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Abstract

Purpose Multimodal imaging plays a key role in patient assessment and treatment planning in liver radioembolization. It

will reach its full potential for convenient use in combination with deformable image registration methods. A registration

framework is proposed for multimodal liver image registration of multi-phase CT, contrast-enhanced late-phase T1, T2, and

DWI MRI sequences.

Methods A chain of four pair-wise image registrations based on a variational registration framework using normalized

gradient fields as distance measure and curvature regularization is introduced. A total of 103 cases of 35 patients was

evaluated based on anatomical landmarks and deformation characteristics.

Results Good anatomical correspondence and physical plausibility of the deformation fields were attained. The global mean

landmark errors vary from 3.20 to 5.36 mm, strongly influenced by low resolved images in z-direction. Moderate volume

changes are indicated by mean minimum and maximum Jacobian determinants of 0.44 up to 1.88. No deformation foldings

were detected. The mean average divergence of the deformation fields range from 0.08 to 0.16 and the mean harmonic energies

vary from 0.08 to 0.58.

Conclusion The proposed registration solutions enable the combined use of information from multimodal imaging and

provide an excellent basis for patient assessment and primary planning for liver radioembolization.

Keywords Image registration · Multimodality · Liver · Radioembolization

Introduction

Selective internal radiation therapy (SIRT) is a type of

brachytherapy used in interventional radiology to treat

unresectable tumors of the liver, such as hepatocellular

carcinoma. The therapy takes advantage of the different sup-

ply characteristics of normal liver and liver tumors. The

liver parenchyma is perfused mainly by the portal vein

B Nadine Spahr

nadine.spahr@mevis.fraunhofer.de

1 Fraunhofer Institute for Medical Image Computing, MEVIS,

Lübeck, Germany

2 Department of Radiology, Städtisches Klinikum Dresden,

Dresden, Germany

3 Medical Image Computing, University of Bremen, Bremen,

Germany

4 Surgical Planning Laboratory, Brigham and Women’s

Hospital, Boston, MA, USA

5 Harvard Medical School, Boston, MA, USA

and only to a smaller proportion by the hepatic artery.

Liver tumors are usually supplied by arterial vessels [6].

Therefore, radioembolization of liver tumors is performed

by administering yttrium-90(Y-90)-labeled microspheres to

tumor-feeding arterial vessels, targeting the tumor [16].

The microspheres embolize the capillaries and irradiate the

surrounding tumor tissue and potentially also surrounding

parenchymal regions. Careful treatment planning is required

for a successful patient outcome and sparing of normal liver

tissue.

Several image modalities are involved in the primary plan-

ning process of radioembolization . The multimodal images

will influence the patient assessment, which is related to

whether the patient-individual liver anatomy allows to suc-

cessfully perform SIRT. Also the treatment plan, which

addresses the issue of an effective and efficient treatment,

is strongly influenced by them [6]. Multi-phase contrast-

enhanced computer tomography (CT) images, in particular

the hepatic venous CT phase (PV CT), and/or dynamic

magnetic resonance (MR) images, e.g., contrast-enhanced
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T1-weighted (CE T1W) images, are performed for volume

and tumor burden calculation [14]. They allow segmenta-

tions of the normal liver parenchyma and a clear delineation

of all liver lesions to be present. Additional T2-weighted MR

imaging protocols are helpful in lesion characterization, e.g.,

in order to differentiate between tumors and cysts [35]. The

tumors will be targeted by the therapy, whereas cysts are not

of particular interest in radioembolization treatment plan-

ning. The hepatic arterial CT (HA CT) gives an overview of

the patient-individual arterial vessels, which provide poten-

tial locations for Y-90 administration. Diffusion-weighted

imaging (DWI) adds valuable information on local liver

function. All these imaging modalities make a particular

contribution to the patient’s individual organ and function,

cf. Fig. 1, but it lacks an overall picture. Besides the use

of spatial information fusion for patient assessment, SIRT

dosimetry, and advanced treatment planning will benefit from

this framework to be able to provide a better patient-specific

estimation of the treatment biodistribution. As a future per-

spective, the introduced image modalities provide the basis

for methods modeling the particle distribution, which may

replace the controversially discussed MAA-SPECT. In order

to enable the combined use of information from the different

image modalities, image registration techniques are required

[13].

