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Multimodal imaging patterns predict survival in recurrent
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Background. Bevacizumab is a humanized antibody against vascular endothelial growth factor approved for treatment of recur-
rent glioblastoma. There is a need to discover imaging biomarkers that can aid in the selection of patients whowill likely derive the
most survival benefit from bevacizumab.

Methods. The aim of the study was to examine if pre- and posttherapy multimodal MRI features could predict progression-free
survival and overall survival (OS) for patients with recurrent glioblastoma treated with bevacizumab. The patient population in-
cluded 84 patients in a training cohort and 42 patients in a testing cohort, separated based on pretherapy imaging date. Tumor
volumes of interest were segmented from contrast-enhanced T1-weighted and fluid attenuated inversion recovery images and
were used to derive volumetric, shape, texture, parametric, and histogram features. A total of 2293 pretherapy and 9811 post-
therapy features were used to generate the model.

Results. Using standard radiographic assessment criteria, the hazard ratio for predicting OS was 3.38 (P, .001). The hazard ratios
for pre- and posttherapy features predicting OS were 5.10 (P, .001) and 3.64 (P, .005) for the training and testing cohorts,
respectively.

Conclusion. With the use of machine learning techniques to analyze imaging features derived from pre- and posttherapy multi-
modal MRI, we were able to develop a predictive model for patient OS that could potentially assist clinical decision making.

Keywords: bevacizumab, glioblastoma, machine learning, recurrent, survival.

Glioblastoma is the most common primary adult brain tumor
and carries one of the worst prognoses amongst human can-
cers, with a median survival time of about 15 months after
diagnosis following the best available treatment involving sur-
gery, radiation, and chemotherapy.1–3 Patients with recurrent
glioblastoma have an even more dismal prognosis, with a me-
dian survival of just 25–40 weeks.4 Bevacizumab is a human-
ized monoclonal antibody against vascular endothelial growth
factor approved for treatment of recurrent glioblastoma. While
this therapy has resulted in a significant treatment response
rate in a subset of patients with recurrent glioblastoma, its
overall survival benefit is modest at best.5,6 There is a need to
discover imaging biomarkers that can aid in the selection of pa-
tients who will likely derive the most benefit from bevacizumab.

The radiographic appearances of glioblastomas are highly
heterogeneous, often consisting of elements of high cellularity,

diffuse infiltration, and necrosis.7 Glioblastomas also express
pro-angiogenic cytokines, which lead to the formation of ab-
normal intratumoral vasculature and induce peritumoral
edema.7 Tumor heterogeneity is further increased by the occur-
rence of complex posttreatment changes, including gliosis, ne-
crosis, and inflammation. More advanced imaging features can
provide further information about tumor heterogeneity. This is
of particular interest given recent evidence that glioblastomas
harbor numerous cell subpopulations.8 Previous studies have
shown that imaging features extracted from conventional
MRI can predict survival in patients with glioblastoma prior to
treatment.9–12 Diffusion-weighted (DW) MRI can provide addi-
tional prognostic or predictive information. Specifically, appar-
ent diffusion coefficient (ADC) values calculated from DW-MRI
negatively correlate with cell density, with lower values corre-
sponding to regions with higher cell density and higher values
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corresponding to areas of edema and necrosis.13 Previous stud-
ies have demonstrated that the distribution of ADCmaps within
tumor volume can be characterized by histograms of ADC val-
ues using Gaussian mixtures; further, the resultant ADC param-
eters from recurrent glioblastoma are associated with patient
survival during anti-angiogenic therapy.13–15

Multivariable regression models and survival analysis of im-
aging features have also been developed to assess patient out-
come in recurrent glioblastoma.16–18 The usefulness of these
predictive models is limited by their inability to search for com-
plex patterns. Machine learning techniques allow the analysis
of large quantities of imaging features to extract highly predic-
tive imaging phenotypes. This technique is increasingly being
used to generate prognostic biomarkers for primary brain tu-
mors.19–21 Emblem et al19 and Macyszyn et al20 applied sup-
port vector machines to MRI data to predict survival in
patients with gliomas. Zacharaki et al21 used classification
trees applied to imaging variables from pre- and postopera-
tional scans to predict short versus long survival in patients
with high-grade gliomas.

