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Multimodal Integration—A Statistical View
Lizhong Wu, Sharon L. Oviatt, and Philip R. Cohen

Abstract—This paper presents a statistical approach to de-
veloping multimodal recognition systems and, in particular, to
integrating the posterior probabilities of parallel input signals
involved in the multimodal system. We first identify the primary
factors that influence multimodal recognition performance by
evaluating the multimodal recognition probabilities. We then
develop two techniques, an estimate approach and a learning
approach, which are designed to optimize accurate recognition
during the multimodal integration process. We evaluate these
methods using Quickset, a speech/gesture multimodal system, and
report evaluation results based on an empirical corpus collected
with Quickset. From an architectural perspective, the integration
technique presented here offers enhanced robustness. It also is
premised on more realistic assumptions than previous multimodal
systems using semantic fusion. From a methodological standpoint,
the evaluation techniques that we describe provide a valuable tool
for evaluating multimodal systems.

Index Terms—Combination of multiple classifiers, decision
making, gesture recognition, learning, multimodal integration,
speech recognition, uncertainty.

I. INTRODUCTION

T HERE are two main types of multimodal systems, one
of which integrates signals at the feature level and the

other at a semantic level. Systems that utilize feature fusion
generally are based on multiple HMM’s or temporal neural
networks. In a feature fusion architecture, the correlation
structure between modes can be taken into account automati-
cally via learning. Feature fusion generally is considered more
appropriate for closely coupled and synchronized modalities,
such as speech and lip movements. However, such a system
tends not to generalize as well if it consists of modes that
differ substantially in the time scale characteristics of their
features, as is the case with speech and gesture input. Modeling
complexity, computational intensity, and training difficulty
typically are other problems associated with the feature fusion
integration approach. Due to the high dimensionality of input
features and high degree of freedom of system models, a
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large amount of training data also is required for building this
type of system. Of course, multimodal corpora rarely have
been collected and labeled for training purposes, and they
tend not to be publicly available so therefore are at a high
premium.

Generally, multimodal systems using semantic fusion
include individual recognizers and a sequential integration
process. These individual recognizers can be trained using
unimodal data, which are relatively easy to collect or are
already publicly available for modalities like speech and
handwriting. The architecture of this type of system also
can leverage from existing and relatively mature unimodal
recognition techniques. Such unimodal systems can be
integrated directly without re-training. Compared with systems
based on feature fusion, in this respect systems using semantic
fusion scale up easier, whether in number of modes or size
of command set.

Multimodal systems with fusion at the semantic level
include Bolt’s seminal work “Put-That-There” [1], ShopTalk
[2], CUBRICON [3], Virtual World [4], Finger-Pointer
[5], VisualMan [6], Jeanie [7], and others as described in
[8]–[10]. All these previous efforts on multimodal integration
have concentrated primarily on semantic representations and
incorporation of new input technologies, rather than on the
statistical integration process that defines a multimodal system
architecture. Such systems typically also have assumed that
the individual modes in a multimodal interaction function
independently of each other. As a result, a multimodal
command’s posterior probability has been the cross product
of the posterior probabilities of the associated constituents.
Although this independence assumption has provided a
starting point and it simplifies the integration process, it
nonetheless is a naive assumption since speech and lip
movements or speech and manual gestures are known to
be highly correlated [11].

It also is known that a constituent in one mode typically as-
sociates with only a limited number of constituents in another
mode, and that input modes differ in both their information
content and recognition accuracy. An additional problem with
past multimodal architectures is that the overall recognition
accuracy of different input modes has been assumed to be
equally reliable, although this is rarely the case. Even within
the same mode, recognition accuracy varies considerably from
one constituent to another. By refining the multimodal in-
tegration process so that different weights are assigned to
different modes and different constituents, recognition errors
potentially could be avoided so that overall system robustness
is enhanced. For example, the study in [12] has shown the
potential for improving continuous gesture recognition results
based on a co-occurrence analysis of different gestures with
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spoken keywords. Performance improvement also has been
found in audiovisual speech recognition systems by adaptively
weighting both the audio and visual recognition channels
[13]–[15].

In theory, the optimal weights for combining the posterior
probabilities from different modes can be determined by the
mode-conditional input feature density functions, as will be de-
scribed in Section IV of this paper. In practice, it is difficult or
even impossible to evaluate these conditional density functions
because of the high dimensional input features. In this paper,
we have developed two modeling techniques to approximate
these conditional densities and to obtain the class-dependent
weighting parameters for the posterior probabilities.

