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Abstract—Human hand motion analysis is an essential research
topic in recent applications, especially for dexterous robot hand
manipulation learning from human hand skills. It provides
important information about the gestures, tactile, speed and
contact force, captured via multiple sensing technologies. This
paper introduces a comprehensive survey of current hand motion
sensing technologies and analysis approaches in recent emerging
applications. Firstly, the nature of human hand motions is
discussed in terms of simple motions, such as grasps and gestures,
and complex motions, e.g. in-hand manipulations and re-grasps;
secondly, different techniques for hand motion sensing, including
contact-based and non-contact-based approaches, are discussed
with comparisons with their pros and cons; then, the state-of-the-
art analysis methods are introduced, with a particular focus on
the multimodal hand motion sensing and analysis; finally, cutting-
edge applications of hand motion analysis are reviewed, with
further discussion on facing challenges and new future directions.

Index Terms—multimodal sensing; human hand manipulation;
tactile sensors; vision-based sensors; hand motion analysis

I. INTRODUCTION

NOWADAYS, robots are widely applied to complex sur-

roundings: aerospace, field operations, and social ap-

plications. These new applications require robots to perform

complicated dexterous in-hand manipulation tasks instead of

humans. The robotic hand control is an integrated product

in multi-disciplines, which cover pattern recognition, bionics,

tactile sensing and many other disciplines [1]. However, it’s

not easy to integrate and implement the corresponding tech-

niques to achieve human-like manipulation. The development

of a sophisticated multi-fingered robot hand is still at an early

stage, because of the lack of appropriate multi-fingered con-

trol system structure, the immature synchronous cooperation

between sensor-motor systems, biomimetic materials issues,

etc. In order to meet the sound reliability and flexibility of

bionic multi-fingered robotic hands, as well as the real-time

performance, it is crucial to achieve these targets through

human hand motion (HHM) analysis, HHM capture, HHM

recognition and HHM skill transfer [2].
Based on acquired skills and past experience, human can

perform various operational tasks easily. However, there are
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some ‘engineering challenges’ considerations to take into

account when manipulating a specific object by robotic hands,

namely, contact point layout problem, pre-grasp pattern opti-

mization problem, grasping force matching issues, and coor-

dinated manipulation strategy selection [3], [4]. In the past

decades, robotics researchers have devoted their attention to

the study of human hand manipulative skills. Kang et al. seg-

mented the human hand motion based grasping task sequences

into three basic identifiable phases: pregrasp phase, static

grasp phase, and manipulation phase. Then, a task division

algorithm was used to demonstrate the viability of these

motion transformations [5]. It is recognized that the state-of-

the-art HHM analysis theory has capabilities of establishing

hand manipulative skill model, however, realizing some ad-

vanced functionalities of a robotic hand, that is, manipulative

dexterity, grasp robustness, and human-like operability, is still

a challenge in a complex interactive environment [6].

While performing different operating tasks, human can

select appropriate grasping strategies and applied forces ac-

cording to the characteristics of objects (shape, size, weight,

etc.). Realizing hand dexterous manipulation is a complex

process, involving multimodal sensing and fine motor control.

Only extracting skeleton postures from the human hand is not

enough, and more characteristics of HHMs, such as finger

force, tactile, speed, etc, are also very important [7]. With

the rapid development of electromechanical and sensing tech-

niques, the multimodal sensing system is suitable for a robot

hand to efficiently acquire shape, position and orientation of

an object, which could be operated in a smart way. Generally,

the hand motion sensing systems can be mainly divided into:

data glove based capturing, attached force based capturing,

surface electromyography (SEMG) based capturing, optical

markers based capturing and vision based capturing. A data

glove is a particular glove that has sensors, typically magnetic

or in optic fibre to measure the finger bending. Attached force

sensors construct the sensing system through the changes of

capacitance, resistance or electrical charge. SEMG signals can

be used to obtain the information of contracted muscles, and

then to generate control commands for the prostheses control.

Optical markers are used to simplify the capture procedure and

describe the hand motion configuration in a low-dimensional

space. Vision based motion capturing is widely applied to

capture images of hand motions by cameras. Compared with

other technologies, the vision sensor can work in a natural and

non-contact manner [8]. In recent years, the available vision

sensors, such as the Kinect and leap motion controller, have

been successfully used to the sign language and hand gesture

recognition. Increasing efforts have been made in acquiring

the characteristic information, however, most of the current

research has focused on a range of limited behaviours or in
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limited scenarios based on a single type of sensing system

[9]–[12]. It remains to be a tough issue for a complex hand

motions, like in-hand manipulation. For example, Given a

data glove based human hand manipulative information, a

robot hand is required, inspired by human hand biological

capabilities, to manipulate the same size and shape of egg and

briquette. Due to the lack of important finger force control and

spatial location information, the manipulation will probably

fail. Hence, the researchers now face is how to obtain the

multimodal features of hand manipulations through perceptual

fusion techniques.

A comprehensive review of current state of the multimodal

sensing technologies and motion analysis approaches on hu-

man hand motion recognition and its emerging applications is

presented as follows. The natural classifications of the hand

motions are reviewed and discussed, followed by a detailed

description of HHMs from two aspects in Section II. Section

III overviews sensing techniques for HHMs and presents a

thorough taxonomy. An overview of hand motion analysis

methods is discussed in Section IV. The multimodal hand

motion sensing techniques are presented and discussed in

Section V. Section VI shows various applications of HHM

analysis in different environments. Section VII gives a detailed

summary and discussion, as well as future research directions.

II. HUMAN HAND MOTIONS

The human hand is one of the most complex and dexterous

motor systems in the human body for communication and

interaction [13]. HHM analysis has become an important

bionic research topic for scientists and engineers to design

human-like robots and prosthetic hands for different tasks by

learning and modelling human hand skills. Elliott et al. first

proposed a comprehensive classification framework to describe

four broad classes of HHMs [14]. Exner developed five types

of HHMs on the basis of work of Elliott and Connolly [15].

