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Abstract

The deviation between chronological age and age predicted using brain MRI is a puta-

tive marker of overall brain health. Age prediction based on structural MRI data

shows high accuracy in common brain disorders. However, brain aging is complex

and heterogenous, both in terms of individual differences and the underlying biologi-

cal processes. Here, we implemented a multimodal model to estimate brain age using

different combinations of cortical area, thickness and sub-cortical volumes, cortical

and subcortical T1/T2-weighted ratios, and cerebral blood flow (CBF) based on arte-

rial spin labeling. For each of the 11 models we assessed the age prediction accuracy

in healthy controls (HC, n = 750) and compared the obtained brain age gaps (BAGs)

between age-matched subsets of HC and patients with Alzheimer's disease (AD,
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n = 54), mild (MCI, n = 90) and subjective (SCI, n = 56) cognitive impairment, schizo-

phrenia spectrum (SZ, n = 159) and bipolar disorder (BD, n = 135). We found highest

age prediction accuracy in HC when integrating all modalities. Furthermore, two-

group case–control classifications revealed highest accuracy for AD using global

T1-weighted BAG, while MCI, SCI, BD and SZ showed strongest effects in CBF-

based BAGs. Combining multiple MRI modalities improves brain age prediction and

reveals distinct deviations in patients with psychiatric and neurological disorders. The

multimodal BAG was most accurate in predicting age in HC, while group differences

between patients and HC were often larger for BAGs based on single modalities.

These findings indicate that multidimensional neuroimaging of patients may provide a

brain-based mapping of overlapping and distinct pathophysiology in common

disorders.

K E YWORD S

arterial spin labeling, brain age, brain disorders, cerebral blood flow, machine learning, MRI,

multimodal imaging, T1w/T2w ratio

1 | INTRODUCTION

Brain age gap (BAG) - the difference between an individual's chrono-

logical and predicted age based on imaging data may serve as a surro-

gate marker of general brain health and disease-related deterioration

of the brain (Cole & Franke, 2017). Previous studies have focused on

morphometric and volumetric features derived from T1-weighted

(T1w) images. While this single-modality approach has the benefit of

reducing analytic complexity, it does not take into consideration the

vast biological heterogeneity of the developing and aging brain, and

comes at the cost of reduced sensitivity to biological processes that

are not primarily reflected in gross brain anatomy or morphology

(Richard et al., 2018).

Normative brain development and aging, as well as emerging dis-

ease mechanisms in common brain and mental disorders, are highly

heterogenous both in terms of spatial distribution and underlying neu-

robiology. As brain disorders disrupt brain structure and function on

different levels by divergent pathophysiological mechanisms, it is rea-

sonable to assume that such variety cannot be fully captured by a

brain estimate derived from a single MRI modality. Therefore, single-

modality approaches may diminish sensitivity and specificity to clinical

conditions with distinct pathophysiology, and interpreting clinical

brain aberrations based solely on T1w-data may conceal relevant

information. In fact, various brain imaging modalities reveal unique

patterns and trajectories across the lifespan, and possibly capture dis-

tinct biological contributions to brain aging and disease development.

While the large majority of brain age prediction studies have focused

on T1w data only, some studies have simultaneously considered

numerous imaging modalities in order to model multiple biologically

distinct brain ages (Brown et al., 2012; Cole, 2020; Engemann

et al., 2020; Liem et al., 2017; Niu, Zhang, Kounios, & Liang, 2020;

Richard et al., 2018; Smith et al., 2020). However, few attempts have

been made to model multiple biologically distinct brain ages in patient

populations. In addition to overall increased age prediction accuracy

offered by the complementary information, considering a range of

MRI modalities may provide more insight into specific deleterious

neurobiological processes associated with different clinical conditions.

A number of brain disorders have been associated with increased

BAG, with schizophrenia spectrum disorders (SZ) and Alzheimer's dis-

ease (AD) among those showing largest effects, primarily driven by

apparent cortical thinning and aberrant subcortical volumes

(Kaufmann et al., 2019). BAG has been shown to be more accurate in

predicting the conversion of mild cognitive impairment (MCI) to AD

compared to T1-based MRI features such as cortical thickness and

regional brain volumes (Gaser & Franke, 2013) and potentially can be

used as a biomarker for early dementia risk screening (Wang

et al., 2019). Bipolar disorder (BD) and SZ are severe mental disorders

with overlapping symptoms and shared neurobiological underpinnings

(Ruderfer et al., 2018). Whereas previous imaging studies aiming at

identifying brain morphometric correlates of the disorders have rev-

ealed diverging results, differences in BAG between SZ and HC were

shown to be larger than differences between BD and HC (Hajek

et al., 2017; Kaufmann et al., 2019).

