detection, palm 
detection, head and hand tracking) and speech (command 
recognition, audio feedback) related components have to 
cooperate together under tight resource constraints on a 
single processing platform.  

From a system design perspective smooth and automatic 
interaction initialization, robust real-time visual processing 
and error recovery are very important for the success of 
advanced interface approaches for crisis management ap-
plications, because unexpected system behavior is unac-
ceptable for mission critical systems. The iMap framework 
that the XISM system was build upon takes a holistic ap-
proach to multimodal HCI system design, attempting to 
address all of the above issues.  

3.1. Initialization 
In the initialization phase, user detection is achieved by 

detecting a face. The detection leads to subsequent head 
tracking initialization. Once the operator has stepped into 
the proper spot and found to be facing the system, the sys-
tem enters the bootstrapping state of the initialization 
phase. The system immediately performs palm detection to 
obtain an initial location of the user’s active hand and ini-
tializes the hand-tracking algorithm. Finally, it adjusts its 
active camera to adjust to the exact location, height and 
size of the user to allow optimal sensor utilization after 
which the interaction phase is initiated. 

 

 
 

Figure 1: XISM, a multimodal crisis management system. 

 

Figure 2: City with six active emer-
gencies. 



After the initialization, the actual dialogue between the 
system and the user commences. The vision-based modali-
ties mainly rely on robust continuous head and hand track-
ing based on motion and color cues. From the hand trajec-
tory data, a gesture recognition module continuously ex-
tracts free hand gestures using stochastic gesture models. 
Recognized gestures are combined with speech recognition 
results by a speech-gesture modality fusion module (Figure 
3). The semantic integration maintains a time varying con-
text in order to constrain the set of possible user actions for 
increased response reliability. 
 

3.2. Vision Components 
Since all systems are integrated onto a single standard 

PC the allowable complexity of motion tracking methods is 
limited, especially, because the system latency has to be 
minimized to avoid a “sluggish” interface experience. 

Face Detection: One of the most important components 
in the system is the face detector for robust user detection 
and continuous head track status verification. The imple-
mentation is based on neural networks and favors a very 
low false positive ROC of  <0.5%. 
 Palm Detection: With the proper camera placement and a 
suitable skin color model extracted from the face region, 
strong priors can be placed on the potential appearance and 
location of a user’s active hand in the view of the camera. 
The automatic palm detection rests on the assumption that 
the object to be detected is a small skin colored blob-like 
region below and slightly off center with respect to the us-
ers head. In addition, the palm detector favors but does not 
rely on the occurrence of motion at the location of the hand 
and integrates evidence over a sequence 60 frames. Palm 
detection is based on the Viterbi algorithm and is per-
formed as follows: For each frame I[.], two probability den-
sity functions are calculated with support ranging over the 

expected image locations x of the hand, 
one describing the probability of pixels belonging to the 
hand  

 ( | ) ( [ ]; , )c c cp x color G N I x µ∝ ⊗ Σ , (1) 

the other describing the a probability of seeing the palm 
based on motion evidence obtained through frame differ-
encing 

 ( | ) ( [ ]; )m mp x motion G N I x∝ ⊗ ∆ σ . (2) 

In both cases, N(.) are Gaussian distributions 
with 3 3 3,c cµ ×∈ Σ ∈� � (the skin color model) obtained from 

the face detector and variance mσ determined empirically 

for the motion cue.  
The motion and color cues tend to show responses in an 

image at different locations. While the color cue leads to 
the strongest response in the middle of the palm, motion 
energy is observed mostly at the edges. To allow a combi-
nation of both cues, both responses are spatially smoothed 
with Gaussian masks cG , mG of width c and m, respec-

tively. The final probability density of observing a hand at 
a location x is finally set to 

 (palm | ) ( | color) ( | motion)

(1 ) ( | motion) ( | color).

c m

c m

p x w p x w p x

w w p x p x

∝ + +

− −

 (3) 

From this distribution, a number of palm location hy-
pothesis are generated for each frame given by the local 
maxima within each block of a regular 8x8 tiling. Each 
hypothesis is associated with a corresponding normalized 
probability p(palm | x). The (time varying) location of the 
palm is then given by the optimal (most probable) hypothe-
sis-connecting path through the set of frames under consid-
eration. The probability of the path depends on the prob-
ability of each hypothesis plus an additional cost associated 
with the spatial shift in location from one frame to the 
next. The optimal path can be found efficiently using dy-
namic programming using the Viterbi algorithm. 