Methods for multimodal CT-T1W liver image registration

[11,28,31], registration of different MR sequences [3,33], as

well as liver CT registration methods [9,19] can be found

in the literature, whereas a dedicated image registration

framework tailored to all introduced image modalities in the

context of liver radioembolization has not been demonstrated

so far. This paper aims at presenting an image registration

framework that enables deformable image registration of

HA CT, PV CT, CE T1W, T2 and DWI. To the authors’

knowledge, this is the first attempt of an evaluation for multi-

modal registration in radioembolization including landmark

and deformation field analyses.

Materials andmethods

The image registration framework should enable deformable

registration of five different image modalities (HA CT,

PV CT, CE T1W, T2, DWI) relevant in primary liver radioem-

bolization planning. The goal is to introduce one registration

framework that is capable of performing all required regis-

trations by adapting only the parameterization. In order to

demonstrate the performance of the methods in terms of spa-

tial accuracy and physical plausibility, the image registration

methods are evaluated in detail based on anatomic landmarks

and based on deformation field characteristics in a total of

103 cases of image pairs of 35 patients.

Image data

Routine image data from 35 patients, who underwent

radioembolization treatment at Städtisches Klinikum Dres-

den, Germany, were retrospectively analyzed. This center

performs multi-phase CT and contrast-enhanced MRI as

standard imaging protocol.

The two-phase contrast-enhanced liver CTs were acquired

on a GE LightSpeed VCT (GE Healthcare). The scan param-

eters were: collimation 0.625 mm, pitch 0.984, rotation time

0.5 s, voltage 80 kV, current 320–680 mA. The MR images

were performed on a GE Signa HDxt 1.5T MRI system

(GE Healthcare). CE T1W imaging was performed after

bolus injection of gadolinium ethoxybenzyl diethylenetri-

amine pentaacetic acid (Primovist, Bayer Schering Pharma

AG) at a rate of 2 ml/s by a high-resolution sequence in breath

hold. In the following, we consider the late-venous phase

only, which is acquired 15 min after bolus injection. Repeti-

tion time, echo time, matrix, field of view, section thickness,

and flip angle vary slightly across the patients for CE T1W,

T2 and DWI. Table 1 gives an overview of the mean in-plane

voxel size, the mean slice thickness, and the detector width

of the CT scanner.

Image registration framework

A preliminary consideration is that the central element of

the deformable image registration framework for primary

radioembolization planning should be one of the imag-

ing modalities recommended for therapy planning [20], the

HA CT or late-venous phase of the CE T1W. On the other

hand, we have to overcome the challenge of registering

images from multiple modalities, showing different charac-

teristics of the biological tissues. The degree of similarity

differs among the modalities of interest, cf. Fig. 2. To aim for

the fusion of image-based structures, e.g., liver, tumor or ves-

sel segmentations, an image-based registration framework

appears appropriate. Hence, we propose a chain of four image

registrations: HA CT-PV CT, PV CT-CE T1W, CE T1W-

T2, and T2-DWI. The order of pair-wise registrations was

selected in such a way that modalities, emphasizing similar

anatomical structures of the liver, are registered directly. This

pair-wise approach provides the opportunity to evaluate the

accuracy based on landmarks of the anatomical structures

visible in both datasets. Figure 2 sketches the proposed reg-

istration scheme and emphasizes image-based similarities.

In the following, the variational model used for pair-wise

registration is introduced, which is based on [17].