Another critical issue involved in the multimodal integration
process is to identify the primary factors that influence mul-
timodal recognition performance and to evaluate and estimate
system recognition performance. Given a set of individual
recognizers with known accuracies, is the multimodal system’s
performance bounded? If so, what are the theoretical lower
and upper performance bounds? By estimating performance
bounds, it becomes possible to evaluate the performance
of alternative integration techniques in comparison with a
theoretical optimum. From a diagnostic perspective, it also
becomes possible to identify key factors that influence multi-
modal performance. To our knowledge, past research has not
estimated performance bounds for guiding the development of
multimodal systems.1 In this paper, we have derived a lower
and upper bound of multimodal recognition performance, and
we identify the factors that influence multimodal recognition
performance.

The outline of this paper is as follows. Section II briefly
introducesQuickset [16], a multimodal system developed
at OGI that has been a testbed for our research. Section III
derives the multimodal recognition probability and identifies
the primary factors that influence multimodal recognition
performance. Section IV provides a theoretical solution for
combining the multimodal posterior probabilities and discusses
the problems in realizing this theoretical optimum. Sections V
and VI develop two practical techniques, an estimate approach
and a learning approach, designed to integrate and optimize
the multimodal posterior probabilities. Empirical evaluation
and performance comparisons are reported in Section VII. We
summarize our findings in Section VIII.

II. M ULTIMODAL SYSTEM

Our multimodal system, calledQuickset [16], consists of
parallel recognizers for the speech and gesture input modal-
ities, which are fused at the semantic level. A command in
this multimodal system is represented by constituents that are
joined from the two different input modes. Each constituent
is a target of an individual mode’s recognizer. During the
recognition process, an individual recognizer analyzes a set of

1Multimodal integration is related to, but different from previous studies
on combining multiple classifiers. In multimodal integration, each individual
mode recognizes a semantic constituent of commands. Different modal
classifiers have different recognition targets. In combination of multiple
classifiers, all classifiers share the same set of targets. This difference will
be elaborated in Section III.

input features and then produces the constituents as an N-best
list of alternatives, along with posterior probabilities.Quickset
integrates multimodal input in the following three sequential
steps:

1) Temporally,Quickset combines speech and gesture in-
put that is overlapped, or that falls within a certain lag
relation when signals arrive sequentially. The temporal
constraints ofQuickset’s integration were determined
by empirical research with users [11]. It was found that
when users speak and gesture in a sequential manner,
they gesture first, then speak within a relatively short
time window; speech rarely precedes gesture. As a
consequence, the multimodal synchronizer inQuickset
prefers to integrate a gesture with speech that follows
within a 4-s interval2, rather than integrating it with
preceding speech. If speech arrives after that interval,
the gesture is interpreted unimodally. The precise lag
threshold adopted when signals arrive sequentially can
be learned by the system using training data, or pre-set
by the system developer for a particular domain.

2) Statistically,Quickset integrates the posterior probabil-
ities of constituents from individual modes, and then
generates an N-best list for a multimodal command
that includes posterior probabilities for each final in-
terpretation. The original version ofQuickset relied on
the independence assumption. It took the cross product
of the probabilities of individual modes to derive the
multimodal probability for each item in the final mul-
timodal N-best list. One goal of the present work is to
supersede the independence assumption by developing a
more powerful statistical integrator based on the realities
of empirical data.

3) Semantically,Quickset determines whether a given ges-
tural and spoken element in the N-best lists can be
combined legally into a coherent multimodal interpre-
tation that is executable by the system. The semantic
information contained within the two modes inQuickset
is represented as typed feature structures [17], which can
be unified if the elements are compatible semantically.
The unification of typed feature structures inQuickset
has been detailed elsewhere [18].

Quickset has supported various map-based applications that
enable users to set up and control distributed interactive
simulations. The research and evaluations presented in this
paper are based onQuickset’s fire/flood management corpus.
Fig. 1 shows some examples of multimodal commands from
this corpus.

Using a “Wizard-of-Oz” research paradigm, it was
demonstrated that a multimodal interface parallel toQuick-
set supported 36% fewer task errors, 50% less disflu-
ent input, and 10% faster task completion time than
a unimodal spoken interface [19]. Further information
and videotape examples ofQuickset can be found at
http://www.cse.ogi.edu/CHCC.