In this study, we retrospectively examined multimodal MRIs
of 126 patients with recurrent glioblastoma prior to and after
bevacizumab therapy. We hypothesized that extracted imaging
features based on both conventional and DW-MRI combined
with machine learning can be used to predict patient
progression-free survival (PFS) and overall survival (OS).

Materials and Methods

Patients

The institutional review board approved this retrospective study
with a waiver for informed consent. Using a pharmacy data-
base, we retrospectively identified patients with pathologically
confirmed glioblastoma (World Health Organization [WHO]
grade IV) who had received either bevacizumab monotherapy
or bevacizumab and irinotecan combination therapy for treat-
ment of progressive or recurrent disease at our institution be-
tween December 2005 and August 2014. Recurrence was
defined by new or increased size of enhancing tumor (.25%
bidimensional products) based on MRI prior to bevacizumab ini-
tiation. All patients had received standard-of-care treatment,
which includes surgical resection followed by radiation therapy
as well as concurrent and adjuvant temozolomide. Inclusion
criteria were as follows: pretreatment MRI obtained within
2 weeks prior to initiating bevacizumab; posttreatment MRI
obtained within 3 months prior to initiating bevacizumab;

interpretable fluid attenuated inversion recovery (FLAIR), post-
gadolinium (Gd) T1-weighted and DW imaging sequences
captured on either 1.5 T or 3 T MRI systems. To avoid involving
cases with pseudoprogression, those with recurrence 3 months
from the end of radiation therapy were excluded from our anal-
yses. Patients without adequate imaging or who underwent
complex therapy were also excluded.

Our final cohort consisted of 126 patients; 113 patients had
died at the time of analysis. Previously published Response As-
sessment in Neuro-Oncology (RANO) criteria were used to assess
disease progression for the calculation of PFS.22 OS was calculat-
ed with respect to the date of bevacizumab therapy initiation.
The baseline MRI was obtained a mean of 8 days (+12 d) before
bevacizumab initiation, and the follow-up MRI was obtained a
mean of 37 days (+15 d) after bevacizumab initiation. The pa-
tients were then divided into a training (n¼ 84) and testing
(n¼ 42) cohort based on the date of pretreatment MRI scan. Clin-
ical variables were collected, including age, sex, mono or dual
therapy, progression before or at date of postoperative MRI
scan, and number of recurrences before initiation of bevacizumab
therapy. The baseline clinical characteristics for the training and
testing cohort included in this study are summarized in Table 1.

Imaging Acquisition

The standard MRI protocol at our institution included nonen-
hanced sagittal and axial T1-weighted, axial T2-weighted fast
spin echo, axial T2/FLAIR, and contrast-enhanced axial
T1-weighted (T1-Gd) and 3D spoiled gradient echo imaging
with coronal and sagittal reconstructions. Gadopentetate
dimeglumine (Magnevist, Bayer Healthcare) was administered
for contrast-enhanced imaging.

DW-MRIs were acquired before injection of contrast. They
were obtained with echo time/repetition time¼ 80–110 ms/
4–10 seconds, section thickness¼ 5 mm with 1-mm intersec-
tion gap, matrix size¼ 128×128, and field of view¼ 22–25 cm
by using a monopolar spin-echo echo-planar preparation. ADC
images were calculated from acquired DW images with b-value
1000 s/mm2 and b-value 0 s/mm2 images. ADC maps were
generated using Advantage Workstation software (v4.3, GE
Healthcare). All MR images were transferred to workstations
for offline post-processing and feature extraction.23

