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Multimodal intrinsic 
speckle‑tracking (MIST) to extract 
images of rapidly‑varying diffuse 
X‑ray dark‑field
Samantha J. Alloo 1*, Kaye S. Morgan 2, David M. Paganin 2 & Konstantin M. Pavlov 1,2,3

Speckle‑based phase‑contrast X‑ray imaging (SB‑PCXI) can reconstruct high‑resolution images of 
weakly‑attenuating materials that would otherwise be indistinguishable in conventional attenuation‑
based X‑ray imaging. The experimental setup of SB‑PCXI requires only a sufficiently coherent X‑ray 
source and spatially random mask, positioned between the source and detector. The technique can 
extract sample information at length scales smaller than the imaging system’s spatial resolution; this 
enables multimodal signal reconstruction. “Multimodal Intrinsic Speckle‑Tracking” (MIST) is a rapid 
and deterministic formalism derived from the paraxial‑optics form of the Fokker–Planck equation. 
MIST simultaneously extracts attenuation, refraction, and small‑angle scattering (diffusive dark‑field) 
signals from a sample and is more computationally efficient compared to alternative speckle‑tracking 
approaches. Hitherto, variants of MIST have assumed the diffusive dark‑field signal to be spatially 
slowly varying. Although successful, these approaches have been unable to well‑describe unresolved 
sample microstructure whose statistical form is not spatially slowly varying. Here, we extend the 
MIST formalism such that this restriction is removed, in terms of a sample’s rotationally‑isotropic 
diffusive dark‑field signal. We reconstruct multimodal signals of two samples, each with distinct X‑ray 
attenuation and scattering properties. The reconstructed diffusive dark‑field signals have superior 
image quality—as measured by the naturalness image quality evaluator, signal‑to‑noise ratio, and 
azimuthally averaged power‑spectrum—compared to our previous approaches which assume the 
diffusive dark‑field to be a slowly varying function of transverse position. Our generalisation may assist 
increased adoption of SB‑PCXI in applications such as engineering and biomedical disciplines, forestry, 
and palaeontology, and is anticipated to aid the development of speckle‑based diffusive dark‑field 
tensor tomography.

X-rays are high-energy ionizing electromagnetic radiation that can penetrate and pass through objects. Since 
being serendipitously discovered in the late 19th century by Röntgen1, X-rays have been employed in numer-
ous disciplines. X-rays are modified when passing through an object, by means of attenuation and phase-shifts 
(refraction), making them useful in imaging applications as the modified X-ray wavefield contains detailed 
sample information. Currently, in conventional medical imaging applications, only X-ray attenuation is consid-
ered when generating image contrast. This works well when imaging objects whose composite material’s X-ray 
attenuation characteristics are considerably different as the generated image contrast is high, for example, for 
bones and soft-tissue in radiography. However, attenuation contrast is insufficient when imaging objects whose 
composite materials attenuate the X-ray beam similarly, for example, adipose and glandular tissues in mam-
mography. Such weakly-attenuating materials can be more readily distinguished when X-ray refraction is also 
utilised to generate image contrast as typically these materials refract X-rays more dissimilarly. X-ray imaging 
techniques that utilise both X-ray attenuation and refraction to generate image contrast are called phase-contrast 
X-ray imaging (PCXI)2 techniques, where the X-ray attenuation and refraction can be described by the mate-
rial’s imaginary and real components of its refractive index, n(r′) = 1− δ(r′)+ iβ(r′) , respectively, where r′ is 
the three-dimensional position vector. The superiority of PCXI techniques over attenuation-based imaging has 
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already been proven in multiple disciplines. Such studies have been performed using synchrotron and conven-
tional laboratory X-ray sources for applications in several fields, including  biomedical3–6, agricultural and food 
 sciences7,  palaeontology8,9, and materials  science10,11.

PCXI techniques convert sample-imposed phase effects into measurable detector intensity differences and 
there are various methods to do so in the current research literature. Propagation-based12,13 imaging is the experi-
mentally-simplest technique, achieved by illuminating the sample with a spatially coherent beam and positioning 
the detector a sufficient distance downstream such that the beam self-interferes at locations of phase differences 
(e.g. at edges). This approach eliminates the need for complex optics, however, it does require sufficiently large 
sample-to-detector distances and has stringent coherence requirements. In the aim of decreasing coherence 
requirements and increasing phase sensitivity, PCXI techniques that introduce suitable optical elements into 
the experimental setup have also been developed, for example, via grating-interferometry14, analyser-based 
 imaging15, grid-based  imaging16,17, edge-illumination  imaging18, and speckle-based (SB)  imaging19,20. Grating-
interferometry14 measures an object’s differential phase by positioning two periodic gratings along the set-up’s 
optical axis. The second grating is placed such that moiré fringes are produced, and the sample-induced modi-
fications to these fringes are utilised to reconstruct sample phase information. An analyser crystal, for example, 
Si, is introduced in analyser-based  imaging15, and the analysis of local rocking curves of the transmitted and/
or diffracted X-ray beam allows for sample attenuation and refraction information to be extracted. Grid-based 
 imaging16,17,21 is a single-exposure technique that measures the sample-induced vertical and horizontal shift and 
blur of a two-dimensional periodic reference pattern. In edge-illumination  imaging18, one aperture is used to 
collimate the incident X-ray beam, and a second one is positioned on the detector so that only the edge of each 
pixel is illuminated, and hence changes in phase or scattering change the intensity seen by each pixel.

The resolution of signal reconstruction in PCXI techniques is predominantly restricted by the detector’s 
pixel size. Sample structures at length scales smaller than the spatial resolution of the imaging system induce 
local small-angle X-ray scattering (SAXS). Some PCXI techniques can provide information regarding these 
unresolved sample microstructures through diffusive dark-field (DF) imaging as DF image contrast is formed 
from the mechanism of SAXS. PCXI techniques that reconstruct the coherent, phase-contrast (PC), and diffuse, 
DF, flows of an X-ray wavefield are often termed “multimodal”, in the sense that they can extract multiple sig-
nals. Grating  interferometry22, analyser-based  imaging23,24, grid-based  imaging21, edge-illumination  imaging25, 
and propagation-based  imaging26,27 are examples of PCXI techniques that are sensitive to local SAXS, and can 
therefore reconstruct a sample’s DF signal.

Realised just a decade  ago19,20, SB-PCXI is a particularly appealing multimodal technique as it is experi-
mentally simple, cost-effective, and radiation dose-efficient. A speckle pattern is generated when a sufficiently 
coherent wavefield propagates through a membrane with random refractive index  fluctuations28. A speckle pat-
tern, in the context of SB-PCXI, is used as an X-ray wavefront marker whose subsequent modification is used 
to measure sample-induced speckle modulations, e.g., transverse spatial shifts, attenuation, and blurring. The 
SB-PCXI experimental setup consists of an X-ray source, speckle-generating mask, sample, and detector sys-
tem, positioned some finite distance downstream from the sample, as shown in Fig. 1. In this work, we consider 
a filtered synchrotron X-ray source that produces a monochromatic, paraxial wavefield having a high degree of 
both spatial and temporal coherence. The X-ray wavefield is randomly modulated by propagation through the 
speckle-generating mask (e.g., conventional sandpaper) and is then registered by the position-sensitive detector 
positioned downstream. We highlight two particularly attractive features of SB-PCXI. Firstly, the speckle-gener-
ating mask can be any spatially-random medium. This removes the restriction of needing precisely-manufactured 
optical elements, making the experimental setup both easy to implement and flexible. Secondly, SB-PCXI requires 
relatively low spatial and temporal  coherence29.