Variational image registration

Consider R : R
3→R as the fixed reference image and T :

R
3→R as the moving template image with compact support
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Fig. 1 Three-dimensional overview of structures, being relevant for

treatment planning, visualized in the same image domain. The liver

boundary and lesions were segmented in CE T1W. The T2 was used

to distinguish between tumors (blue) and cysts (not shown). Arterial

liver vessels (green) were segmented in HA CT. They provide the start-

ing point for the catheter-based radioembolization treatment and for

the analysis of arterial supply areas (yellow, ocher, orange, red). A low

remaining liver function in non-treated areas is an exclusion criterion.

It is assessed via DWI

Table 1 Characteristics of images and evaluation data

Modalities Data characteristics

Reference

image

Template

image

Number

of cases

Mean number of

landmarks per

case

Mean template

in-plane voxel

size [mm]

Mean template

slice thickness

[mm]

CT detector width

[mm]

HA CT PV CT 22 9 0.73 0.55 0.625

PV CT CE T1W 21 8 1.17 2.53 n/a

CE T1W T2 31 10 0.80 6.19 n/a

T2 DWI 29 9 1.64 6.48 n/a

in domain Ω ⊂ R
3. The goal of image registration is to

find a transformation y : Ω → R
3 such that the deformed

template image T (y) is similar to R. This is modeled by an

optimization problem with the objective function J ,

J = D (R, T (y)) + α · S (y) → min . (1)

In this variational model, D is a distance measure, describing

image similarity, and S is a regularizer, penalizing irregular

deformations. α is a regularization parameter, weighting data

fit and deformation regularity.
Due to the multimodality of the image registration prob-

lem, the normalized gradient fields [10] distance measure is
chosen. The underlying assumption is that the images are
pair-wise comparable by their image gradients rather than
image intensities. Therefore, the distance measure D is given
by

D (R, T (y)) :=

∫

Ω

1 −

(
〈∇T (y (x)) ,∇R (x)〉 + τρ

‖∇T (y (x)) ‖τ ‖∇R (x) ‖ρ

)2

dx (2)

with 〈 f , g〉η :=
∑3

j=1 f j g j and ‖ · ‖η :=
√

〈·, ·〉 + η2. ρ,

τ ≥ 0 are the so-called edge parameters of the reference and

template image, respectively. They specify relevant image

gradients and image noise. Deformation regularity is pur-

sued using the curvature regularizer S [7]

S (y) :=
1

2

∫

Ω

3
∑

l=1

‖∆ul‖
2 dx, (3)

penalizing the Laplacian of the deformation components but

ignoring affine linear transformations. In the case of the

PV CT-CT T1W image registration, we added a term for vol-

ume regularization γ · V (y) to the objective function [27],

where the volume regularization is given by

V (y) :=

∫

Ω

ψ (det∇ y (x)) dx (4)

with weighting function ψ (t) := (t − 1)2 /t for t > 0 and

ψ (t) := ∞ else. Empirically chosen registration parameters

are summarized in Table 2.
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Fig. 2 Overview of the image modalities and the proposed registration

scheme. Arrows indicate the registration image pairs. The deformable

registration results should enable spatial correlation throughout the

whole image volumes as indicated by position synchronization of

cross-hairs and the checkerboard overlay. This approach focusses on

image-based structures, e.g., liver lesions in CE T1W and T2. A direct

comparison of HA CT and T2 seems infeasible due to missing image-

or landmark-based similarities inside the liver

Table 2 Overview of registration parameters

Registration method ρ τ α γ

HA CT-PV CT 5 5 10 0

PV CT-CE T1W 1 1 100 1 × 10−3

CE T1W-T2 0.5 0.5 100 0

T2-DWI 5 5 50 0

The optimization problem is solved in a discretize-then-

optimize scheme [23] using a quasi-Newton L-BFGS opti-

mizer [24].

Image registration evaluation

Each pair-wise registration is evaluated based on landmark

measurements and the analysis of the deformation fields,

providing an idea of the overall performance of the image

registration algorithms.

