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The problems associated with automatic analysis of news telecasts are more severe in a country like India, where there are many
national and regional language channels, besides English. In this paper, we present a framework for multimodal analysis of
multilingual news telecasts, which can be augmented with tools and techniques for specific news analytics tasks. Further, we focus
on a set of techniques for automatic indexing of the news stories based on keywords spotted in speech as well as on the visuals
of contemporary and domain interest. English keywords are derived from RSS feed and converted to Indian language equivalents
for detection in speech and on ticker texts. Restricting the keyword list to a manageable number results in drastic improvement in
indexing performance. We present illustrative examples and detailed experimental results to substantiate our claim.

1. Introduction

Analysis of public newscast by domestic as well as foreign
TV channels for tracking news, national and international
views and public opinion is of paramount importance for
media analysts in several domains, such as journalism, brand
monitoring, law enforcement and internal security. The
channels representing different countries, political groups,
religious conglomerations, and business interests present
different perspectives and viewpoints of the same event.
Round the clock monitoring of hundreds of news channels
requires unaffordable manpower. Moreover, the news stories
of interest may be confined to a narrow slice of the total
telecast time and they are often repeated several times on
the news channels. Thus, round-the-clock monitoring of
the channels is not only a wasteful exercise but is also
prone to error because of distractions caused while viewing
extraneous telecast and consequent loss of attention. This
motivates a system that can automatically analyze, classify,
cluster and index the news-stories of interest. In this paper
we present a set of visual and audio processing techniques
that helps us in achieving this goal.

While there has been significant research in multimodal
analysis of news-video for their automated indexing and
classification, the commercial applications are yet to mature.
Commercial products like BBN Broadcast monitoring
system (http://www.bbn.com/products and services/bbn
broadcast monitoring system/) and Nexidia rich media
solution (http://www.nexidia.com/solutions/rich media)
offer speech analytics-based solution for news video indexing
and retrieval. None of these solutions can differentiate
between news programs from other TV programs and
additionally cannot filter out commercials. They index
the complete audio-stream and cannot define the story
boundaries. Our work is motivated towards creation of
a usable solution that uses multimodal cues to achieve a
more effective news video analytics service. We put special
emphasis on Indian broadcasts, which are primarily in
English, Hindi (Indian national language), and several other
regional languages.

We present a framework for multimodal analysis of
multilingual news telecasts, which can be augmented with
tools and techniques for specific news analytics tasks, namely
delimiting programs, commercial removal, story boundary
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detection and indexing of news stories. While there has
been significant research in tools for each of the tasks, an
overall framework for news telecast analysis has not yet
been proposed in literature. Moreover, automated analysis
of Indian language telecasts raises some unique challenges.
Unlike most of the channels in the western world, Indian
channels do not broadcast “closed captioned text”, which
could be gainfully employed to index the broadcast stream.
Thus, we need to rely completely on audio-visual processing
of the broadcast channels. Our basic approach is to index the
news stories with relevant keywords discovered in speech and
in form of “ticker text” on the visuals. While there are several
speech processing and OCR techniques, we face significant
challenges in using them for processing Indian telecasts.
The major impediments are (a) low resolution (768 × 576)
of the visual frames and (b) significant noise introduced
in the analog cable transmission channels, which are still
prevalent in India. We have introduced several preprocessing
and postprocessing stages to audio and visual processing
algorithms to overcome these difficulties. Moreover, the
speech and optical character recognition (OCR) technologies
for different Indian languages (including Indian English) are
under various stages of development under the umbrella of
TDIL project [1–5] and are far from a state of maturity.
All these factors lead to difficulties in creating a reliable
transcript of the spoken or the visual text. We have improved
the robustness of the system by restricting the audio-visual
processing tasks to discover a small set of keywords of
domain interest. These keywords are derived from Really
Simple Syndication (RSS) feeds pertaining to the domain of
interest. Moreover, these keywords are continuously updated
as new feeds arrive and thus, they relate to news stories of
contemporary interest. This alleviates the problem of long
turn-around time associated with manual updates of the
dictionaries, which may fail to keep pace with a fast changing
global scenario. We create a multilingual keyword list in
English and Indian languages to enable keyword spotting
in different TV channels, both in spoken and visual forms.
The multilingual keyword list helps us to automatically map
the spotted keywords in different Indian languages to their
English (or any other language) equivalents for uniform
indexing across multiple channels.

The rest of the paper is organized as follows. We review
the state-of-the-art in news video analysis in Section 2.
Section 3 provides the system overview. Section 4 describes
the techniques adopted by us for keyword extraction from
speech and visuals from multilingual channels in details.
Section 5 provides an experimental evaluation of the system.
Finally, Section 6 concludes the paper and provides direction
for future work.

2. Related Work

We provide an overview of research in news video analytics
in this section to put our work in context. There has been
much research interest in automatic interpretation, indexing
and retrieval of audio and video data. Semantic analysis
of multimedia data is a complex problem and has been

attempted with moderate success in closed domains, such
as sports, surveillance and news. This section is by no
means a comprehensive review on audio and video analytic
techniques that has evolved over the past decade, as we
concentrate on automated analysis of broadcast video.

Automated analysis, classification and indexing of news
video contents have drawn the attention of many researchers
in recent times. A video comprising visual and audio
components leads to two complementary approaches for
automated video analysis. Eickeler and Mueller [6] and
Smith et al. [7] propose classification of the scenes into
a few content classes based on visual features. A motion
feature vector has been computed from the differences in the
successive frames and HMM’s have been used to characterize
the content classes. In contrast, Gauvain et al. [8] proposes
an audio-based approach, where the speech in multiple
languages has been transcribed and the constituent words
and phrases have been used to index the contents of a
broadcast stream. Later work attempts to merge the two
streams of research and proposes multimodal analysis, which
is reviewed later in this section.

A typical news program on a TV channel is characterized
by unique jingles at the beginning and the end of the
newscast, which provide a convenient means to delimit
the newscast from other programs [9]. Moreover, a news
program has several advertisement breaks, which need to
be removed for efficient news indexing. Several methods
have been proposed for TV Commercial (We have used
“commercial” and “advertisement” interchangeably in this
paper.) detection. One simple approach is to detect the
logos of the TV channels [10], which are generally absent
during the commercials, but this might not hold good for
many contemporary channels. Sadlier et al. [11] describes a
method for identifying the ad breaks using “black” frames
that generally precedes and succeeds the advertisements. The
black frames are identified by analyzing the image intensity
of the frames and audio intensity at those time-points.
While American and European channels generally use black
frames for separation of commercials and programs, it is
not so for other geographical regions, including India [12].
Moreover, the heuristics used to ignore the extraneous black
frames appearing at arbitrary places within programs are
difficult to generalize. Hua et al. [13] have used the distinctive
audio-visual properties of the commercials to train an
SVM based classifier to classify video shots into commercial
and noncommercial categories. The performance of such
classifiers can be enhanced with application of the principle
of temporal coherence [12]. Six basic visual features and five
basic audio features derived context-based features have been
used in [13] to classify the shots using SVM and further
postprocessing.