Volumetric Tumor Segmentation

The computer-based Brain Tumor Image Analysis software
(v1.2) was used to coregister and skull-strip T1, T1-Gd, T2,

Table 1. Patient characteristics in the training and validation cohorts

Training Set (n¼ 84) Testing Set (n¼ 42) PFS HR OS HR

Age 57 (49, 62) 58 (49, 64) 0.84 (P¼ .35) 0.89 (P¼ .53)

Gender (% male) 63% 58% 1.00 (P¼ 1.00) 1.03 (P¼ .89)

Number of recurrences 1 (1, 2) 1 (1, 2) 1.41 (P¼ .06) 1.61 (P, .05)

Bevacizumab treatment regimen (% monotherapy) 40% 98% 0.90 (P¼ .58) 0.82 (P¼ .31)

PFS (days) 147 (86, 285) 121 (86, 224)

OS (days) 289 (178, 506) 297 (145, 502)

Data presented as median (interquartile range). Hazard ratios were calculated by dichotomizing patient characteristic using median values.
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and T2/FLAIR images.24 Whole brain T2/FLAIR images fromMRI
obtained at baseline and posttherapy were used for segmenta-
tion as described previously.25 Briefly, whole tumor (WT) vol-
ume, which includes solid tumor, infiltrating tumor, and
edema, was segmented from T2/FLAIR imaging. The T1-Gd
images from MRI were used for enhancing tumor (ET) volume
segmentation. The ET that overlapped with the WT was sub-
tracted to obtain the nonenhancing tumor (non-ET) volume.
Tumor outlines were drawn with a user-driven, manual active
contour segmentation method with 3D Slicer software (v4.1).
The segmented volume contours were overlaid with source
T1-Gd and T2/FLAIR images and edited by the study neuroradi-
ologist (R.Y.H.) to manually add pixels for tumor regions not
included in the preliminary contour or to remove pixels for non-
tumor regions included in the preliminary contour.26,27

To verify imaging feature reproducibility, a second indepen-
dent segmentation approach was performed. In the sameway,
WT volumes were segmented from T2/FLAIR imaging, and the
ET volume was segmented from T1-Gd images using a semi-
automatic segmentation algorithm. This algorithm combined
region-based active contour and level set approach,28 –30

which required an operator manually selecting a region of
interest on a single slice image. To ensure correct results,
computer-generated contours were superimposed onto the
original images for inspection and modification by the study
radiologist (M.Z.). This segmentation algorithm and a number
of efficient modification tools have been integrated into the
Weasis software (v2.0.3).

Imaging Registration, Normalization, and ADC
Submask Generation

The whole brain ADC volume was spatially coregistered to T2/
FLAIR using rigid followed by affine transformation (12 degrees
of freedom) with the Matlab Imaging Processing Toolbox
(v2015a). To normalize imaging intensity, the interquartile
range of the normal brain regions (nontumor) was calculated
for each patient and imaging modality. The intensity of all vox-
els for all imaging modalities was then normalized by dividing
the intensity by the interquartile range of normal brain.

Regions with ADC values ,1100 and 1350 1026 mm2/sec
were segmented. In addition, to characterize tumor margins,
edge submasks based on margins of WT and ET were calculat-
ed by detecting the edge of WT and ET, width dilations to 5
voxel lengths outside the edge, and width dilations to 3 voxel
lengths inside the edge. Each edge submask thus had a
width of 8 voxel lengths that captured regions of both tumor
and normal-appearing brain (Supplementary Fig. S2).

Imaging Feature Extraction

Tumor volume masks and submasks from baseline MRI were
applied to both baseline and posttherapy MRIs to produce vol-
umes of interest (VOI). Masks generated from posttreatment
MRI were only applied to posttherapy MRIs to produce VOI.