Pont et al. presented an improved classification system and

further described six types of HHMs [16]. More recently,

Fougner et al. proposed a multimodal approach using EMG

and accelerometers to realise eight classes of HHMs [17].

Bullock et al. designed a hand motion-centric based classi-

fication scheme to create a descriptive framework [18], which

was used to effectively depict HHMs during manipulation

in complex and changing environments, and other existing

classification methods were also integrated into the framework

to describe the specific manipulation tasks. In this paper, a

new classification strategy is proposed, namely, simple hand

motions, including various grasps and postures, and time-

varying complex hand motions, for instance, the dynamic

gestures and complex rotations.

A. Simple hand motions

Simple hand motions are very common in the real life,

including grasp, lift, hold, put, rotation, and gesture. Most

hands-on work can be done with simple hand motions: picking

up a phone, grasping a bottle, putting down a cup, etc. These

motions are completed through one or several types of sub-

actions and finger primitives. Mitra et al. presented a detailed

summary on gesture recognition [19]. They categorised five

human gestures to describe the HHMs: gesticulation, sign

language, language-like gestures, pantomimes and emblems.

Although this classification presents a summary of hand mo-

tions, there is no specific description of in-hand manipulation.

Different movements involve different numbers of fingers.

Fingertips are used to maintain the grasp stability by applying

proper normal force and tangential force [20]. Five types

of simple motions are proposed based on the multi-fingered

configuration as shown in TABLE I. It is easy to acquire some

characteristics of the hand and segment the motions into some

sub-actions, but they are limited in complex or advanced tasks.

TABLE I: Classification of simple hand motions

Classification Examples

Static gestures
Victory sign
Pointing a finger projection
Thumb up

Touching

Pressing a button
Pushing a closed door
Sliding a pen on the table
Flipping a light switch

Stable grasps without external forces

Holding a phone
Grasping a coin on the palm
Writing with a pencil
Cutting a paper with a scissor

Simple shifts

Lifting a water glass
Pushing a key into a keyhole
Taking a book from a shelf
Putting a cover on

Rotating an object in-hand

Screwing/unscrewing jar lids
Rolling pingpang among fingertips
Turning doorknob
Spinning a small top

B. Complex hand motions

Complex motions generally include three main features: (1)

multi-fingered movements with or without the palm, (2) wrist

movements cooperating closely with in-hand manipulation, (3)

changes in the hand’s location and posture. Ju et al. proposed

a nonlinear feature extraction based classification approach to

identify different hand manipulations [21]. Lu et al. identified

the features of several in-hand manipulations, and recognized

these hand manipulation signals based on BP neural network

and support vector machine classifiers [22]. Complex HHMs

show more flexible and dexterous human in-hand operations,

so it is more difficult to describe the process for multi-fingered

manipulation [23]. The classification of complex motions with

applications in manipulation tasks is presented in TABLE II.

Based on temporal relationships, the dynamic gestures

change continuously with respect to the hand’s location, and

the related messages can be obtained in the temporal sequence

through hand trajectories, orientations, the fingers’ shapes and

flex angles. In-hand manipulation can be decomposed into

a sequence of sub-motions, and it is much more complex

than simple grasp motions and associated with the most

complex human motor skills. It’s the ability to change the

position or adjust an object within one hand. Regarding the

examples of simple shift in TABLE 1, all the participating

fingers with or without the palm move with the object as one



3

TABLE II: Classification of complex hand motions

Classification Examples

Dynamic hand movements
Sign language movements
Finger gymnastic

Complex shifts
Fanning the playing cards in the hand
Adjust fruit while eating

Complex rotations
Turning over coins in-hand
Spinning a pencil like a ”helicopter” in
the fingertips

Complex two-hand cooperations
Carrying a box with two-hand
Telerobotic remote surgical service

unit. However, complex shifts combine shifts with sequential

pattern movements of an object, and the participating fingers

are independent of each other to form a different action

schema. In addition, discontinuous movements occur when

repositioning some fingers on the object, while the others move

together. For a complex rotation, an object will be rotated

around one or more axes. The participating fingers and the

thumb are required to execute isolated and independent finger

movements to complete a rotation. In addition to the above

complex motions, two-hand cooperation is another important

type of HHMs. This kind of interaction requires precise

physical models so as to allow interaction among users, who

are manipulating objects at the same time.

To facilitate a good human robot interaction, it is necessary

to have a precise physical model for HHM analysis. Advanced

manipulations have been widely applied to telerobotics [24]

and surgical applications [25]. However, most of the current

research is focusing on the dual-arm operation, and the dual

dexterous hand operation has not been properly addressed.

III. SENSING TECHNOLOGIES FOR HUMAN HAND

MOTIONS

Humans develop robust control strategies to achieve the

complexity and dexterity of HHMs through extracting regular-

ities in sensorimotor interaction with the external environment.

Fig. 1 shows a detailed categorization of current sensing

technologies. The contact-based sensors acquire sensing infor-

mation, attached on the human hand or other parts of the body.

Depending on tasks, sensory information obtained from vari-

ous contact-based sensors can be applied to track the contact

locations, reconstruct, recognize the physical characteristics of

the objects, and measure the tactile parameters. In contrast to

various contact-based sensors, vision-based sensing systems

can acquire the information without physical touch. In the

following sections, this paper will explore in more depth the

functions and characteristics of each sensing device.