The time-points in a streamed video can be indexed
with a set of keywords, which provide the semantics of the
video-segment around the time-point. Most of the American
and European channels accompanied with closed caption
text, which are transcripts of the speech, are aligned with
the video time-line and provides a convenient mechanism
for indexing a video. Where closed captioned text is not
available, speech recognition technology needs to be used.
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There are two distinct approaches to the problem. In
phoneme-based approach [14], the sequence of phonemes
constituting the speech is extracted from the audio track
and is stored as metadata in sync with the video. During
retrieval, a keyword is converted to a phoneme string and this
phoneme string is searched for in the video metadata [15].
In contrast, [16] proposes a speaker independent continuous
speech recognition engine that can create a transcript of the
audio track and align it with the video. In this approach
the retrieval is based on the keywords in text domain.
The difference is primarily in the way the speech data is
transcribed and archived. In the phoneme-based storage,
there is no language dictionary used and the speech data
is represented by a continuous string of phonemes. While
in the later case a pronunciation dictionary is used to
convert short phoneme sequences into known dictionary
words and the actual phoneme sequence is not retained.
Phone level approach is generally more error-prone than
word-based approaches because the phoneme recognition
accuracies are very poor, typically 40–50%. Moreover, word-
based approach provides more robust information retrieval
results [17] because in the word-based storage, a speech
signal is tagged by at least 3 best (often referred to as n-best)
phonemes (instead of only one phoneme) at each instance
and the word dictionary is used to resolve which sequence
of phonemes to use to be able to correlate the speech with
a word in the dictionary. Additional sources of information
that can be used for news video indexing constitute output
from Optical Character Recognition (OCR) on the visual
text, face recognizer and speaker identification [18].

Once the advertisement breaks are removed from a news-
program, the latter needs to be broken down into individual
news stories for further processing. Chua et al. [19] provide a
survey of the different methods used based on the experience
of TRECVID 2003, which defined news story segmentation
as an evaluation task. One of the approaches involve analysis
of speech [20, 21], namely, end-of-sentence identification
and text tiling technique [22] which involves computing
lexical similarity scores across a set of sentence and has
been used earlier for story identification in text passages.
Purely text-based approach generally yields low accuracy,
motivating use of audio-visual features. Identification of
anchor shots [23], cue phrases, prosody, and blank frames
in different combinations are used together with certain
heuristics regarding news production grammar in this
approach. A third approach uses machine learning approach
where an SVM or a Maximum Entropy classifier classifies a
candidate story boundary point based on multimodal data,
namely, audio, visual, and text data surrounding the point.
While, some of these approaches use a large number of
low-level media features, for example, face, motion, and
audio classes, some others [24] proposes abstracting low
level features to mid-level to accommodate multimodal
features without significant increase in dimensionality. In
this approach, a shot is preclassified to semantic categories,
such as anchor, people, speech, sports, and so forth, which
are then combined with a statistical model such as HMM
[25]. The classification of shots also helps in segmenting the
corpus into subdomains, resulting in more accurate models

and hence, improved story-boundary detection. Besacier et
al. [26] report use of long pause, shot boundary, audio
change (speaker change, speech to music transition, etc.),
jingle detection, commercial detection and ASR output for
story boundary detection. TRECVID prescribes use of F1
Score [27], the harmonic mean of precision and recall, as
a measure of the accuracy. An accuracy of F1 = 0.75 for
multimodal story boundary detection has been reported in
[22].

Further work on news video analysis extends to con-
ceptual classification of stories. Early work on the subject
[23] achieves binary classification shots to a few prede-
fined semantic categories, like “indoors” versus “outdoor”,
“nature” versus “man-made”, and so forth. This was done
by extracting the visual features of the key-frames and
using a SVM classifier. Higher level inferences could be
drawn by observing co-occurrence of some of these semantic
levels, for example, occurrence of “sky”, “water”, “sand”, and
“people” on a video frame implied a “beach scene”. Later
work has found that the performance of concept detection
is significantly improved by use of multimodal data, namely
audio-visual features and ASR transcripts [24]. A generic
approach for multimodal concept detection that combines
outputs of multiple unimodal classifiers by ensemble fusion
has been found to perform better than early fusion approach
that aggregates multimodal features into a single classifier.
Colace et al. [28] introduced a probabilistic framework for
combining multimodal features for classifying the video
shots in a few predefined categories using Bayesian Networks.
The advantage of Bayesian classifiers over binary classifiers is
that the former not only classifies the shots but also ranks the
classification. While judicious combination of multimodal
improves the performance of concept detection, it has also
been observed that use of query-independent weights to
combine multiple features performs worst than text alone.
Thus, the above approaches for shot classification could not
scale beyond a few predefined conceptual categories. This
prompts use of external knowledge to select appropriate
feature-weights for specific query classes [18]. Harit et al.
[29] provide a new approach to use an ontology that can
be used to reason with media properties of concepts and
to dynamically derive a Bayesian Network for scene classi-
fication in a query context. Topic clustering, or clustering
news-videos at different times and from different sources is
another area of interest. An interesting open question has
been the use of audio-visual features in conjunction with text
obtained from automatic speech recognition in discovering
novel topics [24]. Another interesting research direction is
to investigate video topic detection in absence of Automatic
Speech Recognition (ASR) data as in the case of “foreign”
language news video [24].

3. Framework for Telecast News Analysis

We envisage a system where a large number of TV broad-
cast channels are to be monitored by a limited number
of human monitor. The channels are in English, Hindi
(National language of India), and a few other Indian regional
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Figure 1: System architecture.

languages. Many of the channels are news channels but
some are entertainment channels, which have specific time-
slots for news. The contents of the news channels contain
weather reports, talk shows, interviews and other such
programs besides news. The programs are interspersed with
commercial breaks. The present work focuses on indexing
news and related programs only.