User

Video Stream Audio Stream

Hand
Tracking

Gesture
Recognition

Speech
Recognition

Modality
Fusion

Context
Semantic
Integration

Display

A
u

d
io

F
e

ed
b

a
ck

V
isu

al
F

e
ed

b
a

ck

 
   Figure 3: Logical flow of the system. 

 

Application
Front End

Text to Speech

Text to Speech
Engine

(IBM Outloud)

Tracking Control

Speech Engine
(SAPI, IBM ViaVoice)

Microphone
Dome

Speech Control

Gesture Recognition Control

Image Acquire Control

Vision Interface

Face Detector Control

Person Control video
signal

Camera Sensor

windows
message

Active Camera Control Pan Tilt Head

Large Screen Display

serial
ports

 
Figure 4: Overview of the iMap system architecture. Each of the bold framed boxes 
constitutes a separate thread of execution. 



Head and Hand Tracking: The algorithms for head 
and face tracking are based on similar but slightly different 
approaches. Both trackers are based on rectangular track-
ing windows whose location is continuously adapted using 
Kalman filters to follow the users head and hand. While 
the head tracker relies solely on skin color image cues, the 
hand tracker is a continuous version of the palm detector 
and geared towards skin colored moving objects. Prior 
knowledge about the human body is utilized for avoiding 
and resolving conflicts and interference between the head 
and hand tracks. The tracking methods used are based on 
simple imaging cues but extremely efficient and require 
less than 15% processing time of a single CPU. 

 Continuous Gesture Recognition: The main visual inter-
action modality is continuous gesture recognition. Unlike 
with previous gesture recognition systems [2], the user does 
not have to adhere to specific predefined gestures. It has 
been trained to recognize natural gestures, i.e., gestures 
that a person has a natural tendency to perform when inter-
acting with large screen displays. This approach increases 
the naturalness of our system tremendously. However, the 
gesture recognition component is no longer able to solely 
carry the complete intent of the user. Rather, the semantics 
of a command or request becomes distributed across the 
speech and gesture modalities such that gesture recognition 
and speech recognition have to be tightly coupled to extract 
reliable command and request information. 

In order to be able to model natural gestures using sta-
tistical techniques, one needs valid multimodal data. How-
ever, it is impossible to collect the data unless a system 
exists that allows the respective user interaction. For this 
work, a bootstrap-and-evolve strategy was used. A com-
parative analysis revealed that weather channel narration 
broadcast is closely related to the desired type of gestural 
interaction [10]. It led to the development and statistical 
training of appropriate gesture recognition models at the 
bootstrapping stage [6].  Based on our experience, we tem-
porally modeled deictic gestures based on a set of funda-
mental gesture primitives that pose a minimal and com-
plete basis for the large-display interaction tasks considered 
by our applications (Figure 5). 

More specifically, the system has been trained to learn 
pointing gestures (selection of a single item, reference to a 
single location), area gestures (selection of a number of 

items or an item extensive in size, reference to an area) and 
contour gestures (a compound point-contour-point gesture 
used to semantically connect references and selections). 
The statistical gesture model and continuous recognition is 
based on continuous observation density Hidden Markov 
Models (HMM).  

3.3. Audio Components 
Speech Recognition: Speech recognition has improved 
tremendously in recent years and the robust incorporation 
of this technology in multimodal interfaces is becoming 
feasible. The presented system utilizes a speaker dependent 
voice recognition engine for reliable speech acquisition 
after a short speaker enrollment procedure. The set of all 
possible utterances is defined in a context free grammar 
with embedded annotations. The grammar constrains the 
necessary vocabulary that has to be understood by the sys-
tem while retaining flexibility in how speech commands 
can be formulated. The speech recognition module of the 
system only reports time-stamped annotations to the appli-
cation front end. 