The inverse  problem30 of SB-PCXI involves reconstructing a sample’s multimodal signals given suitable 
reference-speckle and sample-reference-speckle intensity images. The reference-speckle images resemble the 
composition of the mask and the sample-reference-speckle images are captured when a sample is placed into this 
reference-speckle field. This reference-speckle pattern is modified, depending on the refractive properties of the 
sample, and these speckle modifications are used to reconstruct sample information. Transverse speckle shifts are 
associated with the PC signal, whereas speckle blurring, or reduction in visibility, is correlated to the sample’s DF 
signal. There are two distinct approaches in the research literature to solve the multimodal inverse SB-PCXI prob-
lem, namely, extrinsic and intrinsic speckle-tracking approaches. X-ray speckle-vector  tracking19 (XSVT), mixed 

Figure 1.  Experimental setup of speckle-based phase-contrast X-ray imaging using a synchrotron X-ray source.
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XSVT  approaches31,32, X-ray speckle-scanning33,34 (XSS), and unified modulated pattern  analysis35 (UMPA) are 
examples of extrinsic approaches that reconstruct multimodal signals using iterative pixel-wise methods on SB-
PCXI data acquired at multiple mask positions. Although these extrinsic approaches can reconstruct multimodal 
signals from just two mask positions, see Fig. 2b,c in Ref. 36, they typically require several, approximately ten, to 
achieve reasonable resolution and reduce noise. The first demonstrations of XSS used local cross-correlation on 
a single reference-speckle and single sample-reference-speckle image to evaluate sample-induced  changes19,20. 
However, to improve the spatial resolution of the retrieved image, XSS evolved from using a “single set” of data 
to using multiple speckle mask positions. In essence, XSVT, mixed XSVT, and XSS approaches perform a cross-
correlation analysis, between the reference-speckle and sample-reference-speckle images. However, in XSS, 
unlike XSVT or mixed XSVT, the speckle pattern needs to be shifted at a known constant step size throughout 
the entire scan. This is because the cross-correlation analysis is performed pixel-wise (pixel-per-pixel) in XSS, 
compared to XSVT and mixed XSVT which use larger analysis windows. Evidently, XSS has higher resolution, 
however, it is also more sensitive to experimental instabilities. UMPA proposes a different methodology, based on 
least-squares minimisation between a model and the measurement of the sample-reference-speckle pattern across 
all mask positions. XSVT, mixed XSVT, and UMPA have the advantage of a relatively short image acquisition 
time compared to  XSS33,34 techniques. An extensive evaluation and description of the above-mentioned extrinsic 
speckle-tracking approaches is provided in Ref. 29. The SB-PCXI inverse problem was reconceptualised in 2018 
when Paganin et al.37 proposed a geometric-flow approach to reconstruct a sample’s PC signal using a single 
set (one reference-speckle image and one sample-reference-speckle image) of SB-PCXI intensity data; this was 
the first realisation of so-called intrinsic speckle-tracking, since it does not explicitly track individual speckles, 
but rather solves a partial differential equation formulated at the whole-of-image level. This intrinsic speckle-
tracking geometric-flow  formalism37 was then combined with a Fokker–Planck-type38,39 generalisation of the 
transport-of-intensity  equation40 of paraxial wave optics to allow for multimodal intrinsic signal  extraction36, 
which was named “Multimodal Intrinsic Speckle-Tracking” (MIST). The Fokker–Planck41 expression is based on 
local energy conservation, and it considers transverse radiation flows as a combination of coherent and diffusive 
effects; these effects for the case of multimodal signal extraction align with the PC and DF signals, respectively. 
MIST is less computationally expensive than the alternative extrinsic  approaches19,20,31–35. This means that MIST 
can be used to rapidly reconstruct tomographic  data42 of both the PC and DF signals, therefore, to provide com-
plementary three-dimensional sample information that is inaccessible in single-projection imaging.

MIST was first  developed36 under three key assumptions: (a) the sample is a pure phase-object, such that X-ray 
attenuation can be neglected, (b) the unresolved sample microstructure diffusely scatters the X-ray beam in a 
rotationally-isotropic manner, and (c) the sample’s DF signal is a slowly varying function of transverse position. 
The first assumption, (a), was relaxed in our most recent work where we presented the case of attenuating mate-
rials having rotationally-isotropic position-dependent diffuse  scatter42. Here, we should highlight that we have 
also performed isotropic DF computed-tomography (CT) using  MIST42, as the reconstructed two-dimensional 
DF signals had a sufficiently high signal-to-noise ratio (SNR) and spatial resolution such that they could be used 
in standard CT reconstruction algorithms, such as filtered back-projection43. Assumption (b) was relaxed when 
we considered anisotropically-scattering attenuating  materials44, such that directional  DF45,46 signals could be 
obtained. Assumption (c), which considers the sample’s DF signal to be spatially slowly varying, is a condition 
that has remained in all of the MIST approaches to date. Although both Pavlov et al.36 and Alloo et al.42 have 
demonstrated that this approach to MIST is capable of reconstructing images with a high spatial resolution, 
which is at least comparable to the alternative extrinsic approaches, our recent investigations have found that 
this approximation may break down at sharp interfaces. This assumption may hinder the full potential of previ-
ous MIST approaches. In particular, samples whose microstructure autocorrelation function varies rapidly as a 
function of transverse position within the sample may breach the domain of applicability of all previous MIST 
approaches. In the present paper, we generalise MIST to alleviate this restriction, thereby broadening its domain 
of utility. Several studies have verified the broad applicability and importance of DF  imaging34,47,48, with a signifi-
cant focus on biomedical clinical  applications49, e.g., using DF imaging for early-stage diagnosis of lung diseases 
such as  fibrosis50,51,  pneumothorax52,  emphysema53, and breast  cancer26. Our improved MIST approach might 
provide an alternative experimentally versatile, low-dose imaging technique that can reconstruct high-resolution 
multimodal signals in two- and three-dimensions, with CT achieved as shown with the earlier variant of  MIST42.

This paper progresses as follows. First, we theoretically develop the new generalised MIST approach, deriv-
ing an analytical solution for a sample’s phase-shift (PC signal) and effective diffusion coefficient (DF signal). 
Numerical stabilisation techniques are then discussed, before applying the approach to synchrotron SB-PCXI 
data of two samples that have different X-ray attenuation and scattering characteristics. Moreover, we first con-
sider a sample that is weakly-attenuating (almost a pure phase-object), and then a more attenuating object to 
investigate the breadth of applicability of our approach. We then compare this new approach, qualitatively and 
quantitatively, to both of the published rotationally-isotropic MIST  approaches36,42: (a) Pavlov et al.’s  approach36, 
which neglects X-ray attenuation, and (b) Alloo et al.’s  approach42, which considers it. Note that both previous 
approaches approximate the DF to be spatially slowly varying. The paper is finished by discussing potential 
future research avenues.