Figure 1 depicts the system architecture. At the first
step of processing, the broadcast streams are captured from
Direct to House (DTH) systems and are decoded. They
are initially dumped on the disk in chunks of manageable
size. These dumps are first preprocessed to identify the
news programs. While the time-slots for news on the
different channels are known, the accurate boundaries of
the programs are identified with the unique jingles that
characterize the different programs on a TV channel [9].
The next processing step is to filter out the commercial
breaks. Since the black frame-based method does not work
for most of the Indian channels, we propose to use a
supervised training method [13] for this purpose. At the end
of this stage, we get delimited news programs devoid of any
commercial breaks.

The semantics of the news contents are generally char-
acterized by a set of keywords (or key phrases) which occur
either in the narration of the newscaster or in the ticker
text [30] that appears on the screen. The next stage of
processing involves indexing the video stream with these
extracted keywords. Many American and European channels

broadcast transcript of the speech as closed captioned text,
which can be used for convenient indexing of the news
stream. Since there is no closed captioning available with
Indian news channels, we use image and speech processing
techniques to detect keywords from both visual and spoken
audio track. The video is decomposed into constituent shots,
which are then classified into different semantic categories
[7, 28], for example, field-shots, news-anchor, interview,
and so forth—this classification information is used in the
later stages of processing. We create an MPEG-7 compliant
content description of the news video in terms of its temporal
structure (sequence of shots), their semantic classes and
the keywords associated with each shot. An index table
of keywords is also created and linked to the content
description of the video. The next step in processing is
to detect the story boundaries. We propose to use multi-
modal cues, visual, audio, ASR output, and OCR data, to
identify the story boundaries. We select some of the methods
described in [19]. Late fusion method is preferred because of
lower dimensionality of features in the supervised training
methods and better accuracy [24]. Once the story boundaries
are known, analysis of keywords spotted in the story leads to
their semantic classification.

In rest of this paper, we deal with the specific problem
of indexing the multilingual Indian newscasts with keywords
identified in the visuals (ticker text) and in the audio (speech)
and improving the indexing performance of news stories
with multimodal cues.
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4. Keyword-Based Indexing of News Videos

This stage involves indexing of a news video stream with
a set of useful keywords and key-phrases (We will use the
“keywords” and “key-phrases” interchangeably further in
this section.). Since closed captioned text is not available
with Indian telecasts, we need to rely on speech processing
to extract the keywords. Creating a complete transcript of
the speech as in [8] is not possible for Indian language
telecasts because of limitations in the speech recognition
technology. A pragmatic and more robust alternative is to
spot a finite set of contemporary keywords of interest in
different Indian languages in the broadcast audio stream. The
keywords are extracted from a contemporary RSS feed [31].
We complement this approach with spotting the important
keywords in the ticker text that is superimposed on the
visuals on a TV channel. While OCR technologies for many
Indian languages used for ticker text analysis are also not
sufficiently robust, extraction of keywords from both audio
and visual channels simultaneously, significantly enhances
the robustness of the indexing process.

4.1. Creation of a Keyword File. RSS feeds, made available and
maintained by websites of the broadcasting channels or by
purely web-based news portals, captures the contemporary
news in a semistructured XML format. They contain links to
the full-text news stories in English. We select the common
and proper nouns in the RSS feed text and the associated
stories as the keywords. These proper nouns (typically names
of people and places) are identified by a named entity
detection module [32] while the common nouns can be
identified using frequency count. A significant advantage of
obtaining a keyword list from the RSS feeds is the currency of
the keywords because of dynamic updates of the RSS feeds.
Moreover, the RSS feeds are generally classified into several
categories, for example, “business-news” and “international”,
and it is possible to select the news in one or a few categories
that pertains to analyst’s domain of interest. Restricting the
keyword list to a small number helps in improving the accu-
racy of the system, especially for keyword spotting in speech.

The English keywords so derived, form a set of concepts,
which need to be identified in both speech and visual
forms from different Indian language telecasts. While there
are some RSS feeds in Hindi and other Indian Languages
(For instance, see http://www.voanews.com/bangla/rss.cfm
(Bangla), http://feeds.feedburner.com/oneindia-thatstelugu-
all (Telugu) and http://feeds.feedburner.com/oneindia-
thatshindi-all (Hindi).), aligning the keywords from
independent RSS feeds proves to be difficult. We derive the
equivalent keywords in Indian languages from the English
keywords, each of which is either a proper or a common
noun. We use a word level English-to-Indian language
dictionary to find the equivalent common noun keywords
in an Indian language. We use a pronunciation lexicon
(A lexicon is an association of words and their phonetic
transcription. It is a special kind of dictionary that maps
a word to all the possible phonemic representations of the
word.) for transliterating proper names in a semi-automatic
matter as suggested in [15]. It is to be noted that (a) the

s </

<RULE NAME="KeyWord">

<L PROPNAME="keyword">

<CONCEPT NAME= “Afghanistan”> 

<ENG KEY= Afghanistan”>Afghanistan</ENG>

<BEN KEY= Afganistan”> BEN>

<HIN KEY= Afganistan”> < / HIN>
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<TEL KEY= “Atankavaadi ”> </ TEL>
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“
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Figure 2: Keyword list structure.

translation of the keyword in English is possible only
when the keyword is present in the dictionary else it is
transliterated and (b) transliteration of nouns in Indian
languages are phonetic and hence there are no transliteration
problems that are more visible in a nonphonetic language
like English.

Finally, the keywords in English and their Indian lan-
guage equivalents and their pronunciation keys are stored
as a multilingual dynamic keyword list structure in XML
format. This becomes an active keyword list for the news
video channels and is used for both keyword spotting in
speech and OCR. We show a few sample entries from a
multilingual keyword list file in Figure 2. The first two entries
represent proper nouns, the name of a place (Afghanistan)
and a person (Rajashekar), respectively. The third entry
(terrorist) corresponds to a common noun. In Figure 2
every concept is expressed in three major Indian languages,
Bangla, Hindi, and Telugu, besides English. We use ISO 639-
3 codes (See http://www.sil.org/iso639-3/.) to represent the
languages. KEY entries represent pronunciation keys and are
used for keyword spotting in speech. The words in Indian
languages are encoded in Unicode (UTF-8) and are used
as dictionary entries for correcting OCR mistakes. Each
concept is associated with a NAME in English, which is
returned when a keyword (speech or ticker text) in any of
the languages is spotted either in speech or ticker-text, thus
resulting in a built-in machine translation.
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Detected Keywords :

VideoPosition: 00:06 : .. . Attack ... Attack ... Attack

VideoPosition: 00:09 : .. . American .. . War .. . American

VideoPosition: 00:11 : .. . Attack ... War
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VideoPosition: 00:30 : .. . War
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</L>
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Figure 3: Typical block diagram of a keyword spotting system.