A. Contact-based sensing technologies

1) Hand data glove: Hand data glove is an electronic

device equipped with different types of sensors to sense the

finger flexion or contacts in real-time. It can be used to

grasp, move and rotate the objects in a virtual scene. Current

products have been able to detect finger bends and utilize

magnetic position sensors to locate the hand position in three-

dimensional space. The popular gloves available in the market

are shown in Fig. 2. Glove based systems can be used more

Fig. 1: Human hand motion sensing technologies.

in the hand motion animation, and they can successfully work

with multiple degrees of freedom (DOF) for each finger,

because of the characteristics of high accuracy, high response

speed, and strong operability.

Luzanin et al. developed a data glove-based hand motion

recognition system using a probabilistic neural network trained

on a cluster set generated by a clustering ensemble [26]. In

this system, a low-budget data glove with 5 sensors was used

to efficiently recognise the hand motions in VR applications.

Cai et al. provided a gesture recognition method based on a

wireless data glove [27]. This system selected the CC2530

chip as the main control chip, and used the Xsens MTi

sensor to acquire glove data through four fingers buttons,

and finally realized the wireless communication by using the

RS232 serial interface. In other related work [28]–[31] and the

aforementioned articles, it is proved that the data glove is an

effective way to capture the hand movements, however, due

to the differences in hand sizes, how an optimal calibration to

settle the mapping from raw data to real finger joint angles of

different hands, is still a main challenge. Moreover, the data

glove will obstruct the object-hand interaction by reducing the

flexibility of the hand movements.

(a) DG5-V Glove (b) CyberGlove III (c) ShapeHand Glove

(d) VHand DGTech (e) 5-DT 14 Glove (f) CyberWorld P5

Fig. 2: Examples of data gloves available in the market.

2) Attached force sensors: The force control is the base

of stable manipulation with a multi-fingered robot hand. A

number of force sensors and several techniques for measuring

exerted forces have been proposed by both the academic

and industrial communities [32]. The most important design

criteria of force sensors in manipulation tasks are the spatial

resolution, robustness, sensitivity, and frequency response.

Attached force sensors, which include four common force
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sensing techniques, need to meet the demands on the object

characterization, identification and manipulation [33]. Capac-

itive sensors obtain the displacement, force and speed based

on the variation of distances between the upper and lower

electrodes caused by external force changes. Piezoresistive

sensors detect the changes in the resistivity of the sensing

material formed on a silicon substrate. Piezoelectric pressure

sensors use the piezoelectric materials to generate an electrical

charge that is proportional to the pressure applied. Strain-

gauge converts the amount of strain (pressure, tension, weight,

etc) into the amount of change in resistance. TABLE. III

shows the pros and cons of these sensors based on the recent

contact-based hand motion sensing papers, as well as technical

demonstrations.

TABLE III: Pros and cons of different force sensors

Sensors References Strengths Weaknesses

Capacitive [34]–[38]
Good frequency response Electro-magnetic noise
High spatial resolution Sensitivity to temperature
A large dynamic range Non-linear response

Piezoresistive [39]–[44]

Low power consumption Hysteresis
Simple integration Fragility and rigidity
High flexibility Lower repeatability
Long term stability

Piezoelectric [45]–[50]

High spatial resolution Temperature sensitive
Fast dynamic response Electrical junction fragility
High spatial resolution Drift of sensor output
High bandwidth Not stretchable
Robust

Strain-gauge [51]–[55]
Higher sensitivity Non-linearity
Lower cost Not recover with overload
Small size Temperature & humidity

sensitivity

3) Surface electromyography: Surface electromyography

(SEMG) provides technical support for evaluation of the

biofeedback of muscle movements by measuring the EMG sig-

nal on the surface of the skin [56]. By recognizing the certain

muscle contraction patterns of the HHMs, the robot/system

can identify the human’s intention and perform corresponding

actions or communication, such as completing hand motions

through prosthetic hands. Examples of current applications of

SEMG are shown in Fig. 3.

By obtaining users’ motion intention with SEMG sensing,

Kiguchi et al. presented a new method to realize the upper-

limb control, for human-like manipulation [57]. Al-Timemy et

al. classified various hand motions for the prosthetic control,

and used an offline process to evaluate the classification

performance based on multiple-channel SEMGs [58]. Hu et

al. employed SEMG signal as a control feedback and the

real-time SEMG motion recognition could be implemented

for controlling the grasping of a dexterous hand [59]. Though

SEMG sensors are a promising method for extracting elec-

tromyography signals to help the robot to simultaneous control

wrist and hand DOFs, researchers need to pay more attention

to some critical issues: how to resolve or reduce the effects of

crosstalk, electrode displacement and information redundancy,

and how to select/evaluate suitable features from the raw

signals.

4) Optical markers: Optical marker based motion capture

technique has been used to track and analyse the HHMs

(a) Electrodes position
[57]

(b) Electrodes view [58] (c) Teleoperation [59]

Fig. 3: Applications of SEMG sensors.

in a particular condition with calibrated cameras, which are

applied to only track the markers placed on the human body.

Fig. 4 shows some examples with optical markers. They can

provide direct, reliable, accurate and fast joint positions, even

in clustered scenes with varied lighting conditions, object

occlusions, and insufficient or incomplete scene knowledge

[60]. Kuo et al. provided a non-invasive tracking device based

on skin sensors and surface markers for obtaining 3D quanti-

tative measurements [61]. Metcalf et al. presented a kinematic

model based on surface marker placement and used standard

calculations to calculate the specified marker placements [62].

Optical markers can effective track the HHMs, but have been

limited by kinematic protocols, such as marker placement

errors caused by skin deformation and marker movements,

as well as the requirements of the constrained measurement

space, special-purpose cameras, and inconvenient markers or

suits.

Fig. 4: Hand motion tracking using optical markers [60].