2We have found that, from about 1539Quickset command patterns, more
than 99% commands lie within this 4-s interval.
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Fig. 1. Examples of multimodal commands composed of spoken and
pen-based elements in the fire/flood management corpus.

III. PRIMARY FACTORS OFMULTIMODAL

RECOGNITION PERFORMANCE

In a speech/gesture multimodal system, assume that
is the output from the speech mode, and
is the output from the gesture mode. The system is

designed to recognize multimodal classes.
The number of multimodal classes cannot be larger than the
number of attainable integrated classes
but will at least equal the larger number of the two output
modes

We define the projection between the index of multimodal
classes and the indices of the individual modal output as
a multimodal associative map, as depicted by Table I. For
a given corpus, the associative map defines all meaningful
relations that exist between the set of speech constituents
and the set of gesture constituents for each multimodal
command. In the present corpus, there were 17 feature
structure types for speech input (e.g., create feature object,
zoom to point), eight feature structure types for pen input
(e.g. line, area), and 20 feature structure types representing
different types of multimodal commands (e.g., see Fig. 1).
In our work, we have used the feature structure type as
the basic unit for statistical integration. During multimodal
recognition, the defined associative map between speech and
gesture feature structure types supports a simple process
of table lookups. This table can be defined directly by
a user, or it can be built automatically using labeled
data.

From the structure of an associative map, it is clear that
the integration of this type of multimodal recognizer differs
from the combination of multiple classifiers [20] or traditional
data fusion [21]. The latter two are a special case of the former
in which the component classifiers and the combined classifier
share the same set of targets, typically displayed
as a diagonal matrix.

The multimodal system can avoid some recognition errors
that otherwise would occur in a unimodal system simply
by checking whether recognized speech and gesture pieces
can be integrated legally or not, given the system’s semantic
constraints. This type of error avoidance occurs as long as the

TABLE I
MULTIMODAL ASSOCIATIVE MAP FOR THE FIRE/FLOOD MANAGEMENT

CORPUS, REPRESENTING THECOMPLETE SET OF LEGITIMATE SEMANTIC

COMBINATIONS POSSIBLE BETWEEN ALL TYPES OFSPOKEN AND PEN-BASED

INPUT FOR THE20 MULTIMODAL FEATURE TYPES IN THIS CORPUS. FOR

EXAMPLE, THE FIRST TYPE REPRESENTS ACOMBINATION BETWEEN

THE FIRST SPEECH CLASS AND THE FOURTH GESTURE CLASS

number of multimodal classes is less than the maximum num-
ber of potentially attainable multimodal classes, i.e.

Evidence for the error compensation that results
during unification of typed feature structures has been detailed
previously [22]. In the following, we discuss multimodal
performance and establish its bound from a statistical point
of view.

Assume that represents a multimodal input feature vector,
which is a combination of gesture input feature and and
speech input feature A system designed to recognize
classes of commands will partition the input feature space into

disjoint decision regions The probability
of correct recognition for is thus

(1)
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where

(2)

is the probability of correct recognition for theth class,
is its class-conditional density and is its prior

probability.
By expressing the multimodal recognition probability using

the recognition probabilities of its associated modes, we have
obtained the following multimodal recognition probability
bound (see Appendix A):

(3)
where and are respectively the correct recognition
probabilities of the associated gesture, and speech constituents
for the th multimodal class.

Equation (3) reveals that a multimodal system performs
at its lower bound if individual modes are assumed to be
independent, and a simple joint probability estimate is cal-
culated during integration. In contrast, a multimodal system
performs at its upper bound when the information in one mode
is completely redundant with that in the other mode. In general,
we would summarize that multimodal recognition performance
is determined by the following factors:

1) recognition accuracy of the individual modes;
2) structure of theassociative map;
3) manner of combining posterior probabilities;
4) prior distribution of multimodal commands.

IV. I NTEGRATION OF MULTIMODAL

POSTERIOR PROBABILITIES

During recognition, our goal is to evaluate the posterior
probabilities of all multimodal classes, given an unknown input
feature set. Combining the posterior probabilities involves
combining the class-conditional density function As
shown in Appendix B, we have found that

(4)

where and are the class-conditional
densities estimated by the speech recognizer and gesture
recognizer, and and are the
mode-conditional input feature densities for theth class.