Landmark-based analysis

In order to evaluate the image registration performance, the

correspondence of anatomical landmarks in the images to

be registered is one key criterion. Therefore, all images to

be evaluated were divided into two groups and two experi-

enced radiological technicians were asked to manually define

ten corresponding landmarks in each reference and template

image pair of one group. An in-house annotation software

was used in order to perform this task [30]. Well-defined

positions were selected as landmarks, which are anatomi-

cally relevant and visible in both images. We only consider

landmarks inside the liver that specify the same anatomi-

cal position in both images. Due to poor image contrast or

breathing artifacts, the definition of landmarks was challeng-

ing and it was not possible to define ten landmarks in all cases.

The integer part of the mean number of landmarks for each

method is given in Table 1. The related standard deviation is

0 for CE T1W-T2 and 1 in the other cases.

The selected landmarks were used for the evaluation of

the image registration methods. As a measure of registra-

tion accuracy, we calculated the mean landmark error. It was

calculated by the euclidean distance between the manually

defined landmark and the transformed landmark position. In

addition, we individually analyzed the landmark error for the

x-, y-, and z-component. Therefore, the impact of a lower

image resolution in z-direction compared to the x- and y-

direction was investigated.
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Deformation field analysis

The deformation at a specified position x ∈ R
3 is given by

y(x) = x +u (x), with spatial displacement u. One criterion

to be considered in order to evaluate the physical behavior

of the deformation field is the determinant of the Jacobian

matrix of the deformation field [21]. It provides information

about volumetric changes and transformation consistency. A

Jacobian determinant equal to one indicates volume preser-

vation. A Jacobian determinant greater than one specifies

volume increase; a value between zero and one specifies

volume decrease. A negative value indicates foldings of the

deformation field and a physically implausible deformation.

Hence, one aims for a positive determinant of the Jacobian.

We investigated the number of foldings of the deformation

field and the mean minimum and maximum Jacobian deter-

minants.

Volume control or compressibility can be expressed by the

divergence of the displacement field [21]. From a physical

point of view, it represents the volume density of the outward

flux. We investigated the average absolute divergence of the

calculated deformation fields.

The smoothness or regularity of the deformation field can

be quantified by the harmonic energy HE. It is defined as

the average over all voxels N of the squared Frobenius norm

of the Jacobian of the displacement field on spatial domain

Ω ⊂ R
3 [26,32,34],

HE =
1

N

∑

Ω

‖∇u‖2
F , (5)

and is inversely proportional to the smoothness of the defor-

mation field.

Correlations between local distributions of the Jacobian

determinant, the divergence, and harmonic energy maps

were also investigated by means of the normalized cross-

correlation (NCC) [2].

Results

The results of the landmark-based evaluation of the image

registration solutions are summarized in Table 3. The global

mean landmark errors are 3.20 mm, 4.49 mm, 5.36 mm, and

4.78 mm for HA CT-PV CT, PV CT-CE T1W, CE T1W-T2,

and T2-DWI image registration, respectively. An individual

investigation of the x-, y-, and z-component of the landmark

errors showed that the z-component has the greatest impact

on the global mean landmark error, except for the HA CT-

PV CT registration solution. The mean landmark errors of

the x- and y-components are quite similar. The diagrams in

Fig. 3 visualize the size distribution of landmark errors on a

component-wise basis. It underlines the main impact of the

z-component on the mean landmark error and a similar distri-

bution of errors for the x- and y-components. The cumulative

occurrence indicates that the major amount (>80%) of land-

mark errors is smaller than the mean error. Considering the

mean template slice thickness, the mean landmark errors of

CE T1W-T2 and T2-DWI image registration solutions are

within the mean slice thickness, whereas the mean landmark

error in case of HA CT-PV CT and PV CT-CT T1W image

registration is clearly larger than the mean template slice

thickness.