Several structural imaging modalities and markers have been pro-

posed. Myelin deficiencies and abnormal expression of myelin genes

are common in brain disorders, and, while conflicting evidence exists

(Stokowy et al., 2018), oligodendroglial dysfunction and abnormalities

in myelin maintenance and repair have been implicated in SZ (Davis

et al., 2003; Jungerius et al., 2008; Lee & Douglas Fields, 2009). Previ-

ous studies have demonstrated that intra-cortical myelin content, as

assessed using T1/T2-weighted (T1w/T2w) ratio, shows a characteris-

tic pattern of aging-related effects (Grydeland et al., 2018; Grydeland,

Walhovd, Tamnes, Westlye, & Fjell, 2013a) and is affected in both SZ

(Ganzetti, Wenderoth, & Mantini, 2015; Iwatani et al., 2015) and BD
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(Ishida et al., 2017). Furthermore, associations between risk of devel-

oping psychosis, cognitive ability and apparent myelin content were

found in children and adolescents (Norbom et al., 2019). Myelin-

related processes are also relevant for age-related cognitive decline.

An influential myelin model suggests a close relationship between

degenerative disorders such as AD and myelination (Bartzokis, 2011),

yet, recent studies using T1w/T2w ratio revealed contradicting

results, reporting both cortical demyelination (Luo et al., 2019) and

higher apparent cortical myelin content (Pelkmans et al., 2019) in AD.

While the T1w/T2w ratio partly reflects the cortical

myeloarchitecture, arterial spin labeling (ASL) enables a non-invasive

assessment of cerebral blood flow (CBF), serving as a proxy for clini-

cally relevant neurovascular and metabolic processes in the brain

(Biagi et al., 2007; Haller et al., 2016). Accordingly, recent studies

reported case–control differences in CBF in individuals with SZ

(Pinkham et al., 2011; Stegmayer et al., 2017), sub-clinical psychotic-

type experiences (Modinos et al., 2018), and in various forms and

severities of neurodegenerative disorders (Zhang, Gordon, &

Goldberg, 2017).

In this study, we tested for dissociable brain deviations in com-

mon neurological and psychiatric disorders based on BAG defined

using measures of brain morphology (cortical thickness, cortical area,

subcortical volumes), T1w/T2w ratio maps partially reflecting cortical

and subcortical myelin content, and cortical and subcortical CBF maps

reflecting neurovascular and metabolic processes in the brain. We

used data from HC as training sets and for comparison of age predic-

tion accuracy across modalities. We included data from patients with

aging-related cognitive and neurodegenerative disorders, including

subjective cognitive impairment (SCI), MCI and AD, as well as severe

mental disorders with a neurodevelopmental etiology, including SZ

and BD. All subjects were scanned on the same scanner with a stan-

dardized protocol. Based on the assumption that the different imaging

modalities provide complementary information of brain structure and

function, we hypothesized that the model fusing all modalities would

show highest age prediction accuracy. Based on previous studies, we

anticipated overall abnormalities in BAG across disorders, yet given

the differential etiology and pathophysiology of the neurodegenera-

tive and neurodevelopmental spectrum disorders, we expected that

the single-modality BAGs would show differential sensitivity in the

distinct groups.

2 | METHODS

Figure 1 shows an overview of the general approach.

2.1 | Participants

T1w, T2w and ASL data were available from 1,452 participants.

Among these, 208 were excluded due to insufficient T1w image qual-

ity (n = 73), errors occurring during the Freesurfer pipeline (n = 7),

errors in estimation of T1w/T2w ratio maps (n = 41), errors in CBF

calculations (n = 18) and unspecific or unknown clinical diagnosis

(n = 69). The final sample thus consisted of data from 1,244 individ-

uals. All participants were recruited from the greater Oslo region as

part of three studies: the Thematically Organized Psychosis (TOP)

study, the Norwegian register of persons assessed for cognitive symp-

toms (NorCog), and STROKEMRI study (Richard et al., 2018). Key

demographics are described in details in Table 1, and Supplementary

Figure S1 and Table S1. Clinical information is summarized in Supple-

mentary Table S2.

Inclusion criteria for participants in TOP were meeting the DSM-

IV diagnostic criteria for broad schizophrenia and bipolar spectrum

diagnoses, age between 18 and 65 years, no history of severe head

injury or other disorders affecting the central nervous system, and an

IQ > 70. The participants were referred to the study by their clinicians

from local hospitals. HC were recruited through a stratified random

selection from national records. Upon inclusion in the TOP study, the

HC were screened with the Primary Care Evaluation of Mental Disor-

ders (PRIME-MD) in order to confirm no history of psychiatric

disorder.