Equation (4) provides a theoretical solution for integrating
multimodal class-conditional density functions. However, due
to the high dimensional input features, a large amount of
training data is required to evaluate the mode-conditional
input feature densities directly. A conventional input repre-
sentation in acoustic modeling uses a 39-dimensional vector
(i.e., the signal energy and first 12 cepstral coefficients and
their first- and second-order differentials [23]) for each 10-
ms speech block. This means that the speech input dimension
will increase to 3900, even if a voice command lasts for
only 1 s. An example of pen input feature representations is
Apple Computer’s Newton handwriting recognizer, in which

the input dimension is 382 (i.e., 14 14 image, 20 9 stroke
features, 5-dimensional stroke count, and single-dimension
aspect ratio [24]). Based on these examples, a multimodal
input feature dimension could easily be as large as 4282.
Considering the “curse of dimensionality” in data modeling3,
if the data for a given sampling density in one dimension
total 30, then the total required for multimodal input feature
modeling would be

The above calculations reveal why it is hard to obtain an
estimate of mode-conditional input feature density functions.
Accurate estimates also are difficult to obtain because few
actual multimodal corpora are available. Therefore, evaluation
of (4) requires approximation. By letting

(5)

(6)

(4) can be rewritten as

(7)

and become the weighting parameters to the modal
class-conditional densities. They are still class-conditional,
but independent of individual input features. In the next
two sections, we develop two techniques to evaluate these
parameters.

V. ESTIMATE APPROACH

Here, the normalized mode-conditional recognition proba-
bilities4 are taken as an approximation of the mode-conditional
input feature densities. That is

(8)

(9)

where is a normalization factor and

(10)

It is much easier to evaluate the mode-conditional recogni-
tion probabilities than to evaluate the mode-conditional input
feature density functions. Therefore, two methods are devel-
oped to estimate the mode-conditional recognition probabili-
ties, with the preferred method depending on the availability of
training data. Method-I estimates the conditional probabilities
by simply counting the number of nonzero entries in each
column and row of theassociative map. For example, for
the first multimodal class shown in Table I, which associates
with the first speech class and the fourth gesture class, there
are two nonzero entries in the corresponding row and four

3The curse of dimensionality [25], [26] refers to the exponential growth of
hypervolume as a function of dimensionality. IfN is the total data for a given
sampling density in one dimension, then when the dimensionality is increased
to m the total data must also increase toNm to keep the same sampling
density.

4A mode-conditional recognition probability is a conditional probability for
recognizing one mode, given information about the other. Further description
is available in Appendix A.
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nonzero entries in the corresponding column, or
and

After normalization, and The
advantage of this particular method is that it does not require
any training data.

When training data are available, Method-II provides a
more accurate estimate of the mode-conditional recognition
probabilities. Method-II is a bin-counting process. For theth
multimodal class, the patterns labeled as theth multimodal
class in the training data are located first. Among these
multimodal patterns, it is assumed that there are patterns
having correct gesture output, patterns having correct
speech output, and patterns having both correct gesture and
speech output. The estimates of mode-conditional recognition
probabilities then are

(11)

(12)

and the estimates of the weighting parameters are

(13)

(14)

From (13) and (14), it is clear that the weighting parameters
and depend only on the ratio of recognition rates of

the individual modes. If the ratio between the gesture and
speech recognition probabilities for theth multimodal class
is defined as

(15)

then

(16)

(17)

As shown, if both modes perform equally well and the ratio
is about 1, then both modes will be equally weighted. If one
mode’s output is significantly biased toward low performance,
then it will be given a larger weight to correct this bias.

VI. M EMBERS TO TEAMS TO

COMMITTEE: THE MTC APPROACH

MTC is a novel recognition technique developed to build
a complex pattern recognition system with high-dimensional
input features [27]. In this section, we first provide an in-
troduction of the MTC technique by presenting its overall
architecture, the functionalities of each component, and its
learning algorithms. We then describe the application of the
MTC approach to integrating a multimodal system.

A. MTC Architecture

The MTC architecture consists of three layers. The bottom
layer is formed by multiple recognizer members. Each member
is a local posterior estimator with an assigned input variable
subset, a specified model type and complexity, and a given
training and validation data set. The members cooperate with
each other via the multiple teams built at the mid-layer. Dif-
ferent teams observe different training data, and are initialized
and trained differently. The team integrates the members. Mul-
tiple teams are built to reduce integration uncertainty. Output
from the teams forms an empirical posterior distribution that
then is sent to the committee at the upper layer. The committee
makes a final decision after comparing the empirical posterior
distributions of different targets.