Theoretical derivation of updated MIST approach
The SB-PCXI form of the Fokker–Planck equation models the coherent and diffusive flows of X-rays in the case of 
a phase-object, as described by its phase-shift, φob(r) , and effective diffusion coefficient, Deff, Phase(r;�) , respec-
tively. The SB-PCXI Fokker–Planck equation is derived assuming the reference-speckle field is spatially well-
resolved, and that this field, alongside the speckle field in the presence of the sample, obeys a Fokker–Planck41 
extension of the geometric-flow formalism for speckle  tracking37. The Fokker–Planck equation in this instance  is38
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where IR(r) and IS(r) denote the reference-speckle and sample-reference-speckle intensities, respectively, 
r ≡ (x, y) denotes Cartesian coordinates in planes perpendicular to the optical axis z, assuming plane-wave 
illumination, � is the sample-to-detector distance, k is the wavenumber, ∇⊥ = (∂/∂x, ∂/∂y) is the transverse 
gradient operator in the (x, y) plane, and ∇2

⊥ is the transverse Laplacian operator. The reference-speckle intensity, 
IR(r) , is obtained with the speckle mask in and the object out of the X-ray beam, and the sample-reference-
speckle intensity, IS(r) , is obtained by placing a phase- and SAXS-inducing object into the speckle-modulated 
X-ray beam. In previous rotationally-isotropic MIST  approaches36,42, the Fokker–Planck equation has been 
simplified (for phase-objects) to a linear equation in terms of the effective diffusion coefficient and the Lapla-
cian of the phase-shift. This simplification resulted by assuming the effective diffusion coefficient to be spatially 
slowly varying, such that various second-order terms could be neglected. In the present work, we do not make 
this assumption, and instead, the effective diffusion coefficient can accurately describe the diffuse scattering 
signal from unresolved sample microstructure for which the autocorrelation function can be a rapidly varying 
function of transverse position.

The present approach begins by expanding the coherent flow term, namely the first term on the right side of 
the preceding equation, into its two components that describe the lensing and prism-like  effects38:

Following the approximation described in Pavlov et al.36, we neglect the scalar product of the gradient of the 
random rapidly-varying wavefield intensity IR(r) with the more slowly changing gradient of the wavefield phase 
φob(r) , namely, we assume that

Hence equation (1) becomes (cf. Ref. 36)

The associated inverse problem of multimodal SB-PCXI, in this work, involves solving equation (4) for 
Deff, Phase(r;�) and φob(r) , given the SB-PCXI intensity data, IR(r) and IS(r) . We expand the final term on the 
right side of equation (4) using the vector identity ∇2

⊥(AB) = A∇2
⊥B+ B∇2

⊥A+ 2∇⊥A · ∇⊥B 54 for scalar func-
tions A and B to give:

This is a linear equation in terms of four unknowns—namely, ∇2
⊥

[

1
kφob(r)− Deff, Phase(r;�)

]

 , Deff, Phase(r;�) , 
Dx
eff, Phase(r;�) , and Dy

eff, Phase(r;�)—where the partial derivatives in the spatial coordinates x and y are denoted 
with their respective superscripts. These can then be employed to reconstruct the sample’s true phase-shifts and 
effective diffusion coefficient. To obtain unique solutions for four unknown variables we require four equations; 
to do this, four unique forms of equation (5) can be generated by taking four independent measurements of 
SB-PCXI data, where one SB-PCXI data “set” consists of an IR(r) and IS(r) pair. This can be achieved by, for 
example, transversely shifting the mask to generate a new reference-speckle pattern, and subsequently sample-
reference-speckle pattern. Let subscript n denote an independent SB-PCXI data set, then four independent 
measurements of IR(r) and IS(r) will give:

Equation (6) gives a linear system that can be solved using, for example, Gaussian-elimination. Here, it is impor-
tant to highlight that previous MIST approaches for rotationally-isotropic diffuse  scatter36,42 require SB-PCXI 
data from just two mask positions. Within the present method, we require four mask positions since we extract 
two additional quantities, namely Dx

eff, Phase(r;�) and Dy
eff, Phase(r;�) . These terms are small for samples whose 

unresolved microstructure can be considered to have an autocorrelation that is a slowly varying function of 
transverse position. However, these terms are significant in the contrary case where the sample’s unresolved-
microstructure autocorrelation functions are spatially rapidly varying. These terms are also important to correctly 
reconstruct sample edges.

A sample’s true effective diffusion coefficient can be reconstructed by aggregating the three extracted quanti-
ties, Deff, Phase(r;�) , Dx

eff, Phase(r;�) , and Dy
eff, Phase(r;�) . We employ a method adopted in various differential 

imaging  techniques17,55–57 whereby a two-dimensional function, g(x, y), can be calculated from its two spatial 
derivatives, gx(x, y) and gy(x, y) , using the identity:

(1)IR(r)− IS(r) =
�

k
∇⊥ · [IR(r)∇⊥φob(r)]−�∇2

⊥

[

Deff, Phase(r;�)IR(r)
]

,

(2)
�

k
∇⊥ · [IR(r)∇⊥φob(r)] =

�

k

[

IR(r)∇
2
⊥φob(r)+∇⊥IR(r) · ∇⊥φob(r)

]

.

(3)
�

k
∇⊥ · [IR(r)∇⊥φob(r)] ≈

�

k
IR(r)∇

2
⊥φob(r).

(4)IR(r)− IS(r) =
�

k
IR(r)∇

2
⊥φob(r)−�∇2

⊥

[

Deff, Phase(r;�)IR(r)
]

.

(5)

1

�
[IR(r)− IS(r)] = IR(r)∇

2
⊥

[

1

k
φob(r)− Deff, Phase(r;�)

]

− Deff, Phase(r;�)∇2
⊥IR(r)

− 2Dx
eff, Phase(r;�)IxR(r)− 2D

y
eff, Phase(r;�)I

y
R(r).