B. Non-contact-based sensing technologies

1) Ordinary cameras: Contact-based sensing techniques

are limited by the complex connection wires, surface prop-

erties, hysteresis and sensitivity. The emergence of affordable

commercial marker-less cameras is a potential new solution to

avoid these drawbacks. RGB camera delivers the three basic

color components (red, green and blue) on three different

wires, and can obtain the color information through the color

variation and superimposition captured from three independent

CCD sensors [63]. It can easily achieve millions of pixels with

above twenty frames per second, which provide a rich source

and a high accuracy for detecting human motions. However,

the human motions have high dynamics and the occlusion

often occurs due to the perspective projection. In order to

solve these problems and have higher accuracies, multiple

RGB cameras separated with certain angles, are employed to

observe 3D human motions in different directions.

Stereo camera consists of two same specifications of the

digital camera. Through focusing, zooming and sensitising,

the 3D structures of the subject are generated from different

viewpoints. Stereo camera has fixed lens angles and internal

pre-calibrations, which give the camera freedom of moving,

but the angle between two lenses is usually too small to cover
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the occlusion area in human motions. Additionally, due to

the complexity of stereo geometry calculation, stereo intensity

images are sensitive to light changes, so it is difficult to match

correspondingly for triangulation.
2) Depth cameras: Compared to the ordinary cameras,

depth cameras are capable of capturing depth information,

and they are much faster and easier to deploy a 3D vision

system than the ordinary cameras on the analysis of HHMs.

Time-of-Flight (TOF) cameras can be applied to evaluate the

3D structure directly without common computer-vision meth-

ods [64]. Oprisescu et al. proposed a TOF based automatic

approach for recognizing some defined hand gestures [65].

Kopinski presented a scheme on 3D hand posture recognition

based on TOF sensors in an outdoor environment [66]. Lower

sensitivity to the light environment, miniaturization, and high

effectiveness are the main advantages of TOF cameras, but

low resolution is one major drawback.
Kinect as the most typical of depth cameras provides syn-

chronised color and depth images. It has been widely used in

computer graphics, video games, human computer interaction

(HCI), object recognition, and computer vision [67]. Fig. 5

shows two versions of Kinect. In order to improve the sensing

accuracy, the second version was released in 2013 with a

higher specification than the first version. Real-time interaction

can be achieved by 3D human motion capturing technologies

without manipulating the controller [68]. Raheja et al. pre-

sented a Kinect based fingertip detection and centres of palms

detection approach to recognize hand motions [69]. Frati et

al. proposed a new solution based on Kinect technology to

compensate for the lack of location awareness in contact-based

sensors [70]. Depth cameras have apparent advantages, though

it is still difficult to capture hand motions via a single depth

camera in cluttered indoor environments. Moreover, it requires

special lighting conditions and high contrasts, while noise and

body occlusion can have a great influence on the acquisition

of key information of the HHMs.
3) Leap Motion controller: Leap Motion controller is a

new gesture and position tracking sensor, with sub-millimeter

accuracy and repeatability for the HHMs controlled user

interface [71]. In contrast to the depth cameras, this con-

troller uses infrared optics and cameras instead of the depth

sensors, and the above-surface sensor is used in the realistic

stereo interaction systems compared to the standard multi-

touch solutions. Chen et al. proposed a hand gesture based

robot control system using the Leap Motion controller, and

realized the function of controlling virtual universal robot

UR10 with hand gesture through the mathematical process

[72]. Mapari et al. presented an Euclidean and Cosine based

Indian sign language recognition system to recognise the

positional information of the HHMs using the Leap Motion

sensor [73]. The Leap Motion controller can recognise and

track the HHMs accurately, but the capture system can only

be used in a specific space, and the results are limited to what

can be performed within the capture volume without extra

editing of the data.

IV. HAND MOTION ANALYSIS METHODS

Once the multi-sensory hand motion information has been

captured from the sensing devices, it is necessary to distin-

(a) The RGB image with 640 × 480
pixels from Kinect V1.

(b) The depth image with 320 × 240
pixels from Kinect V1.

(c) The RGB image with 1920 ×

1080 pixels from Kinect V2.
(d) The depth image with 512 × 424
pixels from Kinect V2.

Fig. 5: Kinect Version 1 vs. Kinect Version 2 in RGB and

depth images [68].

guish different categories among the information by using a

classifier. TABLE IV contains six common approaches for the

hand motion classification. Next, the detailed presentation and

discussion of these obtained techniques will be explained.

A. Support Vector Machine

Support Vector Machine (SVM) is a novel large margin

classifier used for classification and regression, which is

effective in a high dimensional space and compatible with

different kernel functions specified by a decision function.

SVM is a kind of raised optimized questions from that and

its solution has the characteristic of overall optimum, as well

as the stronger generalization ability. Liu et al. evaluated

and verified the hand gesture recognition results in a driving

license test based on SVM [74]. Chen et al. presented a

SVM based robust visual system for hand gesture recognition

in finger guessing games [75]. Dardas et al. used bag-of-

features and multiclass SVMs to recognize the hand gestures

[76]. These research results prove that SVM can effectively

identify the hand motions, and have a satisfying recognition

accuracy. However, the long training time makes it difficult

to solve the real-time problem from the memory size for

training large data, and the suitable parameter selection is

another challenge. In addition, if the hand motion classes

are not linearly separable, selection of the appropriate kernel

functions, such as polynomial, sigmoidal and radial-basis, is

crucial to the performance of the hand motion recognition.