NorCog participants were recruited from the memory clinic at

Oslo University Hospital. Diagnosis of AD was based on ICD-10

criteria, while MCI was defined according to Winblad criteria (Winblad

et al., 2004). Patients with subjective cognitive disturbances who did

not meet the Winblad criteria were also included in the study as SCI.

The diagnoses were confirmed by experienced specialists in geriatric

medicine, neurology or psychiatry.

HC in STROKEMRI were recruited through local newspapers and

social media, were required to be at least 18 years old and reported

no history of stroke, dementia, or other neurological and psychiatric

disorders, alcohol and substance abuse or intake of medications signif-

icantly affecting the nervous system.

The studies were approved by the Regional Committee for Medi-

cal Research Ethics and the Norwegian Data Inspectorate and written

informed consent was obtained from all participants.

2.2 | MRI acquisition

MRI data was collected on a 3 T DiscoveryTM (MR750) scanner

(GE Healthcare, Milwaukee, WI, US) located at the Oslo University

Hospital equipped with the vendor's 32-channel head coil. Whole

brain isotropic T1w structural data was acquired using an inversion

recovery-fast spoiled gradient echo sequence (BRAVO) with the fol-

lowing parameters: TR = 8.16 ms, TE = 3.18 ms, TI = 450 ms, flip

angle = 12�, field of view = 256 mm, acquisition matrices =

256 × 256, 188 sagittal slices, slice thickness = 1.0 mm, voxel

size = 1 × 1 × 1 mm3. Whole brain isotropic T2w structural image was

acquired using a 3D fast spin echo (FSE) sequence (CUBE) with fol-

lowing parameters: TR = 2,500 ms, TE = 7.5 ms, field of

view = 256 mm, acquisition matrices = 256 × 256, 188 sagittal slices,

slice thickness = 1 mm, voxel size = 1 × 1 × 1 mm3. The ASL scan
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being a pseudo-Continuous ASL (pCASL) with a 3D FSE interleaved

stack-of-spirals (3D spiral) readout with 512 points on 8 spirals and an

acquisition resolution of 4 × 4 × 3.0 mm3, reconstructed by default to

a 2 × 2 × 3 mm3, TE = 11.072 ms, TR = 5,025 ms, labeling duration

(LD) = 1,450 ms, post labeling Delay (PLD) = 2025 ms, number of exci-

tations (NEX) = 3. The PLD was chosen as recommended by the

review article of (Alsop et al., MRM, 2015) for clinical patients. All

scans were performed in the same session.

2.3 | Image quality control

Image quality control was performed as a two-step process. First all

T1w images were processed with MRIQC (Esteban & Birman, 2017).

The images classified by a default machine learning algorithm to an

exclude node with a probability of at least .6 were removed from sub-

sequent analyses. In the second step, all the final cortical maps (area,

T1w/T2w ratio and CBF) were visually quality checked. In the second

TABLE 1 Participant demographics

summarized by diagnosis
Group N Mean age, years SD age Min age Max age % male

HC 750 45.0 16.1 18.0 85.8 46.3

AD 54 69.4 6.8 54.2 85.3 38.9

MCI 90 65.8 9.6 38.6 85.5 56.7

SCI 56 59.4 8.7 39.6 79.3 42.9

SZ 159 31.0 9.2 18.4 59.7 56.0

BD 135 32.8 10.8 18.4 63.9 34.1

Total 1,244 45.1 17.3 18.0 85.8 46.5

Abbreviations: N, number of participants; SD, standard deviation.

F IGURE 1 Pipeline. Three MRI sequences were used to generate 11 feature sets used to build brain age prediction models. These models

were trained on HC and applied on patient samples. Subsequently, pairwise group comparisons between each patient group and an age- and sex-

matched subset of HC using linear models
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step, quality assessment of the area, thickness, T1w/T2w ratio and

CBF maps was performed by careful visual inspection of lateral and

medial snapshots of all the maps by a trained researcher. The partici-

pant was excluded if the surface values included negative or extreme

values, clearly uncharacteristic patterns or strong value disbalance

between hemispheres.

2.4 | Image pre-processing

Cortical thickness and T1w/T2w ratio maps were created using

Human Connectome Project (HCP) pipeline based on Freesurfer v6.0

(Fischl, 2012). Briefly, the T2w images were co-registered to the T1w

images, followed by registration to the MNI space. Subsequently, cor-

tical surfaces were extracted using Freesurfer and used for estimation

of cortical thickness and area. We modified the original Freesurfer

pipeline by removing -t2pial flag after careful considerations of quality

control.