B. MTC Recognition Algorithm

In general, we define the input feature set
and the recognition target set

The input feature is formed by -
streams, whose dimensions may differ. The targetconsists
of different classes, for example of different multimodal
commands. The MTC recognition algorithm goes through
three bottom-up steps.

1) Estimating the local posteriors of members: Each mem-
ber computes a local posterior estimate under the spec-
ified modeling condition. The modeling specifications
include the model type, the model complexity, the
extraction of input features, the training and validation
data, and the learning algorithm. If there is a total of

combinations of modeling specifications in which we
are interested, then we would computelocal posterior
estimates from the members as follows:

with and

(18)

where stands for the th combination of modeling
specifications.

2) Coordinating the local posteriors into teams: The team
integrates the local posterior estimates of different spec-
ifications. We have

for

(19)
where is the mode probability of theth target
associated by theth combination of modeling specifica-
tions. The team is trained to learn the mode probability
matrix. Different training data and approaches will result
in different mode probability estimates. Subsequently,
the multiple team posteriors are obtained:

with and

(20)

where is the index of ways of estimating the mode
probability and is the total number of ways that we
are interested in.

3) Making a recognition decision via committee: The out-
put from multiple teams forms an empirical distribution
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of posterior which is approximated by a normal
or t-student distribution, depending on the size of the
samples. Given a confidence level, the committee runs
through a series of pair-by-pair hypothesis tests and
obtains a significance matrix is an
square matrix, where is the number of recognition
targets. The element of is either 1 when the
posterior estimate is signif-
icantly greater than within
the given confidence level, when it is significantly
less, or otherwise 0. By definition, the diagonal elements
of are all zeros, if then if

then and The
recognition targets then are ranked by summing over
each row in and this summary value is called
a significance number. All significance numbers form
an -dimensional significance vector The maximal
significance number is If there is a significance
number that equals the input is recognized as the
target corresponding to the row index of this maximal
significance number. If all significance numbers are
smaller than then the current input cannot
be recognized with confidence, and further external
information is required.

C. MTC Training Procedure

The goal of the first tier involving the MTC’s members
is to learn a set of local posterior estimates, as indicated in
(18). The key of this first layer is to identify the modeling
specifications and their combinations. The members within the
MTC can represent different types of models, with the training
algorithm for the members being model-dependent. Among
the various modeling specifications, the most important one is
the extraction of input features via exploratory data analyzes.
Once the input features have been extracted, the model type
is selected to fit the characteristics of these input features. In
the MTC, a variety of input features can be extracted, and
different types of models can be selected to fit different types
of input features.

With respect to the training procedure for teams, the goal
of this second layer is to learn the mode probability matrix
in (19). By adjusting the mode probability matrix
we maximize (i.e., reward) theth posterior and
simultaneously reduce (i.e., penalize) the other posteriors

for and when the th-class
pattern is applied. In order to meet the constraint that the sum
of all posteriors must equal one, we impose a softmax function
[28] on the output. The detailed learning algorithm is given
in [27].

The team integrates the members’ posterior estimates. Mul-
tiple teams are built to reduce integration uncertainty. The
goal of the committee is to compare the empirical posterior
distribution formed by the teams and make a final recognition
decision. To train the committee, no free system parameter is
needed. The confidence level for recognition is predetermined,
and different confidence levels will result in a different system
error rate/rejection rate tradeoff. The higher the confidence
level, the lower the error rate but the higher the rejection rate.

TABLE II
PERCENT CORRECT COMMAND RECOGNITION RATES FOR TEST DATA

REPRESENTING THEDIFFERENT POSTERIORPROBABILITY INTEGRATION

TECHNIQUES DESCRIBED IN SECTIONS V AND VI, AS WELL AS THE

UPPER AND LOWER PERFORMANCE BOUNDS DESCRIBED IN SECTION III

D. MTC Multimodal Statistical Integration

Our proposed MTC technique is well suited to experiment-
ing with ways to integrate multiple modes on the basis of
posterior probabilities and other factors. Using this technique,
the recognizers of different modes become the members of an
MTC statistical integrator. Multiple teams built in the MTC
integrator are trained to coordinate and weight the output from
different modes. Each team establishes the posterior estimate
for a multimodal command, given the current multimodal input
received. The committee of the MTC integrator analyzes the
empirical distribution of the posteriors and establishes the
N-best ranking for each multimodal command.