B. Neural Networks

Neural networks (NNs) are an information processing sys-

tem for analysing time-varying data. They can handle very

complex interactions compared with other methods, like the

inferential statistics or programming logic [77]. NN uses

the node as its fundamental unit, the links as its associated
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TABLE IV: A summary of hand motion analysis methods

Algorithms
Sensory styles
(contact or non-contact)

Motions
(simple or complex)

Size Accuracy Previous
research

Advantages and Disadvantages

SVM Both Both Large 95% Extensive Advantages:
High performance
higher generalization ability
Disadvantages:
Only handles binary classification
Long training time

NN Both Both Large 98% Extensive Advantages:
The mature and applicable technology
With adequate training, high accuracy can be achieved
Disadvantages:
Time consuming
Needs retraining if hand gestures are added or removed

HMM Both Both Large 93% Extensive Advantages:
Simplicity and reliability
High accuracy with adequate training
Disadvantages:
Time consuming
Difficult to observe the internal behavior

GMM Non-contact Both Large 92% Moderate Advantages:
Fast convergence
Stable and high computationally efficient
Disadvantages:
The local optimum problem of extremum

TM Both Simple Small 97% Extensive Advantages:
Simplest and high accurate technique to implement
Requires only a small amount of calibration
Disadvantages:
Do not have rotation invariance and scale invariance
Overlapping templates for large motions

DTW Both Both Moderate 96% Minimal Advantages:
Conceptual simplicity and robust performance
Disadvantages:
Quadratic cost
Lack of feature weighting mechanism

weights, activation function such as the step, sign, and sigmoid

functions as the transfer function [78]. By utilizing a neural

network-based approach, Hasan et al. built a unique multilayer

perception for recognizing hand gestures, then the given hand

gesture data was finally classified into the predefined gesture

classes [79]. Bouchrika et al. introduced a wavelet network

classifier and a NN classifier learning algorithm to realize the

interaction with the computer by hand gesture recognition [80].
To model more complex and high-level abstractions or

structures from the training data, deep neural architecture has

been proposed, following the recent achievement of NNs. Due

to more hidden layers and the huge advantage of processing

large data, it discovers an intricate structure by applying the

BP algorithm, and creates a more abstract high-level represen-

tation of attribute categories by combining lower-level features

[81]. Many future deep learning NNs such as deep NNs,

convolutional deep NNs, deep belief networks and recurrent

neural networks will take into account that it costs energy

to activate neurons and to send signals between them [82].

Compared with the traditional NN methods, if deep learning

NNs are used for recognition of hand gestures, the recognition

accuracy and efficiency will be greatly improved.
C. Statistic approaches

This category contains two common techniques of hand

motion recognition, including the Hidden Markov Models

(HMMs) and Gaussian Mixture Models (GMMs).
1) Hidden Markov Models: HMMs as a kind of stochastic

state machine have been widely and successfully used in the

automatic speech recognition [83], the nature language pro-

cessing [84], and genomic sequence modeling [85]. HMM is a

double stochastic process - a certain number of hidden markov

chain and a set of random functions. It contains a hidden layer

and an observation layer. The probabilistic link between the

hidden and observed states can be equivalent to the likelihood

that particular hidden state will create an observed state. It

learns to weigh the important hand-shape information for

detection and classification, determining the correct number

of states for each motion to maximize the performance. In

[86], HMMs were applied to recognise input gestures and

improve the accuracy by using a real-time hand tracking and

extraction algorithm. Wang et al. presented a HMMs based

method to achieve automatic hand gesture online recognition

and it successfully rejected atypical gestures [87]. HMMs

have the advantages of being modeled directly and efficient

mathematical analysis of processes and results. However, this

algorithm is expensive both in terms of memory and computer

time. Moreover, it is difficult to choose an optimal HMM for

a given set of training sequences in a larger model.

2) Gaussian Mixture Model: Gaussian Mixture Model

(GMM), which measures the Gaussian component densities
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between parametric and nonparametric density models and

estimates all GMM parameters, is well suited for biometric

system, including object tracking, feature selection, back-

ground subtraction and signal analysis [88]. A real time

vision system for hand gesture recognition based computer

interaction was presented in [89]. GMM was mainly applied

to acquire the foreground from the video sequence, and extract

the extreme points from the segmented hand through star

skeletonization. Lin et al. detected the skin candidate regions

on the colour image with a GMM skin model for hand gesture

recognition [90]. These examples and some more applications

show that GMM is a reasonable and effective measurement

method for hand motion capture and recognition. However,

more components are required when fitting the datasets with

nonlinear manifolds, because the intrinsic linearity of the

Gaussian model leads to a relative large fitting error. How

to reduce the computational cost in the optimization and how

to design online learning strategy are the main focus of the

current research.

D. Template Matching

Template matching (TM), which measures the degree of

similarity between two image sets that are superimposed on

one another, is widely used in object recognition, stereo

matching, feature tracking, etc. Based on the characteristics

of a high accuracy and a light calibration required, it is an

efficient and effective approach to characterise image features.

In general, it consists of two steps to recognise the hand

motions. First of all, by collecting the data values for each

motion in the original data set, the new templates are created.

Secondly, by comparing the current sensor readings with

the given set of new templates, the motion template which

most closely matches the current data record is found [91].

There are several good examples of the template matching

comparison, such as chaotic imperialist competitive algorithm

[92], pixel rearrangement [93], orthogonal distance fitting [94],

and steganography algorithm [95]. Because of the inherent

drawback of computing all similarity values for matching all

possible positions, template matching will lead to excessive

time consumption, as well as lower efficiency. The focus of

further work is the matching optimization problem, specifically

how to realize the real time hand motion recognition.

E. Dynamic Time Warping

Dynamic time warping (DTW) is a well-known technique to

find an optimal alignment between two given (time-dependent)

sequences under certain restrictions [96]. Due to the per-

formance of conceptual simplicity and robustness, DTW is

being widely used to match the hand motions. Moreover,

another advantage of DTW is that it does not require training

but good reference patterns. Sempena et al. chose exemplar-

based sequential singlelayered approach using DTW for some

common human hand gestures [97]. Ko et al. proposed a

robust and efficient framework that used DTW as the core

recognizer to perform online temporal fusion on either the raw

data or the features [98]. Because of the importance of reliable

reference sequences in DTW, it appears that in some cases, the

analysis of the angles needs a more accurate classification to

recognition different gestures. The quadratic nature of space

and time increases the computational complexity from another

aspect. Because DTW finds the best path based on dynamic

programming, it is very important to adaptively constrain the

temporal warping while computing the temporal alignment.