CBF maps were estimated using Bayesian Inference for Arterial

Spin Labeling MRI (BASIL) (Chappell, Groves, Whitcher, &

Woolrich, 2009) in FSL (Jenkinson, Beckmann, Behrens, Woolrich, &

Smith, 2012), with the following parameters: tissue T1 = 1.2 s, arterial

T1 = 1.6 s, labeling efficiency = 0.6, bolus arrival time = 1.45 s, bolus

duration = 1.45 s, inversion time TI = 3.475 s, delay between the end

of labeling and the start of the acquisition 2.025 s and blood–brain

barrier coefficient 0.98 ml/g. Equilibrium blood magnetisation was

estimated voxel-wise by using the M0 image. The CBF map was spa-

tially smoothed using an adaptive filter, which exploited neighboring

voxel signals on an intensity-dependent basis, without interacting

with non-linear kinetics where smoothing was unnecessary (Groves,

Chappell, & Woolrich, 2009). Due to low spatial resolution of the per-

fusion image, partial volume error correction was performed to

improve the accuracy of CBF estimation (Chappell et al., 2011). CBF

maps were mapped to the individual cortical surface from Freesurfer

for further analysis.

For between-subject analysis we extracted values for cortical

thickness and area, CBF and T1w/T2w surface ratio from 34 cortical

regions of interest (ROIs) in each hemisphere based on the Desikan-

Killiany atlas (Desikan et al., 2006). In addition, we computed the

mean CBF and T1w/T2w ratio within 35 subcortical regions based on

the automated volume segmentation in Freesurfer (Fischl et al., 2002)

(Supplementary material 3).

2.5 | Brain age gap calculation

For brain age prediction we subdivided our measures in four cortical

feature sets: thickness, area, T1w/T2w ratio and CBF, and three sub-

cortical sets: volumes, T1w/T2w ratio and CBF. We also integrated all

T1w image derived measures (area, thickness and volume) into one

composite set comprising 171 features, referred as “global-T1w”. The

same procedure was repeated for cortical and subcortical T1w/T2w

ratio and CBF. This yielded a set of 103 features for each modality.

Finally, we gathered data from all modalities to a single set with

377 features, referred as “global-multimodal”. We investigated 11 fea-

ture sets in total.

Brain age of each individual was calculated by using

randomForest package in R (Breiman, 2001), which was chosen for

both its resilience to overfitting, few hyperparameters to tune, and its

robustness to noise (Boehmke & Greenwell, 2019; Breiman, 2001). To

determine the optimal value of predictors sampled for splitting at each

node we used tuneRF function from the same library. We grew 5,000

trees, as the more trees provide more robust and stable error esti-

mates and variable importance measures (Boehmke &

Greenwell, 2019). First, we divided our sample into HC and patients.

For HC, we used 10-fold cross validation, whereas for the patients

the model was trained on all the HC data and subsequently applied to

the individual patients. This approach was chosen to keep the rela-

tively few HCs aged 75 years and older (n = 23) in the training set in

order to retain predictive power at older ages. Cortical thickness,

T1w/T2w ratio and CBF features were residualized for sex using lin-

ear models, whereas subcortical volumes and cortical areas were

residualized for both sex and intracortical volume (ICV). To account

for a well-known bias in brain age prediction, we residualized brain

age with respect to age using linear models (G de Lange & Cole, 2020)

(Figures S16-S17). It was shown that this bias cannot be eliminated

neither by selection of the modeling method, nor is dictated by under-

lying data, but rather by regression to the mean. That is, evaluation

extremely deviating from the mean will move closer to the mean,

when next prediction is done (Liang, Zhang, & Niu, 2019). Further-

more, to assess their complementary value we estimated Spearman's

correlation between BAGs derived from different modalities in HC

and applied hierarchical clustering based on Ward's minimum variance

criterion (Ward, 1963), as implemented in corrplot R package (Wei &

Simko, 2017).

We report root mean squared error (RMSE), mean absolute error

(MAE) and shared variance (r2) and Pearson's correlation r between

predicted and chronological age as measures of prediction accuracy

for all models. Additionally, we calculated 95% confidence intervals

for r2 and r using bootstrapping with 5,000 resamplings.