(6)

1

�

[

IRn(r)− ISn(r)
]

= IRn(r)∇
2
⊥

[

1

k
φob(r)− Deff, Phase(r;�)

]

− Deff, Phase(r;�)∇2
⊥IRn(r)

− 2Dx
eff, Phase(r;�)IxRn(r)− 2D

y
eff, Phase(r;�)I

y
Rn
(r), n = 1, 2, 3, and 4.
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Here, F denotes two-dimensional Fourier transformation with respect to x and y, with kx and ky being the 
corresponding Fourier-space variables, respectively. This expression is unstable near the Fourier-space origin, 
(kx , ky) = (0, 0) , hence the solution will diverge at low spatial frequencies unless sufficiently regularised. An 
effective diffusion coefficient can be calculated by equation (7), using the two calculated spatial derivatives 
Dx
eff, Phase(r;�) and Dy

eff, Phase(r;�) . This solution will be stable at high spatial frequencies, that is, far from 
the Fourier-space origin, and the opposite is true for the effective diffusion coefficient Deff, Phase(r;�) that is 
extracted directly from the system of linear equations (equation (6)). These two solutions can be combined to 
consider only the stable spatial frequencies in each DF solution. In particular, a true effective diffusion coefficient, 
DTrue
eff, Phase(r;�) , can be calculated by implementing the following Fourier-space weighted filtering (cf. Ref. 58), 

where ρ is a cut-off parameter:

This completes our description of the method for reconstructing a phase-object’s true effective diffusion coef-
ficient. The sample-induced phase-shift term, φob(r) , can then be reconstructed by utilising equation (4), via

In the above expression,

is the inverse Laplacian operator, derived using the two-dimensional Fourier derivative  theorem2. The above 
PC signal extraction is more numerically stable than utilising the ∇2

⊥

[

1
kφob(r)− Deff, Phase(r;�)

]

 term recon-
structed from QR  decomposition59, as that solution would inherently suffer from the numerical instabilities 
associated with Deff, Phase(r;�) , Dx

eff, Phase(r;�) and Dy
eff, Phase(r;�) , whereas equation (9) considers the stabilised 

DTrue
eff, Phase(r;�).

Up until this point, X-ray attenuation by the sample has been neglected. We now extend our analysis to the 
case of a weakly-attenuating object and calculate its effective diffusion coefficient. We do this based on a relation-
ship obtained in Alloo et al.42 (see equations (24) and (18) therein) in which an attenuating-object’s effective dif-
fusion coefficient, DTrue

eff, Atten(r;�) , can be calculated from the phase-object approximation, DTrue
eff, Phase(r;�) , using

Above, Iob(r) is the object’s attenuation term describing the intensity at the exit surface of the sample, z = 0 , 
after the object has attenuated the incident X-ray beam of unit intensity. To calculate Iob(r) , we consider a 
single-material object such that the projection  approximation2 can be written as φob(r) = −kδt(r) and 
Iob(r) = exp[−2kβt(r)] , where t(r) is the projected thickness of the object along the direction z of the X-rays60. 
Hence

where γ = δ/β for the single-material object. This attenuation term, obtained using the phase-shift term from 
equation (9), can then be used in equation (11) to reconstruct DTrue

eff, Atten(r;�) . Although in theory this attenu-
ation extraction is restricted to single-material objects, it can be extended to multi-material objects by taking 
the difference in the refractive index  components61,62 for composite materials. Furthermore, in a tomographic 
context, it has been proven that this approximation does not affect the reconstructed attenuation coefficient, 
β(r′) , far away from material  interfaces63, and hence, this restriction would only be adverse in a sample that has 
several composite materials with significantly differing attenuation and refraction properties.

Stabilising the SB‑PCXI multimodal inverse problem
The inverse  problem30 of reconstructing the effective diffusion coefficient requires appropriate numerical regu-
larisation. Here, we apply the common  approach64,65 of a Tikhonov  regularisation66, which sufficiently stabilises 
the signal reconstruction. In its simplest form, a Tikhonov regularisation of the quotient of two functions A and 
B can be employed, using

(7)g(x, y) = F
−1

[

F
(

gx(x, y)+ igy(x, y)
)

ikx − ky

]

.

(8)

DTrue
eff, Phase(r;�) = F

−1
[

e−ρ(k2x+k2y )F
(

Deff, Phase(r;�)
)

+
1− e−ρ(k2x+k2y )

ikx − ky
F

(

Dx
eff, Phase(r;�)+ iD

y
eff, Phase(r;�)

)

]

.

(9)φob(r) = ∇
−2
⊥

[

k

�IR(r)

(

IR(r)− IS(r)+�∇2
⊥

[

DTrue
eff, Phase(r;�)IR(r)

])

]

.

(10)∇
−2
⊥ = −F

−1 1

k2x + k2y
F

(11)DTrue
eff, Atten(r;�) =

DTrue
eff, Phase(r;�)

Iob(r)
.

(12)Iob(r) = exp

[

2φob(r)

γ

]

,
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where α ≥ 0 is a regularisation parameter whose magnitude is sufficiently small compared to B2.
The theoretical approach in the present paper reconstructs a sample’s multimodal signals by solving a full-

rank system of four linear equations, given by equation (6). Although the theoretical minimum is four sets of 
SB-PCXI data, the numerical stability of the solutions can be improved by utilising SB-PCXI data from more 
mask positions. Namely, for N mask positions, we can generate an over-determined system of N linear equa-
tions following the form of equation (5). The system generated can then be solved in a least-squares sense using 
pixel-wise QR  decomposition59. Tikhonov’s regularisation method can also be applied to an ill-posed least-
squares problem (QR factorisation), as described by  Zhu67. Namely, rather than using QR decomposition to 
solve the linear system Ax̄ = b̄ for the least-squares solution x̃ , QR decomposition can instead be performed on 
the system 

(

A;αI
)

x̄ =
(

b̄; 0
)

, where N ×M is the coefficient matrix A, “;” denotes a new row, I is the M ×M 
identity matrix, α is the chosen regularisation parameter, and the right-hand-side vector b̄ is filled with zeroes 
to reach the size of (MN )× 1 . The described Tikhonov-regularised QR decomposition can be used to solve the 
over-determined system of linear equations for the four unknown variables, ∇2

⊥

[

1
kφob(r)− Deff, Phase(r;�)

]

 , 
Deff, Phase(r;�) , Dx

eff, Phase(r;�) , and Dy
eff, Phase(r;�) . For reasons described in the preceding text, equation (8) 

is numerically stable and therefore does not need to be regularised. The subsequent phase extraction, that is 
equation (9), is ill-posed close to the Fourier-space origin (kx , ky) = (0, 0) and hence an appropriate Tikhonov 
regularisation should be applied following equation (13). For severely ill-posed cases, the phase extraction can be 
further stabilised by utilising instances of equation (4), substituting in the true effective diffusion coefficient using 
the method described above, and performing Tikhonov-regularised QR decomposition to solve for ∇2

⊥φob(r) 
before applying the inverse Laplacian operator to reconstruct φob(r).

For the Tikhonov regularisation to operate successfully, α needs to be selected appropriately for the given 
data. If α is too large, the computed solution will be over-smoothed and will therefore lack fine detail. In the case 
of image reconstruction, this means the computed solution will have poor spatial resolution, although a high 
SNR. Conversely, if α is too small, the computed solution will be severely contaminated with errors resulting 
from numerical instabilities. Evidently, optimising the regularisation parameter is critical to successfully extract 
multimodal signals, in this case. There are algorithms in the current research literature that optimise the Tik-
honov regularisation parameter for a given ill-posed problem, see Park et al.68 and references therein. However, 
in image reconstruction, image quality metrics can be used to determine the optimal regularisation parameter. 
In the present work, we used four metrics: 

1. Naturalness Image Quality Evaluator (NIQE)69: The NIQE is a blind image quality assessment based on an 
image’s measurable deviations from statistical regularities observed in natural images, namely a natural scene 
statistics (NSS) model. A lower NIQE reflects an image with a higher perceived image quality.