How to optimize the current method or adopt more advanced

approaches, which allow an efficient and flexible alignment

between two or more multi-dimensional time series of different

modalities, is of great academic significance.

F. Others

In addition to six approaches described above, the Finite

State Machines [99], Empirical Copula [100], Haar-like Fea-

tures [101] and some variants from GMM and NN such as

Fuzzy Gaussian Mixture Model (FGMM) [102], Bayesian

Neural Network (BNN) [103] and Time-Delay Neural Net-

work (TDNN) [104], have appeared in the journals and con-

ferences. These novel methods can analyse the hand motions

effectively and recognise the hand gestures successfully. Al-

though only fewer references present these methods, it forms

a new research direction.

V. MULTIMODAL HAND MOTION SENSING & ANALYSIS

A. Multimodal motion sensing

Multimodal sensing technologies such as multi-sensor data

fusion can merge rich information obtained by multiple sen-

sors to achieve more accurate perception. Fig. 6 shows the

general flow of information from each type of sensors based on

[105], [106]. The types of multimodal sensing systems, which

present the measurement method selection of each modality

and the integration of different sensors, will be discussed in

detail in the following.

Fig. 6: Force-based and vision-based sensing information flow

and signal processing.

1) Contact-based sensing: The combination of multiple

contact-based sensors can acquire more information and avoid

the drawbacks of a uni-type sensor. Current multimodal tac-

tile sensing systems usually include tactile pressure sensing

array, proximity sensors, dynamic tactile sensors, and thermal

sensors. Tactile pressure sensing array typically consists of

individual pressure sensitive elements attached on the sur-

face of fingers. Wireless sensing based proximity sensors are

mainly used for target region tracking. Dynamic tactile sensing

includes several types of typical sensors, such as detection

sensors, accelerometers, strain rate sensors, actively stimulated

sensors and other sensors with fast response. Thermal sensors

mainly detect the feature information related to temperature

and humidity based on the temperature variation.

Ju et al. proposed a generalized framework integrating

multiple sensors to analyse multimodal information based
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HHMs as shown in Fig. 7 [107]. First of all, the information

of finger trajectory, contact force, and EMG was captured

simultaneously, and then transferred into the computer by

using digital signal processor. Empirical Copula was applied

to verify the correlations of sensory information in the pre-

processing module. Finally, in-hand manipulations and grasps

were recognized by utilizing FGMMs and the SVMs, and

experimental results showed a higher recognition rate. Wettels

et al. proposed a multimodal sensing scheme to capture the

finger trajectory for gesture recognition [108]. BioTac finger-

shaped sensor array was used to obtain the information of con-

tact force, microvibration and thermal fluxe. Adaptive neural

network was used to estimate the force sensing, mechano-

electrical transducers attached on the surface of skin were

applied to acquire the vibration sensing, and principal compo-

nents analysis (PCA) was used to extract the relevant variant

features for objects thermal sensing. The experimental results

presented the validity and feasibility of multimodal sensors

integrated into a device, thus prosthetic hands could identify

and manipulate objects well based on the sensing package.

Fig. 7: Framework of multiple-sensor integration for HHMs

analysis [107].

Contact-based multimodal sensor systems will be crucial

for interaction based control improvement, better efficiency,

better determination and objects recognition. There is thereby

an urgent, but it is still a significant challenge, to reduce the

users’ discomfort with data glove or various attached sensors,

to decrease the complexity of the circuit and so on. Improving

and optimizing these problems will be one of the future works.

2) Non-contact-based sensing: In recent years, the intro-

duction of vision-based sensors has opened new opportunities

for hand motion recognition. The very informative description

of three non-contact based sensors has been discussed above.

With the drawbacks of contact-based sensing, researchers have

attempted to recognise hand motions from the data obtained

by non-contact based sensors.

Marin et al. proposed a novel hand gesture recognition

framework to analyse the hand motions as shown in Fig.

8 [109]. The attributive characters of hand gestures were

extracted by using Leap Motion and the corresponding depth

information obtained based on Kinect. Kinect based depth

map could provide other important information missing in the

Leap Motion output. With the help of complementary data

information of multisensor, a set of more perfect features

based on the positions and orientations of the fingertips

were identified and fed into a multi-class SVM classifier to

recognise the preformed hand motions.

An effective hand motion recognition framework based on

multiple depth was introduced in [110]. Hand region was

firstly captured based on the depth and color information

by using background exploiting. By using PCA and circle

fitting, the feature sets of hand gestures, including the features

Fig. 8: Hand gesture recognition scheme [109].

of distance, elevation, curvature and palm were extracted.

These combined features could effectively supplement the

lack of information in the incomplete or certain gestures.

Finally, a multiclass SVM algorithm was used to recognize

the performed gestures. The experimental results confirmed

that multiple sensors based hand gesture recognition could

obtain a better performance by further adding the elevation

and area features.

From the literature, the combined use of different sensors

allows to provide richer visual information than each of

the three types of sensors alone. The experimental results

show that these proposed schemes have higher accuracies on

standard datasets or experimental data obtained, thus providing

hand motions evaluation with ample raw features. Further

research may focus on the joint calibration of combined

devices based on multiple sensors, as well as the recognition

of more complex dynamic motions.

3) Mixed sensing: Considering the discussion of two types

of multimodal motion sensing techniques, the integration of

them looks like a promising substitution to provide a comple-

mentary strategy.

Contact-based multimodal sensors capture the complex mo-

tions of the human hands accurately through physical contact,

while non-contact-based multimodal sensors acquire the in-

formation of HHMs against the influences of skin conditions.