The mean values of the minimum and maximum Jaco-

bian determinants indicate moderate volume changes with

maximum volume changes in approximately halving or dou-

bling of cell volume, see Table 4. The deformation fields

do not have any foldings. The mean average divergence is

rather low and the mean harmonic energy is 0.08, 0.25, 0.12,

and 0.58 for HA CT-PV CT, PV CT-CE T1W, CE T1W-

T2, and T2-DWI image registration, respectively. We further

investigated the local distribution of the Jacobian determi-

nant, the divergence, and the local harmonic energy maps of

the deformation fields by mean normalized cross-correlation

coefficients calculated from all registration results. A good

spatial correlation was demonstrated in case of the Jacobian

determinant and the divergence, except for HA CT-PV CT,

cf. Table 5. A correlation of the local distribution of the Jaco-

bian determinant and the harmonic energy maps or between

divergence and local harmonic energy maps was not found.

In case of the PV CT-CE T1W image registration and the

CE T1W-T2 image registration, we also visually analyzed

the deformation inside the segmented liver and found that a

majority of cases show a low harmonic energy in the middle

of the liver and larger harmonic energies at the liver periph-

ery, cf. Figs. 4 and 5.

Discussion

The landmark- and deformation field-based evaluation of

the registration methods demonstrate anatomical correspon-

dence and physical plausibility. The results show that the

mean landmark errors of the CE T1W-T2 and T2-DWI image

registration solutions are within the mean slice thickness

and therefore indicate high spatial correspondence. Never-

theless, the definition of three-dimensional landmarks is a

very subjective and challenging task causing non-negligible

inter-observer errors, which were about 3 mm in the multi-

phase CE T1W images [30]. Hence, the mean landmark error

in case of the HA CT-PV CT and PV CT-CE T1W image

registration might be strongly biased by this phenomenon.

The results are comparable to or better than those reported

by other groups: In the context of CT-guided liver ablation, a

landmark error of 5.3 ± 2.5 mm was reported for deformable

registration of liver CT images with an intra-observer varia-
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Table 3 Results of the

landmark-based evaluation

criteria

Modalities Image property Mean landmark error [mm]

Reference Template Mean template

slice thickness

[mm]

Global x-Component y-Component z-Component

HA PV 0.55 3.20 1.48 1.74 1.68

PV CE T1W 2.53 4.49 1.96 2.11 2.52

CE T1W T2 6.19 5.36 2.05 2.00 3.76

T2 DWI 6.48 4.78 1.87 2.20 3.11

The spatial component with the highest contribution to the overall landmark error is displayed in bold

Fig. 3 Analysis of the x-, y-, and z-component of the landmark errors

for HA CT-PV CT (a), PV CT-CE T1W (b), CE T1W-T2 (c), and T2-

DWI (d) image registration. Each diagram summarizes the absolute

value of component-wise landmark errors from all landmark pairs in all

modality-related cases. In addition, the mean landmark error is given

by the vertical bar
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Table 4 Results of deformation field analysis

Modalities Deformation field measures

Reference image Template image Mean min. J Mean max. J Number foldings Mean HE Mean average |div(u)|

HA CT PV CT 0.44 ± 0.17 1.79 ± 0.22 0 0.08 ± 0.07 0.08 ± 0.03

PV CT CE T1W 0.50 ± 0.09 1.74 ± 0.39 0 0.25 ± 0.28 0.16 ± 0.08

CE T1W T2 0.43 ± 0.18 1.65 ± 0.33 0 0.12 ± 0.15 0.14 ± 0.07

T2 DWI 0.48 ± 0.11 1.88 ± 0.30 0 0.58 ± 0.27 0.11 ± 0.03

Mean values and the standard deviation are given

Table 5 Correlation between

local distributions of the

Jacobian determinant, the

divergence, and harmonic

energy maps

Modalities Normalized cross-correlation

Reference Template NCC (J , div (u)) NCC (J , HE) NCC (div (u) , HE)