VII. EMPIRICAL RESULTS

Our Quickset system was the testbed used to formulate and
evaluate the derived performance bounds and the proposed
integration concepts. As mentioned earlier, the data corpus
used in the present work was collected usingQuickset while
users performed community fire and flood management tasks.
All commands were multimodal, involving both speech and
gesture input. This corpus consisted of 1539 labeled commands
collected from sixteen users, eight native speakers of English
and eight accented nonnative speakers. We randomly assigned
the data from the first eight users for development, and the
rest for test purposes. As illustrated in Table I, there were
17 feature structure types for speech, eight for pen, and 20
representing all types of multimodal commands. With this
arrangement, each of the 20 basic units had an average of 40
training patterns. More detailed description and data analyzes
on this corpus have been described elsewhere [22].

Table II summarizes our empirical evaluation based on this
corpus. The recognition performance ranged from 78.91%
correct at the lower bound, to 96.65% correct at the upper
bound. The columns Estimate I & II correspond to Method I
& II of the estimate approach described in Section V, and the
MTC column corresponds to the learning approach described
in Section VI. As expected, all performance lies within the
theoretical lower and upper bounds. Estimate II performs only
slightly better than Estimate I, and both are significantly worse
than the MTC approach—which only departs 1.4% from the
system’s established theoretical optimum.

The favorable performance of the MTC approach can be
attributed to several factors. First, the MTC approach adopted
a discriminative training scheme, which maximizes or rewards
the correct class-conditional density and simultaneously re-
duces or penalizes others. Secondly, with the MTC approach,
multiple sets of weighting parameters were trained, with each
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set providing an estimate of the class-conditional density
function. A committee of multiple sets provides a smoother
estimate function than any individual one, which leads to better
robustness and generalization. Thirdly, the MTC approach
takes into account the fact that the class-conditional densities
of individual modalities may be normalized differently, which
is a pragmatic reality when the recognizers are developed
by different sources. Through training that enables the learn-
ing of weighting parameters, the MTC approach is able
to normalize the output from different recognizers to the
same scale.

VIII. C ONCLUSIONS

The development of an architecture for integrating differ-
ent input modes and for evaluating multimodal recognition
performance are two critical issues for the development of
next-generation multimodal systems. In this paper, we have
evaluated the multimodal recognition probabilities. It was
revealed that the multimodal recognition performance, in gen-
eral, is determined by the recognition accuracy of individual
modes, the structure of theassociative map, the manner of
combining posterior probabilities, and the prior distribution of
multimodal classes.

In theory, the optimal weights for combining multimodal
posterior probabilities can be determined by the mode-
conditional input feature density functions. In practice, it
is difficult or even impossible to evaluate these conditional
density functions because of the high dimensional input
features. Therefore, we have developed two techniques
to approximate these conditional densities, and obtained
the class-dependent weighting parameters for the posterior
probabilities. The first technique is an estimate approach
in which the mode-conditional input feature density is
approximated by the normalized mode-conditional recognition
probability. The latter then can be estimated based on the
structure of theassociative map, or using the labeled training
data. The second technique is a learning approach in which
the weighting parameters are trained to maximize the correct
posterior probability and minimize the wrong ones. Several
key learning techniques also have been incorporated into this
mechanism to improve the robustness and generalization of
its performance.

The integration techniques and evaluation tools presented
in this paper provide a statistical approach to developing
multimodal recognition systems. We have evaluated these new
methods usingQuickset and an empirical corpus collected
with Quickset. Although the current version ofQuickset is a
speech/gesture bimodal system, our proposed techniques offer
a general architectural approach that could be extended to
multimodal systems involving other modes or more than two
modes.

APPENDIX

A. Derivation of (3)

By expressing the joint probability in conditional probabil-
ities, (2) can be re-written as

(21)

(22)

(23)

where and are the partitioned decision rejoins in
the gestural feature space and the spoken feature space.
They are associated to theth multimodal class. and

are respectively the correct recognition probabilities of
the gesture recognizer and the speech recognizer for the
th multimodal class. and

are the conditional probabilities
for recognizing one mode, given information on the other.

Since the conditional probability will not be less than the
probability with the condition being removed, from (22) or
(23), we have

(24)

It is clear that the lower bound will be obtained when the
gesture and speech recognition modes are independent of each
other.

Since any probability is upper bounded by one, the upper
bound of is

(25)

This upper bound will be obtained when one mode is com-
pletely redundant with another.

Substituting the above inequalities (24) and (25) into (1),
we obtain (3).

B. Derivation of (4)

Analogously to (22) and (23), we have

(26)

(27)

(28)

Summing over (27) and (28), we obtain (4).
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