To compare the prediction accuracy of different models, a Z test

for correlated samples (Zimmerman, 2012) was performed on run on

model-specific correlations between predicted and chronological age

using

Z= rm1−rm2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ
2
m1 + σ

2
m2−2ρσm1σm2

q

,

where “m1” and “m2” represent model 1 and model 2, the r terms

represent the Pearson's r values from the correlations between

predicted and chronological age, the σ terms represent the standard

errors on the r values, and ρ represents the correlation between

predicted age from the two models (we calculated both absolute and

adjusted for chronological age).

In order to estimate the features contributing the most to brain

age prediction we used mean increase in mean squared error (MSE).
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This measure quantifies the difference in MSE between randomly

shuffled and actual values for the investigated feature, while keeping

the rest of the features intact when applied on unseen data. To visual-

ize feature importance MSE was mapped onto segmented brain sur-

face using ggseg R package (Mowinckel & Vidal-Pieiro, 2019).

2.6 | Group comparison

In order to assess group differences between patients and controls

we matched subjects to controls with respect to age and sex using

nearest neighbor matching with 1:1 ratio and logistic regression dis-

tance as implemented in the R package matchIt (Ho, Imai, King, &

Stuart, 2007). Demographics for each group comparison are listed in

Table S3. Subsequent group tests were performed building a linear

model for each case control pair while controlling for age and sex.To

correct for multiple tests (5 disorders × 11 modalities, 55 in total),

reported p-values were adjusted using a false discovery rate (FDR)

threshold. Additionally, to assess effect sizes we converted t-statistics

to Cohen's d. Lastly, to evaluate classification accuracy of each modal-

ity we calculated AUC of ROC for pairwise group classifications of

cases and controls for each clinical group directly on BAGs derived

from each model. Furthermore, we computed sensitivity and specific-

ity at the optimal cut-off point. To estimate significance of AUC we

performed 5,000 permutations with random shuffling of the group

label to build null distributions. The associated p-value based on the

empirical null distribution was adjusted for number of modalities and

patient groups using FDR. A two-class design was chosen due to mod-

est overlap in age between distinct patient groups.

3 | RESULTS

3.1 | Predicting brain age in healthy controls

To train the model we used data obtained from 750 healthy individ-

uals. The model integrating all modalities and feature sets showed the

best fit with r2 = .77 (MAE = 6.4 years), with global T1w/T2w ratio

and global T1w derived features having very similar fits: r2 = .74

(MAE = 7.0) and r2 = .72 (MAE = 6.9), respectively (Figure 2(a)). The

age prediction performance of the multimodal model was significantly

better than all other models (Supplementary Table S4).

Clustering based on Ward's criterion (Figure 2(b)) suggested four

main BAG clusters: (a) CBF modalities, (b) cortical T1w/T2w ratio,

(c) cortical area, and (d) cortical thickness, subcortical volumes, subcor-

tical T1w/T2w ratio, global T1w/T2w ratio, global T1w based and

global multimodal. Fit for other modalities and feature sets with

corresponding MAE are listed in Supplementary Table S5. Mean

values for each modality were summarized by decades (Figures S2-S8)

as well trajectories of mean cortical (Figures S9-S12) and hippocampal

(S13-S15) values.

The features contributing most to age prediction in the model

comprising all features were predominantly derived from cortical

thickness, subcortical volumes and T1w/T2w ratio (Figure 2(c)). The

three most contributing features in cortex were T1w/T2w ratio and

volume of the third ventricle, and volume of choroid plexus in the left

hemisphere. Among the cortical features, the strongest contributors

were thickness of insula, followed by left inferior temporal and middle

temporal thickness (Figure 2(d)). Among the 20 most predictive fea-

tures 13 were subcortical (three T1w/T2w ratio and eight subcortical

volumes, two CBF), and 7 were cortical (six thickness and one

T1w/T2w ratio based). The top 20 features with importance estimates

for the best model are given in Supplementary Table S6. Feature

importance for other modalities is presented in Supplementary

Figures S18 and S19.

3.2 | Group differences in BAG

In the second step we applied the models trained on HC to the clinical

samples and performed case–control comparison of the resulting

BAGs. The results are shown in Figure 3 and Supplementary

Figure S20. All modalities apart from the cortical T1w/T2w ratio

showed significantly higher BAG in AD compared to HC, with global

T1w-BAG exhibiting largest effect (7.4 years, p < .001, Cohen's

d = 1.04), followed by cortical thickness (6.4 years, p < .001, d = 0.98)

and cortical CBF (7.9 years, p < .001, d = 0.94).

BAG based on global T1w/T2w ratio showed group differences

only in AD patients (p < .05, d = 0.50), while having the second best

fit in brain age prediction in HC.