2. Azimuthally Averaged Power-Spectrum70: The two-dimensional power-spectrum of an image can be calcu-
lated by taking the absolute square of the Fourier-transformed image. This can then be azimuthally-averaged, 
with the centre at the Fourier-space origin (kx , ky) = (0, 0) , to calculate a one-dimensional power-spectrum 
that shows the contribution of all spatial frequencies in an image. The noise in the image is reflected by the 
so-called “noise-floor”, which typically makes up the majority of the signal at high spatial frequencies, and 
the spatial resolution can be gauged by the “knee” of the power-spectrum, namely the frequency at which 
noise becomes a significant contribution to the signal.

3. SNR: The SNR measures the magnitude of a signal relative to background noise. It is used to quantify signal 
quality in an image, and is defined as 

where Iavg is the signal strength, which can be measured as the average pixel value within a region of approxi-
mately uniform signal, and σ is the noise as measured by the standard deviation of pixel values. Note that if 
the noise characteristics are the same inside and outside an object, then it may be easiest to measure σ in the 
region outside the object to avoid variations in the signal that come with a complex object.

4. Human visual perception: Although subjective, meaningful image quality measurements can be made by 
a human observer’s visual assessment of an image. Typical “desirable” image features for a human observer 
are sharp edges, fine resolvable sample features, and low noise (locally and globally). A human observer is 
capable of determining a good compromise between noise and spatial resolution. In this work, the human 
observers were the four authors, who are all X-ray physicists.

Applying the theoretical approach to synchrotron SB‑PCXI data
To test the proposed MIST approach, we extracted multimodal signals from two samples, a wattle flower (denoted 
as “wattle” hereafter) and red currant (denoted as “currant” hereafter). These two samples had different X-ray 
attenuation coefficients, β(r′) , and thicknesses, and hence attenuate the X-ray beam differently. In particular, 
the wattle was weakly-attenuating (almost a pure phase-object) and the currant was non-negligibly-attenuating.

Experimental procedures. SB-PCXI data of the wattle were collected in experimental hutch 3B of the 
Imaging and Medical Beamline (IMBL) at the Australian Synchrotron, similar to the setup shown in Fig. 1. The 
entrance window to hutch 3B was located 135 m from the source. A virtually monochromatic 25 keV X-ray beam 

(13)
A

B
→

AB

B2 + α
,

(14)SNR = Iavg/σ ,
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was used for imaging with a 100 ms exposure time. The Ruby  detector71, which has a single pco.edge sensor and 
lens-coupled scintillator, was positioned � = 2 m downstream from the sample. The pixel array was 2560 × 2160 
and a 105 mm macro lens was used to achieve an effective pixel size of 9.9 µ m. The speckle-generating mask was 
located around 60 cm upstream of the sample, and a combination of grit P40, P80 and P120 sandpapers were 
simultaneously used. A combination of sandpapers was used in this case such that the generated speckle pattern 
had a range of high-visibility feature sizes. The speckle-generating sandpaper was placed on a translation motor 
stage such that it could be brought in and out of the X-ray beam path and also translated transversely to allow 
the beam to pass through different parts of the mask. The effective speckle-size was 136.4 µ m, as measured by the 
average full-width at half-maximum of the autocorrelation  function28 in the horizontal and vertical directions 
of the reference-speckle field.

The currant sample was imaged using SB-PCXI at the European Synchrotron Radiation Facility (ESRF) 
beamline BM05; these data were obtained and originally published by Berujon and  Ziegler31. The setup was 
similar to that shown in Fig. 1, with an X-ray energy of 17 keV and spectral bandwidth of �E/E ≈ 10−4 , which 
was produced using a double crystal Si(111) monochromator located 27 m from the X-ray source. The currant 
was placed on a stage 55 m from the source and images were acquired with 600 ms X-ray exposures. The detec-
tor system consisted of a Fast Read-Out Low-Noise (FReLoN) e2V camera coupled to an optical imaging thin 
 scintillator72,73. This detector was placed � = 1 m downstream from the sample and the effective pixel size of 
the optical system was 5.8 µ m. The speckle-generating sandpaper with grit size P800 was placed 0.5 m upstream 
from the sample and had an effective speckle-size of 20.4 µm.

Image acquisitions for all data used a similar procedure for both samples: dark-current (no X-ray beam) and 
flat-field (sample and mask not in the beam) exposures were collected before and after the scan, and reference-
speckle images with only the speckle mask in the beam were collected before and after the scan. The speckle 
mask was transversely shifted in the x-direction perpendicular to the optical axis (see Fig. 1) to acquire multiple 
unique sets of SB-PCXI data. To generate a unique set of SB-PCXI data suitable for the present MIST approach 
the mask should be shifted enough such that a significantly different new reference-speckle pattern, IR(r) , is 
generated – within these experiments we ensured to move the speckle-mask more than ten speckle sizes in one 
direction. A theoretical minimum of four sets of SB-PCXI data is required for the present approach and the 
speckle mask does not need to be shifted equidistantly, moreover, it can be shifted to a random mask position to 
generate each set. Seven and fifteen sets of SB-PCXI data were collected for the currant and wattle, respectively. 
The collected SB-PCXI data were then processed using a Python script to implement our multimodal signal 
extraction algorithm. An open-access repository for this script is on  GitHub74.

Multimodal signal extraction. Multimodal signals were extracted for the wattle and currant using our 
new generalised MIST approach. The entirety of the available SB-PCXI data for each sample, that is the maxi-
mum number of masks, were used to reconstruct the multimodal signals. Although fewer could be used, this 
work focuses solely on the new theoretical development; a quantitative analysis of the influence of the number 
of SB-PCXI data sets is given in Pavlov et al.36 (see, in particular, Fig. 2 in Ref.36). We also note that the compu-
tation time does not increase substantially for additional mask positions, with an increase of <5% going from 
four to fifteen sets of SB-PCXI data for a 2100 × 2500 pixel image. The established system of linear equations 
for each sample was solved using the Tikhonov-regularised QR decomposition described above. It was found 
that the standard deviation of the coefficient matrix divided by 104 provided the optimal Tikhonov regularisa-
tion parameter for the case of each sample. The phase-object approximation of the sample’s effective diffusion 
coefficient, Deff, Phase(r;�) , and its spatial derivatives were calculated using this method, from which the true 
phase-object approximation of the DF signal, DTrue

eff, Phase(r;�) , was computed. Next, the sample’s phase-shifts, 
φob(r) , attenuation term, Iob(r) , and true attenuating-object effective diffusion coefficient, DTrue

eff, Atten(r;�) , were 
calculated. The calculation of φob(r) via equation (9) is unstable at the Fourier-space origin; it was regularised 
using equation (13) with α = 0.0001 , which was suitable in both cases. The variable γ = δ/β was required to 
calculate the object’s attenuation term, as in equation (12). For the wattle, the generic elemental composition 
of a plant stem was used within the TS Imaging  calculator75 to determine its complex refractive index at 25 
keV, producing γwattle, 25 keV = 1403 . For the currant sample, γ was taken to be that of water at 17 keV, that is, 
γ currant, 17 keV = δwater, 17 keV/βwater, 17 keV = 1146.