For VOI from ADC images, 4-peak curve fitting was applied to
corresponding ADC histograms to calculate the following histo-
gram features: the fractional area of each peak to total histo-
gram area and the ratio of the different peaks to each other,13

standard deviation, variance, mean, mean absolute deviation,
minimum, range, root mean squared, mode, uniformity, max

probability, skewness, kurtosis, energy, entropy, 10th percentile
value, 25th percentile value, 50th percentile value, 75th per-
centile value, and 90th percentile value. For VOI from T1,
T1-Gd, T2, and T2/FLAIR images, skewness and kurtosis histo-
gram features were calculated.

The following shape features were calculated for all VOI: vol-
ume, number of centroids, surface area, compactness, solidity,
max diameter, spherical disproportion, sphericity, ratio of sur-
face area to volume, and distance of volume centroid to the
centroid of the entire brain. In addition, the volume within
the pretherapy but not posttherapy scan and the volumewithin
the posttherapy scan but not pretherapy scan were calculated
for all masks and submasks.

Multimodal parametric features were produced by catego-
rizing voxel intensity of individual imaging modalities: T1
(below 25th percentiles of non-WT, between 25th and 75th
percentiles of non-WT, and above 75th percentile of non-WT),
T1-Gd (below and above 75th percentile of non-WT), T2 (below
and above 75th percentile of non-WT), and ADC (below and
above 75th percentile of non-WT). The multimodal parametric
features were then defined as the fraction of the VOI within
every combination of groups (24 possible combinations total).

Texture features were calculated for all VOI in the horizontal
plane and the 0 degree direction by analyzing gray level
run length, Laws’ texture, and Haralick texture features31–33

(see Supplementary data).
Changes in shape features between baseline and postther-

apy tumor masks and submasks were also included as
features. Similarly, changes in histogram, multimodal paramet-
ric, and texture features between baseline MRIs (baseline
volume) and posttherapy MRIs (baseline volumes) as well as
between baseline MRIs (baseline volume) and posttherapy
MRIs (posttherapy volumes) were included as features.

Machine Learning Algorithm

Only the training cohort (n¼ 84) was used to develop the learn-
ing model. The machine learning algorithm was generated
using Matlab Statistics and Machine Learning Toolbox
(v2015a). A random forest classifier was used to distinguish pa-
tients surviving less/more than the 50th percentile of PFS or OS
in the training cohort. Random forest is an ensemble learning
algorithm that combines many decision trees into a single pre-
dictive algorithm. Each decision tree was trained from data that
are sampled via bagging. Random forests provide several ad-
vantages, including being able to use high dimension data
(where number of features are significantly larger than the
number of patients) as well as provide a method of estimation
of generalization error from the calculation of an out-of-bag
error.34 The out-of-bag error was defined as the mean predic-
tion error in each patient within the training set, using only the
trees that did not have that patient in the bagged sample.35 As
the forest grows from the addition of more decision trees, the
generalization error converges to a limit.34 Due to the high
number of decision trees in the forest, the random forest meth-
od is resistant to overfitting, making the method ideal in het-
erogeneous datasets such as that comprising patients with
recurrent glioblastoma.

All features were initially tested for their individual predictive
value by calculating the area under the curve from receiver

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
e
u
ro

-o
n
c
o
lo

g
y
/a

rtic
le

/1
8
/1

2
/1

6
8
0
/2

6
5
9
3
1
6
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://neuro-oncology.oxfordjournals.org/lookup/suppl/doi:10.1093/neuonc/now086/-/DC1
http://neuro-oncology.oxfordjournals.org/lookup/suppl/doi:10.1093/neuonc/now086/-/DC1


Neuro-Oncology 1683

Chang et al.: Imaging patterns predict survival in bevacizumab-treated recurrent glioblastoma

operating characteristic (ROC) curve analysis. The top 128 fea-
tures were then input into the random forest algorithm. Al-
though the threshold of trees at which performance plateaus
varies depending on the application and dataset, Oshiro
et al36 found from an analysis of 29 datasets that there was
no significant difference between forests with 256 trees com-
pared with those with 256, 512, 1024, 2048, and 4096 trees.
For the application within this study, it was found that having
more than 512 trees did not improve the performance of ran-
dom forest classification.