Across modalities, mean BAG for AD was on average 5.2 years

(d = 0.52) higher than for HC. For MCI and SCI the difference was

1.6 (d = 0.22) and 1.1 (d = 0.21) years, respectively. For MCI and

SCI the largest differences from HC were seen in CBF-based BAGs.

For individuals with MCI cortical-CBF BAG was 4.6 years higher

than HC (p < .01, d = 0.53), followed by global CBF (3.2 years,

p < .05, d = 0.40) and global T1-based (2.6 years, p < .05, d = 0.36).

For individuals with SCI largest BAG deviations from matched HC

were based on cortical CBF with 3.9 years (p < .05, d = 0.54),

followed by global CBF (3.7 years, p < .05, d = 0.50). These were

the only two BAGs showing significant case–control differences

for SCI.

BAG was significantly higher in SZ compared to HC for almost all

modalities. The strongest group differences were found for global

CBF-BAG (6.4 years, p < .001, d = 0.84), followed by cortical CBF

(6.1 years, p < .001, d = 0.78). Apart from the CBF models, the global

multimodal model yielded similar effect size (4.0 years, p < .001,

d = 0.70). Across modalities, the average BAG in SZ was 3.1 (d = 0.47)

years higher than HC.

For BD, global CBF-BAG showed largest effect size (3.7 years,

p < .001, d = 0.51), followed by subcortical CBF-BAG (3.2 years,

p < .001, d = 0.48) and cortical CBF-BAG (3.2 years, p < .01, d = 0.41).

Across modalities, average BAG in BD was 1.6 (d = 0.27) years higher

than HC.

A complete list of results is summarized in Supplementary

Table S7.
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3.3 | BAG classification accuracy

To evaluate classification accuracy of each modality we calculated

AUC of ROC for pairwise group classifications of cases and controls

for each clinical group. Then, we built a null distribution using 5,000

random permutations to estimate p-value associated with AUC and

FDR corrected it for number of modalities and patient groups.

Figure 4 summarizes the main results, and Supplementary Tables S8-

S11 provide a full list of AUC for each modality together with sensitiv-

ity and specificity at optimal cut-off point. Briefly, we found that for

AD global-T1w measures were the most accurate (AUC = 0.78,

p < .001) followed by cortical thickness (AUC = 0.77, p < .001) and

subcortical volumes together with global-CBF (both, AUC = 0.75,

p < .001). For MCI cortical CBF-BAG (AUC = 0.63, p < .01), followed

by global T1w-based together with global-CBF (both, AUC = 0.60,

p < .05). Lastly, for SCI global and cortical CBF-BAG were most dis-

criminative (both, AUC = 0.65, p < .01). In psychiatric disorders, SZ

was most distinguishable using BAG based on CBF based features

global (AUC = 0.72, p < .001), cortical CBF (AUC = 0.71, p < .001) and

subcortical (AUC = 0.71, p < .001). BD showed consistently lower

accuracy as compared to SZ, with highest AUC scores again from CBF

modalities global- (AUC = 0.63, p < .001), subcortical (AUC = 0.63,

p < .001) and cortical CBF (both AUC = 0.64, p < .01).

4 | DISCUSSION

In this study, we investigated deviations between chronological age

and brain age based on multiple brain imaging modalities, including

T1w, T2w and ASL data, which all convey distinct biological informa-

tion. We found high age prediction accuracy for most of the included

MRI features in healthy participants, with highest accuracy for the

model including all available features. Subsequent case–control com-

parisons revealed high sensitivity to group differences, with varying

performance of the single-modality BAGs, likely corresponding to the

distinct underlying neurobiology of each disorder. This demonstrates

F IGURE 2 HC model fit. BAGs ranked from the most (top) to the least (bottom) accurate based on out of sample r2 (multiplied by 100) of the

model, shown as a number in a blue circle (a) and BAG Spearman's correlation matrix with four clusters marked by black lines (b). Modality from

which a given feature was derived (left) and feature importance measured as increase of MSE (right) shown as a colormap overlaid on the brain

for the best model integrating all modalities in cortex (c) and in subcortical structures (d)
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that brain age aberrations of brain diseases are better characterized

and differentiated using multimodal as compared to unimodal imaging

approaches.