Current multimodal sensors integration refers to the combi-

nation of the same kind sensors based on their characteristics

with or without contact, so there are few articles to describe the

combination of the two different types of multimodal sensors

for HHMs. The following are the key issues for mixed sensing:

• Data synchronisation: The integration of two types of

multimodal sensors requires an efficient tool to acquire,

process and send raw synchronised information.

• Exploration: By using the depth camera to detect the

hand movements with data glove, the accuracy of spatial

resolution will have a great improvement.

• Data fusion: Vision-based sensors acquire the HHMs

information in the 3D space for distinguishing the finger

joints and tracking their movements. Contact-based sen-

sors obtain the given property through physical contact,

and capture the hand movements. How effectively to fuse

the data of these two types will bring a core difficulty.

However, most current multimodal sensor integration tech-

nologies just simply employ two or several types of sensory

systems to obtain data for off-line analysis. The next step
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in this direction should be the implementation of the data

fusion and the signal processing algorithms, which predict user

intention and control reaching and grasping movements based

on a multimodal feedback [111].

B. Multimodal motion analysis

To facilitate the rapid recognition of the hand motions, vari-

ous methods are presented and discussed in the above sections.

Single method can recognise the specific hand movements and

show good results, but they maybe not effective for complex

hand motions. Some researchers try to combine some of the

methods for multimodal analysis of the HHMs, so as to make

up the drawbacks of the single method.

A set of recognition algorithms, including time clustering,

fuzzy active axis Gaussian mixture mode, and fuzzy empirical

copula, were presented to recognise different hand grasps

and manipulations, which simultaneously processed the infor-

mation of finger angle trajectories, hand contact forces, and

forearm EMG [112]. The new framework combining three

algorithms provided a feasible solution for HHMs recognition

in a wide range of hand scenarios. Time clustering could

identify accurately the start point and end point of the motions,

and achieve a relatively high recognition rate. Fuzzy active axis

GMM was capable to fast model nonlinear datasets as abstract

Gaussian patterns, and recognise the testing motions. Fuzzy

empirical copula was applied to recognise HHMs by the use of

the proposed novel motion template and recognition algorithm.

Song et al. proposed a method of gestures recognition based on

GMM and HMM. Kinect was applied to extract human’s skele-

ton information for the 3D position data of joints firstly. The

features were extracted by preprocessing the samples for each

gesture. Finally, GMM and HMM were used to model and

segment gestures from the real-time data flow, and recognize

the motion gestures [113]. Rashid et al. presented a framework

for the integration of gesture and posture recognition systems

at the decision level to extract multiple meanings. Firstly,

based on the Gaussian distribution and depth information, 3D

information was exploited for segmentation and detection of

gestures and postures. Then, feature vectors were extracted

from statistical and geometrical properties of the hand. Finally,

HMM and SVM were used to train, classify and recognize

both gestures and postures [114].

Compared to the single method for hand motion analysis,

the confirmed results of multimodal motion analysis present

higher accuracy and a better coordination. This strategy is

intended to provide a feasible solution for recognizing various

hand movements. However, there are not enough papers about

it in the related science journals. This new research direction

might be attracting more interest in recent years.

VI. APPLICATIONS

A. Human computer interaction

Compared to the traditional way of mouse and keyboard,

hand motions provide an attractive and natural approach for

HCI. In the last decade, vision-based HCI and sensor-based

HCI have been developed in a high speed, along with the

development of HHM sensing techniques. For vision-based

HCI, multi-camera, Kinect and leap motion controller are

the main technological means for hand motion recognition,

and the VR technology makes the interaction between human

and computer more natural and more advanced. Sensor-based

HCI methods mainly include tactile sensor, pressure sensor

and motion tracking sensor [115]. These advanced techniques

can realize the virtual mapping of real actions by acquiring

feature information of HHMs, and be applied to the medico-

surgical dexterous manipulation [116]. The future direction

is the research of wearable computer, stealth technology,

immersion game and other motion recognition techniques, as

well as the VR, remote controlled robot, telemedicine and

other tactile interaction techniques. Another direction is to

improve the hardware device recognition accuracy, sensitivity

and robustness.

B. Hand gesture recognition

Hand gesture recognition consists of gesture spotting that

implies determining the start and end points of a meaningful

gesture pattern from a continuous stream of input signals

and, subsequently, segmenting the relevant gesture [117]. The

initial attempt at recognizing hand gestures is mainly to detect

the joint angles and spatial locations of the hand by using

machinery equipment, such as the data glove. With the rapid

development of the computer vision technology, hand gesture

recognition is playing an increasingly important role in the

smart home, intelligent vehicle, VR/augmented reality (AR),

etc. Fig. 9 presents the key flow of hand gesture recognition via

cameras. At present, most researchers focus on the final recog-

nition of gestures. They first simplify the gesture background

and utilize the algorithm to segment the gestures in a single

background, and then use the common recognition methods to

analyze the meaning of gesture expressions through the system

analysis. In practical applications, the acquisition of gestures

is usually in a variety of complex environments, like the

conditions with different illuminations and changes of distance

between gestures and collection equipment. Hence, the gesture

recognition will continue to be the focus by scientists as a hot

research area and promote the rapid development of related

core technologies such as multi-steady-state perception.

Fig. 9: Hand gesture recognition flow chart.

C. Multi-fingered robot manipulation learning

So far, robots have been very successful at manipulation

in simulation and controlled environments. The application

of robots has been gradually expanded from the traditional

industrial field to the fields of nuclear energy, aerospace,

medicine, biochemistry and other high-tech fields, as well as

home cleaning, medical rehabilitation and other service areas.