The random forest was thus grown to 512 trees large with
the number of features per decision tree set to 64. The boot
fraction, which is the fraction of patients used to train each
tree, was set to 1

2. Four random forest models were trained: pre-
therapy features predicting PFS, pretherapy features predicting
OS, pre- and posttherapy features predicting OS, and pre- and
posttherapy features predicting OS excluding the patients who
showed RANO-based progression before or at the date of post-
therapy scan. The random forest model for pre- and postther-
apy features to predict OS excluding cases that showed
RANO-based progression was performed to determine whether
a quantitative imaging model provides a prognostic value for
nonprogressors following treatment initiation.

Validation of the random forest algorithmwas performed by
applying the trained random forest on the testing cohort. The
workflow of the analysis in this study is summarized in Fig. 1.

Statistical Analysis

The Kaplan–Meier method was used to evaluate PFS and OS
predictions. All statistical analyses were performed using Mat-
lab v2015a. Hazard ratios (HRs) and Kaplan–Meier curves were
computed for survival analysis with a significance level for a
2-sided comparison set at P, .05.

Results

Univariate ROC Analysis of Imaging Features

Pretherapy clinical features were included with features derived
from pretherapy imaging. In total, there were 2293 pretherapy
features. Posttherapy features include features derived from
posttherapy imaging as well as difference features between
features derived from pretherapy imaging and features derived
from posttherapy imaging. In total, there were 9811 postther-
apy features.

ROC analysis was performed on each imaging feature in the
classification of both short- and long-term survivors. The top
performing individual features for pretherapy features predict-
ing PFS, pretherapy features predicting OS, pre- and postther-
apy features predicting OS, and pre- and posttherapy features
predicting OS excluding early progressors were shape, shape,
texture, and texture, respectively.

Feature Selection and Classification

The random forest algorithm sequentially added trees until 512
trees were reached. The out-of-bag error decreased as the
number of trees increased, but eventually plateaued (see Sup-
plementary Fig. S1). For all of the random forest classifiers, the
plateau was reached before 256 trees, which is consistent with
what was reported by Oshiro et al.36

The HR for predicted short survivors compared with long
survivors within the training cohort for pretherapy features pre-
dicting PFS, pretherapy features predicting OS, and pre- and
posttherapy features predicting OS was 18.27 (P, .001), 6.03
(P, .001), and 5.10 (P, .001), respectively. With the exclusion
of the patients who were determined to have progressive dis-
ease based on RANO criteria in the posttherapy MRI, the HR
for pre- and posttherapy features predicting OS was 16.12
(P, .001). The out-of-bag accuracy for pretherapy features
predicting PFS was 0.65. The out-of-bag accuracy for prether-
apy features predicting OS was 0.70, which was improved
through the addition of posttherapy features to 0.77. The 10
most important features, as determined by out-of-bag predic-
tion error, for pre- and posttherapy features predicting OS are
shown in Table 2. When the patients who displayed early pro-
gression based on RANO criteria in the posttherapy images
were removed, the out-of-bag accuracy was 0.69 (Table 3).
All predictions from the random forest classifiers within the
training cohort delineated clear separation between long and
short survivors in the Kaplan–Meier survival curves (Fig. 2).

Model Validation

The HRs for predicted short survivors compared with long sur-
vivors within the testing cohort (n¼ 42) are summarized in
Table 3. Only pre- and posttherapy features predicting OS dis-
played an HR that was statistically significant (Fig. 2). The vali-
dation accuracies for pretherapy features predicting PFS,
pretherapy features predicting OS, pre- and posttherapy fea-
tures predicting OS, and pre- and posttherapy features

Fig. 1. Flow chart of analysis within this study, displaying image processing, feature extraction, machine learning, and validation steps.
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predicting OS excluding early progressors were 0.57, 0.54, 0.76,
and 0.69, respectively (Table 3).