HA PV 0.62 ± 0.40 < 0.01 ± 0.02 0.37 ± 0.40

PV CE T1W 0.90 ± 0.10 0.04 ± 0.04 0.05 ± 0.07

CE T1W T2 0.79 ± 0.17 0.05 ± 0.13 0.23 ± 0.19

T2 DWI 0.70 ± 0.30 0.02 ± 0.03 0.05 ± 0.11

Mean values and the standard deviation are given

Fig. 4 Visualization of the local distributions of the Jacobian deter-

minant (first column), the divergence (second column) and harmonic

energy maps (last column) inside the liver as color-overlay on the PV CT

images of two patients (a, b). The displayed maps were calculated from

the PV CT-CE T1W deformation fields. Range of Jacobian determinant,

mean absolute divergence, and harmonic energy are given by the color,

respectively. a J ∈ (0.54, 1.57), mean(|div(y)|) = 0.09, HE = 0.09.

b J ∈ (0.49, 1.91), mean(|div(y)|) = 0.15, HE = 0.14
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Fig. 5 Visualization of the local distributions of the Jacobian deter-

minant (first column), the divergence (second column) and harmonic

energy maps (last column) inside the liver as color-overlay on the

CE T1W images of two patients (a, b). The displayed maps were cal-

culated from the CE T1W-T2 deformation fields. Range of Jacobian

determinant, mean absolute divergence, and harmonic energy are given

by the color bar, respectively. a J ∈ (0.27, 1.55), mean(|div(y)|) =

0.24, HE = 0.14. b J ∈ (0.45, 1.39), mean(|div(y)|) = 0.20, HE =

0.09

tion of approximately 2 mm [19]. The mean fiducial errors of

follow-up CT registration in two commercial products were

stated to be 9.3 mm and 11 mm [9], and the investigation of

different algorithms for liver CT-MRI registration reported

average errors of 3.9, 4.5, and 6.5 mm [1]. For benchmarking

purposes, we also evaluated the liver HA CT-PV CT regis-

tration on the DIR-Lab reference dataset [4,5]. We obtained

an average landmark error of 1.93 mm, staying below the

values of 2.14 mm and 2.07 mm reported by Heinrich et al.

[11] and de Senneville et al. [28]. However, the compari-

son seems unfair, as our method was not specifically adapted

to lung image registration. A performance evaluation on the

DIR-Lab dataset with adjusted parameters to the demands

of lung image registration (e.g., α = 1, ρ = τ = 10) was

presented in [18] and an average landmark error of 0.93 mm

was reported there.

By an individual investigation of the x-, y-, and z-

component of the landmark errors, we confirmed that the

z-component makes the biggest contribution to the mean

error in most cases. This leads to the assumption that the

definition of landmarks in low resolved spatial directions

is challenging. An investigation of the landmark defini-

tion in images with non-isotropic image resolution as well

as the analysis of inter- and intra-observer errors might

provide further insight into this topic. In addition, the accu-

racy and precision of the registration would benefit from

an optimization of the acquisition geometry, allowing for

smaller slice thicknesses. Nevertheless, the analysis was

performed on data from clinical routine and experienced

radiological technicians performed the definition of land-

marks. As the achieved registration accuracy is below the

slice thickness, below or close to the inter-observer error, the
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developed methods seem accurate enough for the intended

application.

The analysis of the deformation fields demonstrates the

absence of any foldings. Therefore, the deformation fields

can be considered plausible in the sense of spatially allowed

transformations. For the PV CT-CT T1W registration, this

behavior was forced by design, adding the volume constraint.

There might be a relation to the specific imaging protocols, as

the two-phase CT was acquired in one imaging session and

the MRI sequences were also acquired in one session, but on

different days. This means that also the type of the expected

deformation of the PV CT-CE T1W registration might differ

from the other registrations.

The Jacobian determinant and the deformation divergence

show moderate volume changes, which was expected in this

specific intra-patient liver registration scenario. The range

of mean minimum and maximum Jacobian determinants of

around 0.45 and 1.7 was determined on the voxel dimen-

sion and is consistent with findings on the local nonlinear

part of the liver deformation being smaller than 5 mm [12].

The correlation between local distributions of the Jacobian

determinant and the divergence indicates that the underly-

ing deformation is rather smooth, or more precisely, that

the deformation is differentiable and does not fluctuate sig-

nificantly at any point [22]. Technical details on this are

given in Appendix 6. The low correlation in case of HA CT-

PV CT and T2-DWI is caused by some outliers exhibiting

no correlation as indicated by the high standard deviation.