4.2. Keyword Spotting and Extraction from Broadcast News.
Audio keyword spotting system essentially enables identifi-
cation of words or phrases of interest in an audio broadcast
or in the audio track of a video broadcast. Almost all the
audio keyword spotting systems take the acoustic speech
signal (a time sequence, x(t)) as input and use a set of
(N) keywords or key phrases ({Ki}

N
i=1), as reference to spot

the occurrences of these keywords in the broadcast [33]. A
speech recognition engine (S : x(t) → x(s); x(s) is a string
sequence {sk}

N
k=1), which is generally speaker independent

and large vocabulary, is employed and is ideally supported by
the list of keywords that need to be spotted (if x(s) ∈ {Ki}

N
i=1;

then S, the speech recognition engine, is deemed to have
spotted a keyword). Internally, the speech recognition engine
has a built in pronunciation lexicon which is used to associate
the words in the keyword list with the recognized phonemic
string from the acoustic audio.

A typical functional keyword spotting system is shown in
Figure 3. The block diagram shows as a first step the audio
track extraction from a video broadcast. The keyword list is
the list of keywords or phrases that the system is supposed to
identify and locate in the audio stream. Typically this human
readable keyword list is converted into a speech grammar
file (FSG (finite state grammar) and CFG (context free
grammar) are typically grammar used in speech recognition

literature.). The speech recognition engine (in Figure 3)
makes use of the acoustic models and the speech grammar
file to ear mark all possible occurrences of the keywords in
the acoustic stream. The output is typically the recognized or
spotted words and the time instance at which that particular
keyword occurred.

An audio KWS system for broadcast news has been
proposed in [34]. The authors suggest the use of utter-
ance verification (using dynamic time warping), out-of-
vocabulary rejection, audio classification, and noise reduc-
tion to enhance the keyword spotting performance. They
experimented on Korean news based on 50 keywords. More
recent works include searching multilingual audiovisual
documents using the International Phonetic Alphabet (IPA)
[35] and transcription of Greek broadcast news using the
HMM toolkit (HTK) [36]. We propose a multichannel,
multilingual audio KWS system which can be used as a first
step in broadcast news clustering.

In a multi channel, multilingual news broadcast scenario
the first step towards coarse clustering of broadcast news
can be achieved through audio KWS. As mentioned in
earlier section broadcast news typically deals with people
(including organizations and groups) and places; this makes
broadcast news very rich in proper names which have to
be spotted in audio. Notice that these words to be spotted
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Figure 4: Keyword extraction from ticker text.

are largely language independent, the language indepen-
dence comes because most of the Indian proper names
are pronounced similarly in different Indian languages,
implying that the same set of keywords or grammar files
can be used irrespective of language of broadcast. In some
sense we do not need to (a) identify the language being
broadcast and (b) maintain a separate keyword list for
different language channels. However, there is a need for
a pronunciation dictionary for proper names. Creating a
pronunciation lexicon of proper names is time consuming
unlike a conventional pronunciation dictionary containing
commonly used words. Laxminarayana and Kopparapu [15]
have developed a framework that allows a fast method
of creating a pronunciation lexicon, specifically for Indian
proper names, which are generally phonetic unlike in other
languages, by constructing a cost function and identifying a
basis set using a cost minimization approach.

4.3. Keyword Extraction from News Ticker Text. News Ticker
refers to a small screen space dedicated to presenting
headlines or some important news. It usually covers a small
area of the total video frame image (approximately 10–15%).
Most of the news channels use two-band tickers, each having
a special purpose. For instance, the upper band is generally

used to display regular text pertaining to the story which is
currently on air whereas “Breaking News” or the scrolling
ticker on the lower band relates to different stories or displays
unimportant local news, business stocks quotes, weather
bulletin, and so forth. Knowledge about the production rule
of specific TV channel or program is necessary to segregate
the different types of ticker texts. We attempt to identify the
desired keywords specified in the multilingual keyword list
in the upper band, which relates to the current news story in
different Indian channels.

Figure 4 depicts an overview of the steps required for
keyword spotting in the ticker text. As the first step, we
detect the ticker text present in the news video frame.
This step is known as text localization. We identify the
groups of video frames where ticker text is available and
mark the boundaries of the text (highlighted by yellow
colored boxes in the figure). The knowledge about the
production rules of a channel helps us selecting the ticker
text segments relevant to the current news story. In the next
step, we extract these image segments from the identified
groups of frames. Further, we identify the image segments
containing the same text and combine the information in
these images to obtain a high-resolution image using image
super-resolution technique. We binarize this image and apply
touching character segmentation as an image cleaning step.
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These techniques help improve the recognition rate of OCR.
Finally, the text images are processed by OCR software and
desired keywords are identified from the resultant text using
the multilingual keyword list. The following subsections give
detailed explanation of these steps.

4.3.1. Text Localization in News Video Frames. The text
recognition in a video sequence involves detection of the
text regions in a frame, recognizing the textual content
and tracking the ticker news video in successive frames.
Homogeneous color and sharp edges are the key features of
texts in an image or video sequence. Peng and Xiao [37] have
proposed color-based clustering accompanied with sharp
edge features for detection of text regions. Sun et al. [38]
propose a text extraction by color clustering and connected
component analysis followed by text recognition using a
novel stroke verification algorithm to build a binary text
line image after removing the noncharacter strokes. A multi-
scale wavelet-based texture feature followed by SVM classifier
is used for text detection in image and video frames [39].
An automatic detection, localization and tracking of text
regions in MPEG videos are proposed in [40]. The text
detection is based on wavelet transform and modified k-
means classifier. Retrieval of sports video databases using
SIFT feature-based trademark matching is proposed by [41].
The SIFT based approach is suitable for offline processing in
video database but is not a feasible option in real time MPEG
video streaming.

The classifier-based approaches have a limitation that if
the test data pattern varies from the data used in learning,
robustness of the system gets reduced. In the proposed
method we have used the hybrid approach where we localize
the candidate text regions initially using the compressed
domain data processing and process the region of interest in
pixel domain to mark the text region. This approach has a
benefit over other in two aspects namely robustness and time
complexity.

Our proposed methodology is based on the following
assumptions.

(1) Text regions have significant contrast with back-
ground color.

(2) News ticker text is horizontally aligned.

(3) The components representing texts region has strong
vertical edges.

As stated above we have used compressed domain features
and time domain features to localize the text regions. The
steps involved are as follows.

(1) Computation of Text Regions Using Compressed Domain
Features. In order to determine the text regions in the
compressed domain, we first compute the horizontal and
vertical energies at the sub block (4 × 4) level and mark the
subblocks as text or nontext assuming that the text regions
generally possess high vertical and horizontal energies. To
mark the high energy regions we first divide the entire
video frame into small blocks each of size 4 × 4 pixels.