Reproducibility of Imaging Features and Predictive
Models

Based on tumor VOI derived from a second, independent semi-
automatic segmentation approach, the imaging features were
recalculated to access the reproducibility of the imaging
features. For pre- and posttherapy features predicting OS, the
correlation of the most important features between manual
and semi-automatic segmentation was 0.85 with a standard
error of 1.8% for manual segmentation and 1.5% for semi-
automatic segmentation. When the random forest algorithm
was applied to the resulting features, similar out-of-bag accu-
racies and validation accuracies were found for all applications

(see Supplementary Table SI). Interestingly, semi-automatic
segmentation had statistically significant HR for pretherapy
features predicting PFS for both the training set (HR¼ 18.27,
P, .001) and the testing set (HR¼ 2.01, P, .05).

Discussion

In this study, we examined whether a multivariable model
based on pre- and early posttreatment multimodality imaging
and a random forest algorithm could accurately predict survival
outcome in patients with recurrent glioblastoma following anti-
angiogenic therapy. The final machine learning model included
clinical data as well as quantitative tumor features based on
conventional MR and DW imaging. The use of out-of-bag
error as well as validation on the testing cohort demonstrated
the predictive potential of the model.

Table 2. The most important features based on random forest for pre- and posttherapy features predicting OS

Imaging Mask/Submask Feature Training Set

AUC

Testing Set

AUC

Pretherapy Pretherapy ET

ADC ,1350 1026 mm2/s

Surface area to volume ratio 0.80 0.56

Pretherapy Pretherapy ET

ADC ,1100 1026 mm2/s

Surface area to volume ratio 0.78 0.57

Posttherapy

FLAIR

Posttherapy ET Long run low gray level emphasis 0.81 0.70

Posttherapy

FLAIR

Posttherapy

tumor margin

Max probability 0.76 0.47

Posttherapy

ADC

Posttherapy ET Long run low gray level emphasis 0.82 0.70

Posttherapy

ADC

Posttherapy WT

tumor margin

Max probability 0.76 0.46

Posttherapy

T2

Posttherapy ET

ADC ,1100 1026 mm2/s

Gray level nonuniformity 0.86 0.70

Posttherapy

T2

Posttherapy ET Long run low gray level emphasis 0.82 0.69

Posttherapy Posttherapy

ADC ,1350 1026 mm2/s

Gray level nonuniformity 0.84 0.72

Posttherapy Posttherapy

ADC ,1100 1026 mm2/s

Gray level nonuniformity 0.85 0.71

Abbreviation: AUC, area under the curve.

Table 3. Hazard ratio accuracy within the training and testing cohorts

Training Set (n¼ 84) Testing Set (n¼ 42)

HR Out-of-bag

Accuracy

HR Validation

Accuracy

Pretherapy features predicting PFS 18.27 (P, .001) 0.65 1.37 (P¼ .38) 0.57

Pretherapy features predicting OS 6.03 (P, .001) 0.70 1.77 (P¼ .12) 0.54

Pre- and posttherapy features predicting OS 5.10 (P, .001) 0.77 3.64 (P, .005) 0.76

Pre- and posttherapy features predicting OS excluding early progressors 16.12 (P, .001) 0.69 2.02 (P¼ .07) 0.69
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Previous studies have shown that imaging features such as
ADC hypointensity,18 contrast material enhanced T1-weighted
subtraction volume,37 change in T1 enhancing volume, residual
T1 enhancing volume,25 and ratio of peaks fit in ADC histo-
grams13,14,38 are associated with survival outcomes in recur-
rent glioblastoma. These studies have focused on only a few
imaging features without integrating several features into a
multivariate model. Here, we analyzed 2293 pretherapy fea-
tures and 9811 posttherapy features simultaneously, allowing
us to reveal synergistic effects of the features on prediction. In
addition, through out-of-bag and testing cohort validation, we
revealed distinct feature patterns predictive of survival.