Multimodal signals were also calculated using our previously-published MIST approaches, that is, equa-
tion (6) in Pavlov et al.36 and equations (16)–(18) in Alloo et al.42, to provide a point of comparison for the new 
approach. As described earlier, the approach of Pavlov et al.36 neglects X-ray attenuation, but Alloo et al.42 consid-
ers it. In both approaches, the effective diffusion coefficient is assumed to be spatially slowly varying. The multi-
modal signal extraction described by Alloo et al.42 involved numerical stabilisation via a Tikhonov-regularised 
“Weighted Determinant” approach. Within this work, the multimodal signals extracted using Pavlov et al.’s36 
algorithm were stabilised in an identical way to that described in Alloo et al.42, that is a Tikhonov-regularised 
“Weighted Determinant” approach. The optimal regularisation parameter, in both instances, was equal to the 
mean of the denominator in equation (23) of Ref. 42, divided by 100, for both samples. Here we do not perform 
a comparison with our directional DF  approach44.

Weakly‑attenuating sample: wattle flower (wattle). We begin by investigating the wattle sample as 
this sample conforms most closely to the underlying assumptions of the derived theoretical approach, as it is 
a weakly-attenuating object. Therefore, the multimodal signals (DF and PC) should be superior using the pre-
sent approach compared to those extracted using our previous MIST  approaches36,42. Using the methodology 
described above, an over-determined system of fifteen linear equations was solved using Tikhonov-regularised 
QR decomposition, from which the true phase-object DF approximation, DTrue

eff, Phase(r;�) , attenuation term, 
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Iob(r) , and true attenuating-object DF signals, DTrue
eff, Atten(r;�) , were calculated. The cut-off parameter, ρ , was 

determined by investigating the SNR and NIQE of the reconstructed DTrue
eff, Phase(r;�) for various cut-off param-

eter values. Figure 2 shows how the value of the cut-off parameter influences the image quality of the recon-
structed DF, as measured by the NIQE and SNR of the entire DF reconstruction, where the image noise ( σ in 
equation 14) was taken as that in air. As an image with a better-perceived image quality has a lower NIQE, Fig. 2 
is shown as the reciprocal of the NIQE such that it follows the same “bigger means better” convention as the SNR 
shown on the secondary axis. The optimal cut-off parameter is 34 µm2 and 198 µm2 as measured by the SNR and 
reciprocal NIQE, respectively, and these are indicated by the green arrows in Fig. 2. As we have described, the 
NIQE is a blind image quality metric that measures the so-called perceived image quality. Within this work, the 
NIQE was calculated using an inbuilt function in MATLAB called niqe(A). As per MATLAB’s documentation, 
niqe(A) compares the input image A to a default NIQE model computed from images of natural scenes, which 
follows the original published NIQE  approach69. Gupta et al.76 concluded that X-ray images are well-modelled by 
NSS, which is what MATLAB’s NIQE function uses as its image database. Moreover, NSS models capture the sta-
tistical consistencies of X-ray images effectively. This means that the NIQE is a suitable image quality metric to be 
used in X-ray  imaging77–80, and specifically, DF imaging. The NIQE score is calculated in regions of high image 
contrast, and hence, the NIQE model may mistake artefacts for signal. For example, enhanced edges due to 
residual PC effects, or Fresnel fringes, are considered qualitatively better by the NIQE as they have an increased 
sharpness and contrast. Such features are present in the reconstructed DF signal when the cut-off parameter is 
too large, and hence, explains why the NIQE values for these images indicate higher perceived image quality. It 
follows that the optimal cut-off parameter should be selected by appropriately considering the SNR and NIQE 
simultaneously. We selected the optimal cut-off parameter to be ρ = 27 µm2 as this balances the local reciprocal 
NIQE maximum (at approximately ρ = 18 µm2 , indicated by the red arrow in Fig. 2), global SNR maximum 
(at ρ = 34 µm2 ), and also the human observers’ verdict. Specifically, human observers analysed and scored the 
reconstructed DTrue

eff, Phase(r;�) across the cut-off parameter range of ρ =18–34 µm2 , from which ρ = 27 µm2 was 
selected to be the best.  

Figure 3 shows the computed solutions, ∇2
⊥

[

1
kφob(r)− Deff, Phase(r;�)

]

 , Deff, Phase(r;�) , Dx
eff, Phase(r;�) , and 

D
y
eff, Phase(r;�) , and the multimodal signals, Iob(r) and DTrue

eff, Atten(r;�) , for the wattle sample, where the window 
and level of each image were set to optimise the respective greyscale range. Although this sample has a weak 
DF signal, Fig. 3b–d reveal the first- and second-order derivatives of the diffuse scattering signal that had been 
neglected in prior MIST approaches. It is obvious that the gradient term is stronger at material interfaces on a 
global and local scale, that is the wattle leaf edges and the filaments that make up each flower, respectively. This 
follows our initial prediction that the assumption of the DF signal being slowly varying at material interfaces 
was insufficient; this is furthermore supported in the case of the currant sample which is discussed later. Here, 
we emphasise that the wattle’s reconstructed Iob(r) is close to unity, confirming that it is a weakly-attenuating 
object. Furthermore, in Fig. 3 we show the attenuating-object approximation of the DF signal, however, the 
reconstructed Iob(r) demonstrates that the phase-object approximation would be approximately identical to the 
attenuating-object approximation, given equation (11).

Figure 4 compares the present MIST approach to those in the current MIST research  literature36,42; the 
reconstructed DF signals are shown in Fig. 4a–c and the phase-shifts in Fig. 4d–f. Figures 4a,b are qualitatively 
equivalent with regard to the resolvability of the wattle’s leaves and filaments. Quantitatively the reconstructed 
DF signal in Fig. 4b is larger than that in Fig. 4a, owing to the former being a phase-object approximation and 
the latter considering X-ray attenuation, and hence there is a higher reconstructed DF signal in regions that 

Figure 2.  Influence of cut-off parameter, ρ , on the image quality of the wattle flower’s reconstructed phase-
object approximation of the effective diffusion coefficient, DTrue

eff, Phase(r;�) . Image quality is measured by the 
(blue) reciprocal of the Naturalness Image Quality Evaluator (NIQE)69 and (orange) signal-to-noise ratio (SNR). 
The dashed red vertical line denotes the optimal cut-off parameter that appropriately considers both metrics and 
the verdict of four human observers.
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attenuated the X-ray beam more; this agrees with what was found in Alloo et al. 42 The DF signal computed using 
the present approach, Fig. 4c, initially appears to have a weaker reconstructed signal within the wattle’s leaves 
and filaments. However, after inspecting the reconstructed phase-shifts using all MIST approaches, Fig. 4d–f, 
it becomes apparent the DF signals reconstructed using the alternative approaches have predominant blurring 
at the wattle’s flowers. Moreover, the wattle’s DF signal from the filaments that make up each flower cannot be 
well-described by assuming the DF is slowly varying, as assumed in Pavlov et al.36 and Alloo et al.42 For this 
sample, the previous MIST formalisms are unable to detect the rapidly-varying features inside the wattle filaments 
and its edges. This is apparent in the reconstructions of the phase-shifts and effective diffusion signal. There is 
also an apparent inhomogeneity in the reconstructed background signal (in air) using the different variants of 
MIST, that is Pavlov et al.36, Alloo et al.42, and that presented here, particularly in the reconstructed phase-shifts. 
This variation arises from the theoretical assumptions and hence mathematical operations associated with each 
approach, namely, the sample-specific Fourier-space filtering used in Alloo et al.42 but not Pavlov et al.36 or that 
presented here. This weakly-attenuating sample demonstrates that our new approach gives reconstructed mul-
timodal signals that are qualitatively superior compared to the previously-published MIST approaches. Note 
that a quantitative comparison of the reconstructed signals’ image quality is provided in a following section.