Next, we apply integer transformation on each of the blocks.
We have selected Integer transformation in place of DCT
to avoid the problem of rounding off and complexity of
floating point operation. We compute the horizontal energy
of the subblock by summing the absolute amplitudes of
the horizontal harmonics (CU0) and the vertical energy of
the subblock by summing the absolute amplitudes of the
vertical harmonics (C0V). Then we compute the average
horizontal text energy (EAvg Hor) and the average vertical
text energy (EAvg Ver) for each row of subblocks. Lastly we
mark candidate rows if both (EAvg Hor) and (EAvg Ver) exceed
threshold value α, where α is calculated as µE +aσE where “a”
is empirically selected by analyzing the mean and standard
deviation of energy values observed over a large number of
Indian broadcast channels.

(2) Filter Out the Low Contrast Components in Pixel Domain.
Human eye is more sensitive in high-contrast regions
compared to the low-contrast regions. Therefore, it is
reasonable to assume that the ticker-text regions in a video
are created with significant contrast with background colour.
This assumption is found to be valid in most of the Indian
channels. At the next step of processing, we remove all
low-contrast components from the candidate text regions
identified in the previous step. Finally, the candidate text
segments are binarized using Otsu’s method [42].

(3) Morphological Closing. The text components sometimes
get disjointed depending on the foreground and background
contrast and the video quality. Moreover, non textual
regions appear as noise in the candidate text regions. A
morphological closing operation is applied with rectangular
structural elements with dimension of 3× 5 to eliminate the
noise and indentify continuous text segments.

(4) Confirmation of the Text Regions. Initially we run a
connected component analysis for all pixels after morpho-
logical closing to split the candidate pixels into n number of
connected components. Then we eliminate all the connected
components which do not satisfy shape features like size and
compactness (Compactness is defined as the number of pixel
per unit area.).

Then we compute the mode for x and y coordinates
of top left and bottom right coordinates of the remaining
components. We compute the threshold as the mode of the
difference between the median and the position of all the
pixels.

The components, for which the difference of its position
and the median of all the positions are less than the
threshold, are selected as the candidate texts. We have used
Euclidean distance as a distance measure.

(5) Confirmation of the Text Regions Using Temporal Infor-
mation. At this stage, the text segments have been largely
identified. But, some spurious segments are still there. We
use heuristics to remove spurious segments. Human vision
psychology suggests that eyes cannot detect any event within
1/10th of a second. Understanding of video content requires



International Journal of Digital Multimedia Broadcasting 9

Y1

Y2

Yp

Registration

or motion
estimation

Interpolation

onto a high

resolution
grid

Restoration
and noise
removal

Image reconstruction

..

.
..
.

×

Figure 5: Stages of image super resolution.

at least 1/3rd of a second, that is, 10 frames in a video with
frame-rate of 30 FPS. Thus, any information on video meant
for human comprehension must persist for this minimum
duration. It is also observed that the noise detected as text
does not generally persist for significant duration of time.
Thus, we eliminate any detected text regions that persists
for less than 10 frames. At the end of this phase, we get a
set of groups of frames (GoF) containing ticker text. The
information together with the coordinates of the bounding
boxes for the ticker text are recorded at the end of this stage
of processing.

4.3.2. Image Super Resolution and Image Cleaning. The GoF
containing ticker text regions cannot be directly used with
OCR software because the size of the text is still too small and
lacks clarity. Moreover, the characters in the running text are
often connected and need to be separated from each other
for reliable OCR output.

To accomplish this task we interpolate these images to
a higher resolution by using Image Super Resolution (SR)
techniques [43, 44] and subsequently perform touching
character segmentation as image cleaning process in order to
address these problems. The processing steps are given below.

(1) Image Super Resolution (SR). Figure 5 shows different
stages of a multiframe image SR system to produce an
image with a higher resolution (X) from a set of images
(Y1,Y2, . . . ,Yp) with lower resolution. We have used SR
technique presented in [45], where information from a set
of multiple low resolution images is used to create a higher
resolution image. Hence it becomes extremely important to
find images with the same ticker text. We perform pixel
subtraction of both the images in a single pass. We now count
the number of nonblack pixels by using intensity scheme
(R,G,B) < (25, 25, 25). We then normalize this count by
dividing it by total number of pixels and record this value. If
this value exceeds statistically determined threshold “β”, we
declare the images as nonidentical otherwise we place both
the images in the same set. As shown in Figure 5, multiple
low resolution images are fed to an image registration
module which employs frequency domain approach and
estimates the planar motion which is described as function
of three parameters: horizontal shift (∆x), vertical shift (∆y),
and the planar rotation angle (Φ). In Image Reconstruction
stage, the samples of the different low-resolution images
are first expressed in the coordinate frame of the reference
image. Then, based on these known samples, the image

Figure 6: Samples of a few major Indian scripts (Source:
http://www.myscribeweb.com/Phrase sanskrit.png.).

values are interpolated on a regular high-resolution grid. For
this purpose bicubic interpolation is used because of its low
computational complexity and good results.

(2) Touching Character Segmentation. We binarize the high-
resolution image by Otsu’s method [42] containing ticker
text. We generally find some of the text characters touching
each other in the binarized image because of noise that can
adversely affect the performance of the OCR. Hence, we
follow up this step with segmentation of touching characters
for improved character recognition.

For Touching Character Segmentation, we initially find
the average character width for all the characters in the
region of interest (ROI) by µWC = (1/n)

∑n
i=1 WCi where

“n” is the number of characters in the ROI and “WCi” is the
character width of the ith component. We then compute the
threshold for character length and the components with a
width greater than that threshold are marked as candidate
touching characters. The threshold for character length is
computed as (TWC = µWC +3∗σWC). We have used (3∗σWC)
to ensure higher recall. For our purpose threshold is nearly
64. Then we split them into number of possible touches. The
number of touches in a candidate component is computed
as the ceiling value of the ratio between actual width and the
threshold value, that is, ni = [WCi/TWC] + 1. In some Indian
languages (like Bangla and Hindi), the characters in a word
are connected by a unique line called Shirorekha, also called
the “head line”. Touching character segmentation for such
languages is preceded by the removal of shirorekha, which
makes character segmentation more efficient.

4.3.3. OCR and Dictionary-Based Correction. The higher
quality image obtained as a result of last stage of processing
is processed with OCR software to create a transcript of
the ticker text in the native language of the channel. The
transcript is generally error-prone and we use the multi-
lingual keyword list in conjunction with an approximate
string matching algorithm for robust recognition of the
desired keywords in the transcript. There are telecasts in
English, Hindi (the national language), and several regional
languages in India. Many of the languages use their own
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Figure 7: Keyword Identification from English and Bangla news channel.

scripts. Samples of a few major Indian scripts are shown in
Figure 6.