Highest age prediction accuracy in HC was achieved when inte-

grating all features from all modalities, followed by global T1w/T2w

ratio and global T1w-based features. Estimates of feature importance

revealed that the model integrating all modalities was mostly driven

by cortical thickness, T1w/T2w ratio and subcortical volumes. The

lifespan trajectories derived from these features have been described

in several studies. For example, cortical thickness and subcortical vol-

umes decrease monotonically throughout the adult lifespan (Fjell

et al., 2015; Li et al., 2014; Westlye et al., 2010). Conversely, the

lifespan trajectory of the intra-cortical T1w/T2w ratio has been char-

acterized by a global increase until the end of the 30s, followed by a

period of relative stability and subsequent decrease from the end of

sixth decade of life (Grydeland, Walhovd, et al., 2013a), which is

largely in line with our observations. The models with the lowest age

prediction accuracy in HC were based on CBF as well as the features

derived from cortical area. Previous studies have shown that CBF is

highest in children, followed by slow decreases into adolescence until

early adulthood, and a period of modest and relatively stable decline

until the age of 80 (Biagi et al., 2007; Haller et al., 2016). Such trajec-

tories are in line with our data, and correspond with the moderate

performance of CBF for brain age prediction. Additionally, cortical

F IGURE 3 Group comparison of BAG in HC vs patient groups. Both distributions and medians are shown. Asterisks on the right side indicate

significant results (FDR corrected), with p < .05, p < .01 and p < .001 being marked as 1 to 3 asterisks, respectively. Distributions for HC are

shown in gray
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area, while showing a steady age-related decrease starting in the early

twenties, is less affected throughout the adult lifespan as compared

to cortical thickness or volumes (Storsve et al., 2014).

The prediction performance in the patient populations varied

across the different disorders. T1w-based BAGs were most robust in

classifying AD, and also to some extent in SZ and BD. In general, the

results were in line with a recent large-scale implementation focusing

on T1w-based age prediction (Kaufmann et al., 2019) and deep neural

networks implementation of brain age prediction (Bashyam

et al., 2020). Comparison of effect sizes and AUC with (Kaufmann

et al., 2019) and (Bashyam et al., 2020) studies are given in supple-

mentary Tables S12 and S13. Consistent with (Bashyam et al., 2020),

the most accurate modalities in age prediction did not necessarily lead

to the best results in discriminating between disorders as features

informative for aging are not necessarily involved in the pathophysio-

logical mechanisms of brain disorders.

Model fit discrepancies between the current and prior T1w based

BAG studies (Bashyam et al., 2020; Beheshti, Maikusa, &

Matsuda, 2018; Beheshti, Mishra, Sone, Khanna, & Matsuda, 2020)

could presumably be partly explained by the application of voxelwise

features versus summary statistics based on Freesurfer atlases and

parcellation schemes, as well as differences in analysis pipelines and

algorithms used. Furthermore, age prediction accuracy has been

shown to depend on sample characteristics including sample size and

age range (de Lange et al., 2020).

We identified significantly higher BAG in SZ but not in BD com-

pared to HC using T1w based features, though effect sizes in both

cases were comparable to (Kaufmann et al., 2019). Compared to

F IGURE 4 AUC for each group comparison and modality. Spider plot of effect sizes for disorders (a). Receiver operating characteristics (b) are

shown for the most accurate model in HC (multimodal) in the AUC matrix. Asterisks indicate significant results (FDR corrected), with p < .05,

p < .01 and p < .001 being marked as one to three asterisks, respectively (c)
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healthy participants, patients with SZ and BD were shown to have

thinner cortex as well as smaller global and regional brain volumes

(Boos, Aleman, Cahn, Pol, & Kahn, 2007; Hibar et al., 2016; Hibar

et al., 2018), with smaller effects in BD patients (Yao et al., 2017). In

line with previous studies (Hajek et al., 2017; Kaufmann et al., 2019)

our current analysis supported that T1w based BAG in BD was lower

than in SZ. Additionally, CBF based features and cortical area showed

significantly increased BAG for BD patients. Compared to their

healthy peers, patients with BD have also previously been shown to

have lower CBF (Toma, MacIntosh, Swardfager, & Goldstein, 2018). In

general, our results are comparable with classification accuracies

reported in other T1w based studies (Nunes et al., 2018; Rocha-Rego

et al., 2014; Schnack et al., 2014).

CBF-based BAG also revealed large deviations between HC and

SZ. Altered CBF has previously been reported in patients with SZ

across a range of brain regions including temporal and parietal lobes,

middle frontal gyrus, left putamen as well as superior corona radiata

(Pinkham et al., 2011; Stegmayer et al., 2017). Several of these fea-

tures, including CBF in the inferior temporal lobe were also among

top features in our age prediction model trained on HC. Hence, the

deviations in blood flow may index biological processes mimicking

pathogenic brain aging in this patient group, contributing to the struc-

tural and functional detrimental alterations corroborated by previous

studies (Miho, Noriko, & Junko, 2018; Pinkham et al., 2011;

Stegmayer et al., 2017).