Among the 4 models generated based on a manual seg-
mentation method, statistically significant HRs in the training
and testing patient cohorts were demonstrated for pre- and
posttherapy features predicting OS. The results were repro-
duced when semi-automated segmentation was applied. It is
important to note that the OS HRs for the training (5.10) and
testing (3.64) cohorts were both higher than the HR (3.38)
using standard radiographic evaluation (RANO). This suggests
that the use of multimodal imaging features may be an

improvement upon the current RANO criteria from the perspec-
tive of early posttreatment prognostication. In addition, statis-
tically significant HRs in the training and testing sets were found
for pretherapy features predicting PFS using semi-automated
segmentation. This observation suggests superior performance
of our predictive model when a semi-automated technique is
used for feature extraction; this warrants further validation.

Several tumor volumes were calculated, including WT, ET
(neoplastic and necrotic), and non-ET (neoplastic and edema-
tous). Within these tumor volumes, further subvolumes were
calculated based on ADC thresholds (high vs low cellularity) in
order to increase feature specificity in the setting of tissue het-
erogeneity, which is well known among glioblastomas. Based
on the most important features selected by the random forest
algorithms, a greater proportion of the top features were de-
rived from these subvolumes, confirming the value of subdivid-
ing tumor regions during feature extraction.

There are several limitations to our approach. Firstly, the
dataset examined in this study was derived from a single-
institution database; our model needs to be validated using in-
dependent or multicenter data to ensure its generalizability. In

Fig. 2. Kaplan–Meier survival curves for predicted long and short survivors for (a) pretherapy features predicting PFS (training set: HR 18.27, P,
.001; testing set: HR 1.37, P¼ .38), (b) pretherapy features predicting OS (training set: HR 6.03, P, .001; testing set: HR 1.77, P¼ .12), (c) pre- and
posttherapy features predicting OS (training set: HR 5.10, P, .001; testing set: HR 3.64, P, .005), and (d) pre- and posttherapy features predicting
OS excluding early progressors (training set: HR 16.12, P, .001; testing set: HR 2.02, P¼ .07).
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addition, manual and semi-automatic methods were used and
require user input, which can be time consuming and subject to
interuser variability. Although software exists for automated
segmentation of glioblastoma,24,39,40 it has mostly been tested
only on preoperative tumors. Despite this limitation, we have
shown that our model and selected features are highly repro-
ducible using 2 independent sets of segmentation approaches.
Another limitation is that the training and testing sets differed
in the percentage of patients receiving monotherapy (40% vs
98%). This difference, however, is unlikely to be significant, as
the HR for mono versus dual therapy was not significant for
either PFS or OS. In our study, we did not include perfusion
imaging or genetic information; adding these features to our
multivariable model may improve its performance, since prior
studies have shown the prognostic value of these features.41–46

Nevertheless, our studies have demonstrated that features
derived from conventional and DW imaging can be readily
generated across different centers, since these techniques are
routinely performed.

In this study, we evaluated the performance of several clin-
ical, volumetric, shape, texture, parametric, and histogram fea-
tures derived from standard MRI in the prediction of PFS and OS.
In addition to analyzing the enhancing and nonenhancing
components of each tumor, we improved our feature perfor-
mance by subdividing tumor volumes using DW imaging. We
found that several individual features were highly associated
with PFS and OS; the association was even greater when the en-
semble of features were integrated using a random forest algo-
rithm. These results show that pre- and posttherapy imaging
can be used to assist with clinical decision in patients with re-
current glioblastoma. Future work can investigate whether sur-
vival prediction is improved with inclusion of genotypic
information and perfusion MRI.

Supplementary material

Supplementary material is available online at Neuro-Oncology
(http://neuro-oncology.oxfordjournals.org/).
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