The development of OCR in many of these Indian
languages is more complex than English and other European
languages. Unlike these languages, where the number of
characters to be recognized is less than 100, Indian languages
have several hundreds of distinct characters. Nonuniformity
in spacing of characters and connection of the characters
in a word by Shirorekha in some of the languages are other
issues. There has been significant progress in OCR research
in several Indian languages. For example, in Hasnat et al.
[46], Lehal [1], and Jawahar et al. [2], word accuracy over
90% has been attained. Still, many of the Indian languages
lack a robust OCR and are not amenable to reliable machine
processing. For selecting a suitable OCR to work with

English and Indian languages, we looked for the highly
ranked OCRs identified at The Fourth Annual Test of OCR
Accuracy [47] conducted by Information Science Research
Institute (ISRI (http://www.isri.unlv.edu/ISRI/)). Tesseract
[48] (More information on Tesseract and download packages
are available at http://code.google.com/p/tesseract-ocr/.), an
open source OCR, finds a special mention because of its
reported high-accuracy range (95.31% to 97.53%) for the
magazine, newsletter, and business letter test-sets. Besides
English, Tesseract can be trained with a customized set of
training data and can be used for regional Indian languages.
Adaptation of Tesseract for Bangla has been reported in [46].
Thus, we find Tesseract to be a suitable OCR for creating
transcripts of English and Indian language ticker text images
extracted from the news videos.
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Table 1: Results for keyword spotting in speech with master keyword list.

Story id
Instances of
keywords present

Keywords found Retrieval performance

True positives False Positives Recall (%) Precision (%) F-measure (%)

[1] [2] [3] [4] [5] [6] [7]

[3]/[2]∗ 100 [3]/([3] + [4])∗ 100 2∗ [5]∗ [6]/([5] + [6])

English Channels

E001 12 2 5 16.67 28.57 21.05

E002 40 10 6 25.00 62.50 35.71

E003 13 2 3 15.38 40.00 22.22

E004 67 8 12 11.94 40.00 18.39

E005 91 6 7 6.59 46.15 11.54

E006 51 7 8 13.73 46.67 21.21

E007 7 1 3 14.29 25.00 18.18

E008 7 1 3 14.29 25.00 18.18

E009 29 10 6 34.48 62.50 44.44

Overall (English) 317 47 53 14.83 47.00 22.54

Bangla Channels

B001 7 1 0 14.29 100.00 25.00

B002 14 2 5 14.29 28.57 19.05

B003 13 2 1 15.38 66.67 25.00

B004 13 1 7 7.69 12.50 9.52

B005 29 2 7 6.90 22.22 10.53

Overall (Bangla) 76 8 20 10.53 28.57 15.38

Overall 393 55 73 13.99 42.97 21.11

Table 2: Results for keyword spotting in speech with constrained keyword list.

Story id
Instances of
keywords present

Keywords found Retrieval Performance

True positives False Positives Recall (%) Precision (%) F-measure (%)

[1] [2] [3] [4] [5] [6] [7]

[3]/[2]∗ 100 [3]/([3] + [4])∗ 100 2∗ [5]∗ [6]/([5] + [6])

English Channels

E001 12 5 4 41.67 55.56 47.62

E002 40 15 3 37.50 83.33 51.72

E003 13 4 1 30.77 80.00 44.44

E004 67 17 6 25.37 73.91 37.78

E005 91 14 8 15.38 63.64 24.78

E006 51 12 5 23.53 70.59 35.29

E007 7 1 0 14.29 100.00 25.00

E008 7 1 0 14.29 100.00 25.00

E009 29 12 4 41.38 75.00 53.33

Overall (English) 317 81 31 25.55 72.32 37.76

Bangla Channels

B001 7 3 0 42.86 100.00 60.00

B002 14 3 1 21.43 75.00 33.33

B003 13 4 1 30.77 80.00 44.44

B004 13 1 2 7.69 33.33 12.50

B005 29 8 3 27.59 72.73 40.00

Overall (Bangla) 76 19 7 25.00 73.08 37.25

Overall 393 100 38 25.45 72.46 37.66
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Table 3: Results for keyword spotting in ticker text with master keyword list.

Story id No. of distinct
ticker texts

Total instances of
keywords present

Keywords found

On raw frame On localized text
region

After image
super-resolution

After dictionary
based correction

[1] [2] [3] [4] [5] [6] [7]

English Channels

E001 5 41 17 19 24 29

E002 4 26 8 9 16 20

E003 4 23 9 10 13 16

E004 6 40 18 19 25 31

E005 4 31 10 13 17 22

E006 7 46 21 23 28 34

E007 4 21 8 9 12 17

E008 1 1 1 1 1 1

E009 5 19 9 9 11 14

Subtotal—English 40 248 101 112 147 184

Retrieval performance—English (%) 40.73 45.16 59.27 74.19

Bangla Channels

B001 3 7 0 0 2 4

B002 3 7 1 1 2 4

B003 5 9 3 3 6 7

B004 3 6 1 1 2 3

B005 5 11 4 4 5 7

Subtotal—Bangla 19 40 9 9 17 25

Retrieval performance—Bangla (%) 22.5 22.5 42.5 62.5

Overall retrieval performance (%) 38.19 42.01 56.94 72.57

Despite preprocessing of the text images and high
accuracy of Tesseract, the output of the OCR phase contains
some errors because of poor quality of the original TV
transmission. While it is difficult to improve the OCR
accuracy, reliable identification of a finite set of keywords
is possible with a dictionary-based correction mechanism.
We calculate a weighted Levenshtein distance [49] between
every word in the transcripts with the words in corre-
sponding language in the multilingual keyword list and
recognize the word if the distance is less than a certain
threshold “β”. The weights in computing the Levenshtein
distance is based on visual similarity of the characters in
an alphabet, for example, comparison of “l” (small L) and
“1” (numeric one) has a lower weight than two other
characters, say “a” and “b”. We also put a higher weight
for the first and the last letters in a word, considering
that OCR has a lower error-rate for them because of the
spatial separation (on one side) of these characters. Figure 7
shows examples of transcription and keyword identification
from news channels in English and Bangla. We map the
Bangla keywords to their English (or any other language)
equivalents for indexing using the multilingual keyword
file.