Assuming that AD reflects a clinical endpoint of chronic deleteri-

ous neurodegenerative processes emerging decades prior to symptom

onset (Elliott et al., 2019), it is crucial to identify surrogate biomarkers

that would be sensitive to early changes when the potential for inter-

ventions may be largest. In the neurodegeneration model of AD, the

structural brain changes captured by T1w are preceded by metabolic

modulations (Jack et al., 2010). Regions with altered metabolism have

been linked with altered perfusion in patients with AD (Riederer

et al., 2018). Interestingly, BAG based on cortical CBF had the highest

prediction accuracy both in SCI and in MCI, supporting the overall util-

ity of CBF as a sensitive imaging marker of neurovascular and meta-

bolic processes in early phases of dementia. No other modalities

revealed significant differences between HC and SCI.

Global T1w/T2w ratio resulted in the second highest age predic-

tion accuracy in HC, but the corresponding BAGs showed only mod-

est case–control difference in AD patients. The global model was

mostly driven by subcortical T1w/T2w ratio, whereas the cortical

T1w/T2w ratio had poorer performance in predicting age in HC. The

T1w/T2w ratio intensity measure is assumed to be inversely propor-

tional to cortical myelination and informative for cortical parcellation

and structure–function brain mapping (Glasser et al., 2016). However,

T1w/T2w ratio is probably not specifically related to myelin content,

suggesting a more complex underlying biology (Hagiwara et al., 2018;

Ritchie, Pantazatos, & French, 2018). We found global T1w/T2w

based BAG to be affected in patients with AD. This is in line with evi-

dence indicating lower cortical and subcortical T1w/T2w ratio in

patients with AD (Luo et al., 2019), though conflicting reports exist

(Pelkmans et al., 2019).

Brain aging is a highly heterogenous process and the current

study could be improved by inclusion of white matter diffusion MRI

(dMRI) measures, which comprises distinct tissue class with largely

differential biological and environmental modifiers and age trajecto-

ries (Beck et al., 2021; Westlye et al., 2010b). Brain age of white mat-

ter can be assessed using modalities derived from diffusion tensor

imaging (DTI) and serves to represent a partly independent process of

brain aging compared to brain age based on gray matter measures

(Richard et al., 2018). Diffusion weighted imaging-based metrics were

shown to have high sensitivity to age, with conventional DTI modali-

ties being among the best in age prediction (Beck et al., 2021). In addi-

tion, DTI-based brain age prediction revealed group differences

between patients with SZ and HC in a recent multi-site study

(Tønnesen et al., 2020). Further, DTI in combination with other modal-

ities has been shown to be beneficial to brain age prediction accuracy

(Cherubini et al., 2016; Niu et al., 2020) and is one of the possible

future directions towards better prediction and characterization of

brain age.

The current results should be interpreted in light of some limi-

tations. First, the prediction performance (AUC < 0.70) in the

patient populations is too low for clinical utility, and was used in

the present study to compare the different models. Second, our

cross-sectional design does not allow us to disentangle the tempo-

ral dynamics of the brain aging process, and it remains unclear to

which degree the increased BAG in a range of investigated disor-

ders was due to age-related deterioration of the brain or already

present since early childhood. Third, we had a modest number of

subjects from a relatively small geographical area, therefore an

independent validation and generalization of our results is

warranted. Further, we had only 23 HC above 75 years of age,

therefore results related to mentioned age range should be treated

with caution. Lastly, disorders spanned over disparate age ranges,

hence we could not compare them directly. Future studies are also

needed to delineate the unique and additive contribution of genetic

and environmental variables on the observed group differences.

For example, in line with most clinical studies our study design does

not allow us to differentiate the effects of disease mechanisms

from secondary causes such as lifestyle and medication. This study

has several advantages, our study while being cross-sectional cov-

ered the whole adult age span. Moreover, all imaging data were

obtained on the same scanner using identical sequences and

processed using an identical pipeline.

In summary, we have demonstrated that combining all MRI fea-

tures yields the highest age prediction accuracy in healthy individuals.

Still, global-T1w based BAG also shows high accuracy in HC and is

among the most accurate in discriminating disorders. Nevertheless, it

is beneficial to add modalities as it can improve disorder discrimina-

tion accuracy, suggesting metabolic and neurovascular aberrations in

prodromal phases of neurodegenerative diseases and SZ. Together,

these findings indicate that multidimensional neuroimaging of patients

may provide a brain-based mapping of overlapping and distinct patho-

physiology in common disorders of the brain using multimodal

imaging.
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