The smoothness of the deformation is also represented by

low harmonic energies. Freiman et al. [8] reported median

harmonic energies of approximately 0.13 for local-affine dif-

feomorphic demons, 0.16 for diffeomorphic demons, and 0.2

for demons in controlled experiments on an abdominal CT

atlas and artificially generated ground truth deformations.

In comparison, our proposed registration solutions reached

similar values even on routine image data, acquired for liver

radioembolization. Only in case of the T2-DWI registration,

the measured harmonic energy is higher. Lower harmonic

energy values in the middle of the liver volume and larger

values at the liver periphery indicate higher strains at the

liver periphery. This should be further analyzed in subse-

quent studies as well as the relation to local tissue properties.

Paulsson et al. [25] investigated respiratory-induced liver

deformation. They also observed greater deformation at the

periphery than at the center of the liver. To verify these

observations and our conclusion, patient-individual measure-

ments of physical parameters would be required for a reliable

comparison [15]. In addition, the relation and impact of

sliding liver motion could be considered further. The cur-

vature regularization prohibits non-smooth deformations in

the current approach and introduces a bias to the displace-

ment vectors at the liver boundary. Considering sliding liver

motion and therefore larger displacement vectors will result

in higher harmonic energy values at the liver periphery. In

order to investigate the quality and stability of the registration

parameters, a systematic evaluation and potential optimiza-

tion should be developed in a next step. Also the selection

and stability of the chosen parameters might need further

investigation.

The proposed image registration framework focusses on

the fusion of multimodal images, namely HA CT, PV CT,

CE T1W, T2, and DWI. Therefore, it helps to provide valu-

able joint information in order to assess the applicability of

liver radioembolization. Regarding the registration evalua-

tion criteria, the intended goal of information fusion has been

reached with satisfactory precision. Detailed treatment plan-

ning requires the integration of additional modalities like

SPECT/CT [16] or a multi-slice multi-gradient echo MR-

sequence [29] to estimate the intra-hepatic distribution of

SIRT particles for dose planning. Therefore, future work

includes the integration of these image modalities into the

registration framework. In combination with segmentation

algorithms and models for activity and dose calculation, it

can provide a whole platform for radioembolization plan-

ning.

Conclusion

A multimodal image registration framework was presented

for patient assessment and primary treatment planning for

radioembolization of the liver. In order to register the mul-

timodal CT and MR images, a chain of four pair-wise

image registrations was introduced based on a variational

registration framework using normalized gradient fields

as distance measure and curvature regularization. It was

evaluated on a total of 103 cases of 35 patients, yield-

ing good anatomical correspondence and physically plau-

sible deformations. This framework provides a basis for

patient assessment and primary treatment planning for liver

radioembolization.
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Appendix

Relation between Jacobian determinant and
divergence

The Jacobian determinant and the divergence of a deforma-

tion field are related to each other which will be emphasized

in the following [22]. Therefore, we consider the Jacobian

determinant for the deformation y and the incremental dis-

placement u in a two-dimensional case, which is given by

J = det (∇ y) =

∣
∣
∣
∣
∣
∣

⎛

⎝

∂ y1

∂x1

∂ y1

∂x2

∂ y2

∂x1

∂ y2

∂x2

⎞

⎠

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

( ∂u1
∂x1

+ 1 ∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

+ 1

)∣
∣
∣
∣
∣
. (6)

A closer look at the Jacobian determinant reveals the relation

to the divergence:

J = 1+
∂u1

∂x1
+

∂u2

∂x2
︸ ︷︷ ︸

div(u)

+
∂u1

∂x1

∂u2

∂x2
−

∂u1

∂x2

∂u2

∂x1
︸ ︷︷ ︸

high-order term

≈ 1 + div (u)

(7)

Thus, the divergence is an approximation of the Jacobian

determinant for small partial derivatives.
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