5. Experimental Results and
Illustrative Examples

We have tested the performance of keyword-based indexing
with a number of news stories recorded from different Indian
channels in English and in Bangla, which is one of the
major Indian languages. The news stories chosen pertained
to two themes of national controversy, one involving the
comments from a popular cricketer and the other involving a
visa-related scam. These stories had been recorded over two
consecutive dates. Each of the stories is between 20 seconds
and 4 minutes in duration. RSS feeds from “Headlines India”
(http://www.headlinesindia.com/) on the same dates have
been used to create a master keyword-file with 137 English
keywords and their Bangla equivalents. In order to test the
improvement in accuracy with restricted domain-specific
keyword set, we created a keyword file collected from “India
news” category, to which the two stories belonged to. This
restricted keyword-file contained 16 English keywords and
their Bangla equivalents. The restricted keyword set formed
was a subset of the master keyword set.

Sections 5.1 and 5.2 present performance of audio and
visual keyword extraction, respectively. Section 5.3 present
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Table 4: Results for keyword spotting in ticker text with constrained keyword list.

Keywords found

Story id
No. of distinct
ticker texts

Total instances of
keywords present

On raw frame
On localized text
region

After image
super-resolution

After dictionary-based
correction

[1] [2] [3] [4] [5] [6] [7]

English Channels

E001 5 36 15 17 22 27

E002 4 23 6 7 14 18

E003 4 23 9 10 13 16

E004 6 35 17 19 24 28

E005 4 31 10 13 17 22

E006 7 39 19 21 25 31

E007 4 18 7 8 11 16

E008 1 1 1 1 1 1

E009 5 16 7 7 9 12

Subtotal—English40 222 91 103 136 171

Retrieval performance—English (%) 40.99 46.40 61.26 77.03

Bangla Channels

B001 3 6 0 0 2 4

B002 3 6 1 1 2 4

B003 5 7 3 3 5 6

B004 3 4 1 1 2 3

B005 5 11 4 4 5 7

Subtotal—Bangla19 34 9 9 16 24

Retrieval performance—Bangla (%) 26.47 26.47 47.06 70.59

Overall retrieval performance (%) 39.06 43.75 59.38 76.17

the overall indexing performance on combining audio and
visual cues. Section 5.4 presents a few illustrative examples
that explain the results.

5.1. Keyword Spotting in Speech. Table 1 presents the results
for keyword spotting in speech in the same set of news-
stories observed with the master list of keywords. Column
[2] represents the number of instances when any of the
keywords occurred in the speech. We call keyword spotting
to be successful, when a keyword is correctly identified in
the time neighborhood (within a +/− 15 ms window) of the
actual utterance. Column [3] indicates the number of such
keywords for each news story. Column [4] indicates when
a keyword is mistakenly identified, though it was actually
not uttered at that point of time. We compute the retrieval
performances recall, precision and F-measure (Harmonic
mean of precision and recall) in columns [5]–[7].

We note that the overall retrieval performance is quite
poor, more so for Bangla. It is not surprising because we
have used a Microsoft speech engine that is trained for
American English. The English channels experimented with
were Indian channels and the accent of the narrators were
quite distinct. We performed the same experiments with the
constrained set of keywords. Table 2 presents the results in
detail. We note that both recall and precision has significantly
improved with the constrained set of keywords, which
were primarily proper nouns. The retrieval performance for

Bangla is now comparable to that of English. This justifies
the use of a dynamically created keyword list for keyword
spotting, which is a key contribution in this paper. We note
that the precision is quite high (72%), implying that the false
positives are low. However, the recall is still pretty low (25%).
We will show how we have exploited redundancy to achieve
a reliable indexing despite poor recall at this stage.

5.2. Keyword Spotting in Ticker Text. Table 3 depicts a
summary of results for ticker text extraction from the
English and Bangla Channels tested with master keyword
list. Each of the news stories is identified by a unique
id in column [1]. Column [2] presents the number of
distinct ticker text frames detected in the story. Column
[3] indicates the total instances of keywords built from
the master keyword list actually present in the ticker text
accompanying the story. Columns [4]–[6] show the number
of keywords correctly detected when the full-frame, the
localized text region and the super-resolution image (of
localized text region) are subjected to OCR. Column [7]
depicts the number of keywords correctly identified after
dictionary-based correction is applied over the OCR result
from the super-resolution image of localized text region.
We note that the overall accuracy of keyword detection
progressively increases from 38.2% to 72.6% through these
stages of processing. In Table 3, retrieval performance refers
to the recall value. We have observed very few false positives
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Table 5: Indexing performance for audio, visual and combined channels.

Audio Visual Combined

Story id
No. of
distinct
keywords

Keywords
correctly
identified

Indexing
Performance
IPa (%)

No. of
distinct
keywords

Keywords
correctly
identified

Indexing
Performance
IPv (%)

No. of
distinct
keywords

Keywords
correctly
identified

Indexing
Performance
IPo (%)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

|Ka| |Ka| [3]/[2]∗ 100 |Kv| |kv| [6]/[5]∗ 100 |Ko| |Ko| [9]/[8]∗ 100

English
channels

E001 8 5 62.50 13 9 69.23 13 11 84.62

E002 10 7 70.00 9 7 77.78 14 12 85.71

E003 7 5 71.43 10 8 80.00 11 9 81.82

E004 12 9 75.00 13 10 76.92 17 15 88.24

E005 21 12 57.14 11 8 72.73 21 18 85.71

E006 13 9 69.23 15 11 73.33 16 14 87.50

E007 5 2 40.00 10 9 90.00 14 13 92.86

E008 5 2 40.00 1 1 100.00 5 3 60.00

E009 12 9 75.00 9 9 100.00 15 14 93.33

Overall
(English)

93 60 64.52 91 72 79.12 126 109 86.51

Bangla
channels

B001 3 2 66.67 4 2 50.00 5 5 100.00

B002 5 4 80.00 4 2 50.00 9 7 77.78

B003 7 4 57.14 6 5 83.33 9 8 88.89

B004 6 3 50.00 3 3 100.00 7 5 71.43

B005 9 6 66.67 5 4 80.00 10 8 80.00

Overall
(Bangla)

30 19 63.33 22 16 72.73 40 33 82.50

Overall 123 79 64.23 113 88 77.88 166 143 86.14

(<1%), that is, a keyword mistakenly identified though it is
actually not there in the text, and hence we do not present
precision in the table. We also observe that the average
accuracy for detecting Bangla text with OCR is significantly
poor compared to that of the English text, which can be
attributed to the OCR performance and quality of visuals,
but there is significant improvement after dictionary-based
correction.