These emerging areas require the multi-fingered robot manip-

ulation to meet the force closure criteria, in order to achieve

the human-like manipulation, such as stable grasp for different

objects. There are three key techniques for multi-fingered robot
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manipulation learning, that is, the optimal grasp planning,

grasp force planning and multi-fingered control [118]. Some

issues, like real-time constraints, sensory variation, noise and

clutter, need to be considered to realise robust manipulation.

Hence, the main research content is to investigate effective

approaches and practical solutions via multimodal data fusion

and corresponding techniques, and design the control strategies

integrated with human manipulation skill models and online

learning capabilities.

D. Prosthetic hand control

More recently, small sized prosthetic hands have been

developed, such as Shadow Dexterous Hand [119], DLR/HIT

Hand II [120], iLimb hand [121], Robonout hand [122] and

so on. The advanced prosthetic hand technology is being used

to provide amputees with enjoyable normal lives. While the

recent prosthetic hand technique has developed by leaps and

bounds, the main goals of the prosthetic hand control include

human sized robotic hand with enough functionalities, fast and

stable skills of grasping and manipulation, selection of best

grasp position, and versatile [123], [124]. Future research will

include integrating the technologies to increase the power and

reduce the weight for a wearable prosthesis, and developing

a simpler and cheaper tactile sensor intended specifically for

contact detection. One trend of further research is to design

the hierarchical human hand manipulation database based

on multimodal data, develop approaches to generate finger

trajectories and force distributions based on the derived skill

models, and further to use them to control the prosthetic hands.

VII. DISCUSSION AND CONCLUSION

As one important research topic in various applications,

HHM analysis is attracting broad interest in robotics. Two

types of the natural HHMs are proposed through the analysis

of the current hand motion strategies. In order to realize

the human-robot manipulation skill transfer, various sensing

techniques in the last decade were used to acquire the infor-

mation of HHMs, such as the dynamic movement trajectory

of finger joints, and the dynamic distribution of finger force.

Developments of sensing technologies have been summarized

and discussed, as well as their applications, current challenges

and tendency of future research.

A rapid development of the biomimetic material processing,

3D visualization technology and nanotechnology have resulted

in the development of a range of low complexity, and high

reliability sensors. In this paper, the current sensing techniques

have been presented in detail with two major categories based

on their characteristics of raw data collection. Continuous

developments in the fields of material engineering, nanotech-

nology, fabrication technologies and 3D vision technique lead

to advances in sensor performance, as well as reliability

and mechanical properties [125]. In this paper, the sensing

techniques such as the hand data glove, attached force sensors,

SEMG, optical markers, ordinary cameras, depth camera and

Leap Motion controller have been presented in detail. These

sensory systems are divided into two major categories based on

the contact. How to extract useful mathematical quantity, and

then recognize the corresponding motions are very important

steps for the HHMs analysis. Because of the complex hand

movements, some sensing information, such as contact point,

finger swing angle, and position change, need to be taken into

account in the future. Current various hand motion analysis

methods for recognizing the motions and achieving the skill

transfer are presented and discussed in Section IV. This cate-

gory contains six of the most common approaches for HHMs

recognition, and their related characteristics are described and

compared. In addition to these commonly used algorithms

mentioned, some novel algorithms and variants have also been

adopted in some literature.

From the review of the current sensing techniques, it’s

now generally agreed that multi-sensor integration is the best

approach and the predominant choice to the HHM analysis. A

tendency of the multimodal sensing is to take full advantages

of the multi-sensor integration techniques with respect to the

structure, gesture movements and physiological properties.

Three multimodal sensing methods are presented, namely,

contact-based sensing, non-contact-based sensing and mixed

sensing. For the contact-based multimodal sensors, what calls

for special attention is the integration into a real robotic

system. How to reduce the amount and complexity of wiring

and cross-talk for the improvement of robustness is still a

challenge. Moreover, utilizing the non-contact-based multi-

modal sensing methods, for example vision-based sensing

techniques, is another good choice. Although this method

has many advantages, it is still facing some shortcomings,

such as distance, lighting conditions and limited relevant

points. The mixed sensing method means the combination

of contact-based sensors and non-contact-based sensors. In

addition to the existing problems of the above two men-

tioned approaches, some key issues such as synchronisation,

exploration and data fusion, need to be paid more attention.

Few articles are found to describe the combination of these

two types of multimodal sensors. According to the detailed

classification and description of the multimodal motion sens-

ing technologies, the state-of-art sensing hardware may face

the limitation of dimensions, distributions and functionalities.

The multimodal sensor integration system will improve the

capability of HHMs acquisition and analysis, and avoid the

drawbacks of individual sensor. Based on more complete and

abundant data information, it needs an effective solution with

several hand motion analysis methods to recognize different

hand movements, like in-hand manipulation. The confirmed

results from the related papers present the higher accuracy

and better coordination than the single methods. Based on

the multimodal sensing approaches integrating various sensor

techniques with the developed algorithms, researchers are

able to build a versatile and adaptable platform for HHM

analysis, and thereby overcoming the limitations of the sensing

hardware, and having wider applications especially in the HCI,

hand gesture recognition, multi-fingered robot manipulation

learning and prosthetic hand control, are the main future

research directions.

Although the developed multimodal sensing technique has

reached quite a level of maturity and has achieved satisfactory

results, the various available sensors can provide only a

fraction of the needed topic sensing information sets (e.g. lim-

ited force range, insufficient spatial and temporal resolution,
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limited sensing area and limited capability of sensing shear

forces). A truly reactive manipulator with multiple sensors

fusion for HHM recognition can achieve advanced human-like

manipulation tasks based on the satisfactory sensory informa-

tion. The future work will be focused on the creation of hand

motion database, the encoding of sub-actions and finger prim-

itives, and further transferring these skills into bionic multi-

fingered dexterous hands, thus providing intelligent robot with

powerful capabilities of experience accumulation and online

learning, for autonomous and adaptive complex manipulation.
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