Audio Feedback: Audio feedbacks in the form of sound 
effects and/or speech are important components for multi-
modal interfaces. The current XISM system utilizes audio 
effects of varying volume as a means of notifying an opera-
tor of occurring emergencies on the one hand and in order 
to create a task appropriate noise environment (e.g., sirens) 
that an actual operator would be subjected to on the other. 

3.4. Modality Fusion 
In order to correctly interpret a user’s intent from his or her 
utterances and gestural motions, the two modalities have to 
be fused appropriately (Figure 3). Due to the statistical 
method employed for continuous recognition, both the 
speech recognition and gesture recognition systems emit 
their recognition results typically with time delays of 1 sec. 
Verbal utterances such as “show me this region in more 
detail” have to be associated with co-occurring gestures 
such as “<Preparation>-<Area Gesture Stroke>-
<Retraction>”. The understanding of the temporal align-
ment of speech and gesture is crucial in performing this 
association. While in pen based systems [4], gesture have 
been shown to occur before the associated deictic word 
(“this”), our investigations from HCI [10] and Weather 
Narration [6] showed that for large screen display systems, 
the deictic word occurred during or after the gesture in 
93% of the cases. Hence modality fusion can reliably be 
triggered by the occurrence of verbal commands. 

The speech recognition system emits streams of time 
stamped annotation embedded in the speech grammar; for 
the above case one would obtain 
 

…[ZOOM, t0, t1] [LOCATION, t1, t2] [REGION, t2, t3]… 
 

Prep

Point
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Figure 5: Statistical deictic gesture model. 



The annotation “LOCATION” occurring around the 
time 

s 1 2
t =(t +t )/2 corresponds to the occurrence of the deictic 

keyword “this”. Similarly, the gesture recognition might 
report 

 
…[PREP, s0, s1] [AREA, s1, s2] [RETRACTION, s2, s3]… 

 
indicating that an area gesture was recognized in the 

time interval 1 2[ , ]s s . 

ZOOM LOCATION REGION

PREPARATION AREA GESTURE RETRACTION

Time

s0 s1 s2 s3

t0 t1 t2 t3

 
Figure 6: Speech gesture modality fusion. 

 
Using the time stamp of the deictic keyword, a win-

dowed search in the gesture recognition result history is 
performed. Each past gesture stroke is checked for co-
occurrence with appropriate annotations. Given for exam-
ple time stamps 1 2[ , ]s s for a gesture stroke, association 

with a keyword that occurred at time st is assumed if  

tse c [s1-dtb,s2+dte]. Where dtb and dte are constants 
learned from training data. This approach allows the occur-
rence of the keyword a short time before the gesture and a 
longer time delay after the gesture. Upon a successful asso-
ciation, the physical content of the area gesture, namely 
hand trajectory data for the time interval 1 2[ , ]s s is used to 

obtain the actual gesture conveyed components of the com-
pound speech gesture command. In the case of for example 
an area gesture, a circle is fitted to the thus obtained ges-
ture data in order to determine which region of the screen 
actually to show in more detail.  

4. Discussion and Conclusion 
XISM requires only moderate computational resources. 

All presented systems run comfortably on Dual Pentium III 
500 MHz or correspondingly faster single processing plat-
forms with less resources required if the system runs with 
not all system modules enabled. For a detailed description 
of the system components see [8].  

The XISM system has been and is currently being used 
for conducting cognitive load studies in which different 
aspects of multimodal interaction can be measured accu-
rately and compared to traditional and alternative interac-
tion methods under variable but controlled conditions. 

Informal user studies with the crisis management and 
related multimodal applications [8] have shown that 80% 
of users had successful interaction experiences. In addition, 
observations revealed that the system behaved according to 
its specifications in 95% of the cases. In an ongoing pro-
ject, the XISM system is extended to operate with multiple 
users simultaneous interfacing to a geographical informa-

tion system (GIS), which will allow to extent the applica-
bility of the system to the area of natural disaster scenarios. 
   While the current system was developed with crisis and 
emergency management in mind, the framework easily 
translates to a number of related application areas. Flight 
traffic control, command post systems and entertainment 
application all share characteristics with the presented sys-
tem.  
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