Similar to audio keyword spotting we performed the
same experiments with the constrained set of keywords.
Table 4 presents the results in details. We found that by
using constrained keywords list the results at every stage have
improved, though not as significantly as in the case of speech.

5.3. Improving Indexing Performance by Exploiting Redun-
dancy. While, we have presented the retrieval performance
for audio and visual keyword recognition task in the previous
sections, the goal of the system is to index the news-
stories with appropriate keywords. We define the indexing
performance of the system as

IP =
|k|

|K|
× 100, (1)

where k is the set of distinct keywords correctly identified
(and used for indexing the story) and K is the set of distinct
keywords present in the story.

The indexing performance is improved by exploiting
redundancy in occurrence of keywords in audio-visual
forms. In particular, we exploit two forms of redundancy.

(a) The same keywords are uttered several times in
a story or appear several times on ticker text. A
keyword missed out in one instance is often detected
in another instance providing better indexing perfor-
mance

(b) The same keyword may appear in both audio and
visual forms. A keyword often missed in the speech
is often detected in visuals and vice-versa. This adds
to indexing performance too.

Let Ka and Kv denote the set of distinct keywords actually
occurring in the speech and the visuals, respectively, in a
news story. Then, Ko = Ka ∪ Kv represents the set of
keywords appearing in the news-story. Similarly, let ka and kv
represent the set of distinct keywords detected in the speech
and visuals respectively. Then, ko = ka ∪ kv represents the
set of keywords detected in the news-story. The audio, visual,
and overall indexing performance (IPa, IPv, and IPo, resp.)
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Figure 8: OCR outputs at different stages of English and Bangla ticker text processing.

can be measured as

IPa =
|ka|

|ka|
× 100, IPv =

|kv|

|kv|
× 100,

IPo =
|ko|

|ko|
× 100 ≡

|ka ∪ kv|

|ka ∪ kv|
× 100.

(2)

Table 5 depicts the indexing performance of the audio,
the visual and the overall system, with the constrained
keyword list. Note that the indexing performances of
audio and visual channels, both English and Bangla, are
significantly higher than the respective recall values. This
is because of the redundancy of occurrence of keywords



16 International Journal of Digital Multimedia Broadcasting

, , ,  (4)
s s e

i  (6)

s

s e i

English news
story (E002)

Bangala news

story (E005)

Keyword spotted in ticker text Keywords spotted in speech Combined keyword list

[1] [2] [3] [4]

Thackeray Sachin Sena Salman sports politics
Milkha (7)

Kiran More   Sachin Tendulkar 
india politics Singh sports (9) 

∗ Thackeray Sachin Sena Salman
sports politics Milkha Singh Kiran 
More Tendulkar  india (12)

(8)

Figure 9: Combining audio and visual keywords for indexing. ∗Kiran More: More (pronounced Moré) is a proper noun and not the English
word.

in those individual channels. Finally, the overall indexing
performance for the stories is greater than the indexing
performances of individual audio/visual channels. This is
because of the redundancy of keywords across audio and
visual channels.

5.4. Illustrative Examples. This section provides some illus-
trative examples that explain the results in the previous
sections. Figure 8 shows the OCR outputs at different stages
of processing for examples of English and Bangla ticker
text, taken from the stories E004 and B004, respectively. It
illustrates the gradual improvement in results through the
different stages of image processing and dictionary-based
correction.

Figure 9 illustrates improvement in indexing perfor-
mance by combining audio-visual cues, with an English
and a Bangla example. Columns [2] and [3] in the figure
show the correctly identified keywords from the ticker
text and from speech, respectively. Column [4] depicts the
combined keyword list that is used for indexing the story.
The combined keyword list is derived as a union of keywords
spotted in ticker text and in speech. In these examples,
we observe that keywords not detected in speech are often
detected in visuals and vice-versa. Thus, combining keywords
detected in audio and visual forms leads to better indexing
performance.

5.5. Comparison. While comparing the system performance,
we keep in view the unreliability of the language tools
for processing Indian transmission. For example, we have
observed the average recall and precision values for keyword
spotting in speech to be approximately 15% and 47%,
respectively for English (see Table 1), as against typical
values of 73% and 85%, respectively in [36]. We also
observe that use of a constrained keyword list improves
the average recall and precision values to 26% and 72%,
respectively (see Table 2), which is still significantly below
the reported figures. For keyword detection in ticker text,
we have achieved an average recall of 59% (see Table 3)
without dictionary-based correction; as compared to 70%
reported in [50]. With dictionary-based correction, our
recall improves to 67% (see Table 4), which is a reasonable
achievement considering complexity of Indian Language
alphabets.

An experiment to combine text from speech and visual
has been reported in [51]. The authors report recall values
for speech recognition and Video OCR as 13% and 6%,
respectively. While speech recognition accuracy is compara-
ble to ours, we find the poor OCR results surprising. The
authors report a recall of 21% after combining audio and
video and dictionary based postprocessing. We have achieved
an indexing efficiency of 86%. Though the figures do not
directly compare, our system seems to have achieved a much
higher performance.
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6. Conclusion

We have proposed an architectural framework for automated
monitoring of multilingual news video in this paper. The
basic idea behind our framework is to combine audio and
visual modes to discover the keywords that characterize
a particular news-story. Our primary contribution in this
paper has been reliable indexing of Indian news telecasts with
significant keywords despite inaccuracies of the language
tools in processing noisy video channels and deficiencies
of language technologies for many Indian Languages. The
main contributing factor towards the reliable indexing has
been selection of a few domain-specific keywords, in contrast
to a complete transcription. Use of several preprocessing
and postprocessing stages with the basic language tools
has also added to the reliability of results. Moreover, use
of RSS feeds to derive the keywords automatically results
in contemporariness of the system, which could otherwise
be a major operational issue. The conversion of English
keywords, which are either proper or common nouns,
to their Indian Language equivalents helps indexing non-
English transmission with English (or any Indian Language)
keywords. The complete end to end solution is made
possible by integrating or enhancing available techniques in
addition to proposing several techniques that make multilin-
gual, multichannel news broadcast monitoring feasible. The
experimental results establish the correctness of the system.

While we have so far experimented with English and
one of the Indian languages, namely Bangla, we need to
extend the solution to other Indian Languages by integrating
appropriate language tools, which are being researched
elsewhere in the country. Moreover, India is a large country
with twenty-two officially recognized languages and many
more “unofficial” languages and dialects. Language tools do
not exist and are unlikely to be available in foreseeable future
for many of these languages. We propose to direct our future
work towards classification of news stories telecast in such
languages based on their audio-visual similarity with stories
in some reference channels (e.g., some channels in English),
which can be indexed using the language technologies.
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