Attenuating sample: red currant (currant). We now turn to the non-negligibly-attenuating currant 
sample, which tests the breadth of applicability of the proposed approach. Using an identical methodology to 
that described for the wattle, the over-determined system of linear equations for seven sets of SB-PCXI intensity 
data was solved using Tikhonov-regularised QR decomposition, from which the currant’s true phase-object DF 
approximation, DTrue

eff, Phase(r;�) , attenuation term, Iob(r) , and true attenuating-object DF, DTrue
eff, Atten(r;�) , signals 

Figure 3.  Solutions of the system of linear equations, equation (6), and the wattle flower’s 
reconstructed multimodal signals; (a) is the effective diffusion coefficient, Deff, Phase(r;�) , (b) is 
∇2
⊥

[

1
kφob(r)− Deff, Phase(r;�)

]

Recon
 , (c,d) are the two spatial derivatives of the effective diffusion coefficient, 

D
y
eff, Phase(r;�) and Dx

eff, Phase(r;�) , respectively, (e) is the reconstructed attenuation term, Iob(r) , and (f) is 
the wattle flower’s optimally filtered true effective diffusion coefficient, DTrue

eff, Atten(r;�) . The greyscale bars in 
subfigures (a,f) are ×10−5 µ m, (b) is ×10−7 µm−1 , and (c,d) are ×10−6.
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were calculated. The relationship between the reconstructed DTrue
eff, Phase(r;�) ’s NIQE and SNR as a function of 

cut-off parameter was similar to that shown for the wattle (Fig. 2) sample, and hence, an identical procedure was 
used to determine the optimal cut-off parameter of ρ = 21 µm2.

Figure 5 shows all of the relevant solutions and multimodal signals for the currant sample using the above-
described method; Fig. 5a–d shows the reconstructed solutions of the system of linear equations, and Fig. 5e,f 
displays the currant’s attenuation term and true attenuating-object approximation of its effective diffusion coef-
ficient, respectively. Similar to the case of the wattle, the gradient term is stronger at the periphery of the entire 
currant sample and at the internal fibres. Figure 5e shows the currant’s attenuation term, where the micro-
structure is indistinguishable due to its attenuation-based contrast/signal being small. Such microstructure, 
which is unresolved in the attenuation term, induces measurable SAXS, and hence, can be readily resolved in 
the reconstructed DF signal shown in Fig. 5f. It is important to make note of the currant’s reconstructed Iob(r) , 
particularly how far from unity it is. This indicates that the attenuating-object approximation for the effective 
diffusion coefficient should be used to reconstruct a true DF signal, as shown in Fig. 5f.

Figure 6 gives a direct comparison of the currant’s multimodal reconstructions, using (a) the most recently 
published rotationally-isotropic-scatter “slowly-varying MIST (SV-MIST)”  approach42 (Fig. 6a,b), and (b) the 
current “rapidly-varying MIST” (RV-MIST) approach (Fig. 6c,d). Here, we only compare the present approach 
to the rotationally-isotropic MIST  approach42 that considers X-ray attenuation, as that published by Pavlov et 
al.36 would erroneously reconstruct the currant’s DF signal since the sample significantly attenuates the X-ray 
beam. Figures 6a,c show a local reconstruction of the currant’s DTrue

eff, Atten(r;�) and Fig. 6b,d are the Iob(r) 

Figure 4.  Comparison of wattle-flower multimodal signals extracted using the MIST approaches for 
rotationally-isotropic diffuse scatter: (a–c) are reconstructed effective diffusion coefficients, and (d–f) are phase-
shifts (as the wattle flower is a pure phase-object). (a,d) use Pavlov et al.’s36 approach, which neglects X-ray 
attenuation, and (b,e) use Alloo et al.’s42 approach, which considers it; both approaches assume the effective 
diffusion coefficient to be slowly varying. (c,f) are calculated using the present approach, which considers weak 
X-ray attenuation and does not approximate the diffusion coefficient as slowly varying. The greyscale bars in 
(a–c) are ×10−5 µ m and (d–f) are ×100 rads.
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reconstructions; magnified regions of each extracted signal are also shown. By comparing the reconstructed 
DF signals, it is evident that the new approach increases spatial resolution, decreases noise, and also provides a 
greater subject-contrast between unresolved microstructure. Moreover, the small fibrous network surrounding 
the currant pip, otherwise known as the pericarp, is more resolvable in Fig. 6c than Fig. 6a. A line profile across 
a single currant fibre, indicated by the yellow asterisk in Fig. 6c, is shown in Fig. 6e. This fine feature is resolvable 
in the DF image reconstructed using the current approach (denoted by the green trace), but not when the DF 
is assumed to be slowly varying (denoted by the red trace). When the DF is assumed to be slowly varying, there 
are supposedly Fresnel fringes, or residual PC, at the boundaries of the traced pericarp fibre in the recovered DF 
signal; this is the high-low intensity region at approximately 30 µ m and 35 µ m in Fig. 6e. When this assump-
tion is relaxed, the apparent DF signal induced by the strong phase effects is reconstructed appropriately, such 
that the small fibre is resolvable. This line profile indicates the evident spatial resolution difference between 
the two images, which is further supported by the azimuthally averaged power spectra in Fig. 6f. These power 
spectra were calculated in a global region in both DF images which encased the entire currant (the larger yellow 
box in Fig. 5f). From these power spectra, it is evident that there is a decrease in noise, shown by the reduction 
in high spatial frequency components (lower noise floor), and an increase in spatial resolution, shown by the 
higher spatial-frequency position of the power-spectrum knees (denoted by dashed vertical lines), when the DF 
is considered to be rapidly varying. Although the visibility of the currant’s pip and the pericarp is low in both 
reconstructions of the attenuation term, Fig. 6b,d, the subject-contrast appears higher when using the previous 
MIST approach (when the images are shown on the same greyscale range). However, when the greyscale range is 
optimised independently for each attenuation-term reconstruction, as shown in the magnified regions for each 
reconstruction, the images look almost identical. 

Image quality of reconstructed effective diffusion coefficients
To quantitatively compare the wattle’s and currant’s reconstructed DF signals using the present approach (RV-
MIST) and those calculated using the DF slowly-varying attenuating-object approach presented in Alloo et al.42 
(SV-MIST), we investigated the SNR (with σ in equation (14) taken as that in air for both samples) and  NIQE69 
for distinct regions. Two regions in each of the reconstructed DF signals were investigated for each sample; the 
so-called Global region which contained the entire sample, and a Local region which encompassed only critical 
structural features of the sample. The Global and Local regions, denoted by the large and small yellow boxes, 
respectively, are indicated in Figs. 3f and 5f, for the wattle and currant, respectively. The NIQE and SNR were 
calculated for both of the reconstructed DF signals in each of the described regions, for each sample. Figure 7 

Figure 5.  Solutions of the system of linear equations, equation (6), and the red currant’s 
reconstructed multimodal signals; (a) is the effective diffusion coefficient, Deff, Phase(r;�) , (b) is 
∇

2
⊥

[ 1
k φob(r)− Deff, Phase(r;�)

]

Recon
 , (c,d) are the two spatial derivatives of the effective diffusion coefficient, 

Dy
eff, Phase(r;�) and Dx

eff, Phase(r;�) , respectively, (e) is the reconstructed attenuation term, Iob(r) , and (f) is the red 
currant’s optimally filtered true effective diffusion coefficient, DTrue

eff, Atten(r;�) . The greyscale bars in subfigures 
(a,f) are ×10−5 µ m, (b) is ×10−7 µm−1 , and (c,d) are ×10−6.
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provides a summary of the image quality metrics using the two MIST approaches. The red markers denote the 
DF signal calculated using the SV-MIST  approach42 which assumed the DF to be slowly varying, but considers 
X-ray attenuation, and the green markers denote the new RV-MIST approach which considers rapidly-varying 
DF behaviour but only weak X-ray attenuation. It is shown from the SNR that the new approach reconstructs 
superior-quality DF images across all regions in both samples. The reciprocal NIQE values show similar behav-
iour for the DF signals, with only one datapoint as an exception, where the local reconstruction of the currant 
is perceived as “better” when the DF is assumed to be slowly varying. This scoring can be explained by the 
previously-mentioned point describing how the NIQE interprets the residual PC as a sharper edge, due to its 
increased contrast, when in reality it is incorrectly describing the DF signal. It may be argued that the overall 
increase in image quality shown in the remaining datapoints is only due to the filtering performed on the new 
DF reconstruction. However, multiple different filters (e.g., Gaussian and median) were applied to the SV-MIST 
reconstructions, for which the NIQE and SNR were calculated, and there was no such filtering that gave a com-
parable image quality to that obtained using the present approach.

The described results for the wattle and currant samples reveal that the present MIST approach reconstructs 
superior DF signals for weakly- and non-negligibly-attenuating samples, compared to our previously-published 
MIST approaches. We have also demonstrated that (a) for a weakly-attenuating object the proposed approach 
gives a qualitatively better attenuation-term reconstruction, and (b) for an attenuating sample both approaches 
give phase-shift reconstructions with similar image quality. These conclusions were made based on the image 
quality measures of the reconstructions, rather than the quantitativeness of the reconstructions. Unsurprisingly, 
the quantitative difference between the reconstructed phase-shift, φob(r) , from the two approaches, is larger for 
an attenuating object than for a weakly-attenuating object, which is reconstructed equivalently. This is exactly 
what is expected, based on the underlying assumptions of both theoretical formalisms. That is, the SV-MIST 
 approach42 considers X-ray attenuation in the initial Fokker–Planck description, whereas the present approach 
neglects attenuation initially, before extending to the case of a weakly-attenuating material using the projection 
approximation. It, therefore, follows that the previous approach more accurately reconstructs the PC signal for 
an attenuating object, compared to the new approach. The two MIST approaches are complementary methods 

Figure 6.  Comparison of the red currant’s multimodal signals extracted using the approach published in Alloo 
et al.42, (a,b), which assume the red currant’s effective diffusion coefficient is slowly varying (SV-MIST), and 
those presented within this study, (c,d), which have no assumptions regarding the effective diffusion coefficient 
(RV-MIST). The effective diffusion coefficient reconstructions are shown in (a,c), and the currant’s attenuation 
term is shown in (b,d). The yellow-asterisk line profile in (c) is shown in (e), and (f) shows the azimuthally 
averaged power spectra. The vertical dashed lines in (f) denote the approximate knee of the respective power 
spectra. The greyscale bars in (a,c) are ×10−5 µ m. The displayed greyscale ranges for the subfigures’ magnified 
regions (a–d) are [0.01–2.09]×10−5 µ m, [0.35–0.51], [0.08–1.79]×10−5 µ m, and [0.38–0.46], respectively.
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derived using their own distinct assumptions, therefore it is expected that their respective applicability will be 
sample dependent. There are regimes in which one approach is more suitable than the other. The present approach 
is suited to weakly-attenuating objects (e.g., wattle), however, can also be successfully applied to attenuating 
objects (e.g., currant).

Concluding remarks
Within this paper, we developed and implemented a rapid deterministic approach that can reconstruct high-
resolution multimodal signals of samples using SB-PCXI. The present MIST approach is not restricted to samples 
that have a slowly-varying DF signal, in contrast to other MIST  approaches36,42,44, and instead can be used to 
model rapidly-varying DF behaviour. We applied the approach to two samples that differ in X-ray attenuation 
and scattering characteristics and compared these signals to those reconstructed using two earlier variants of 
 MIST36,42. Using the new approach, the SNR, spatial resolution, and perceived image quality—in the majority of 
local and global regions-of-interest, across the DF reconstructions for both samples—were higher.

Multimodal X-ray imaging has already proven useful in numerous applications, and this work provides 
theoretical development towards reconstructing the best possible images using an SB-PCXI technique. It fur-
thermore assists the translation of SB-PCXI into a user-friendly low-dose technique, as the proposed approach 
theoretically requires just four sets of SB-PCXI data, although more data sets will make the reconstruction more 
stable (as presented here). It is computationally efficient, requiring just 3 minutes to calculate multimodal signals 
for a 2100×2500 pixel image using a laptop computer with an 11th Gen Intel(R) Core(TM) i7-1165G7 2.80 GHz 
processor and 64 GB RAM. Moreover, the experimental setup is simple, and the SB-PCXI technique itself has 
low coherence requirements.

We anticipate that the present approach can be extended to the case of a highly-attenuating object in which the 
DF is spatially rapidly varying, and also to the case of rotationally-anisotropic position-dependent  SAXS44. The 
directional  DF45,46 approach using  MIST44 assumes the DF to be slowly varying. By applying the present approach 
to solving the directional DF inverse problem, it may be possible to optimise, by means of increased spatial 
resolution and SNR, the two-dimensional reconstructions, thereby furthering the future goal of MIST tensor-
tomography. The present MIST approach could also be used to provide a rapidly-computed deterministic initial 
guess for alternative speckle-tracking approaches that solve the inverse SB-PCXI problem  iteratively19,31,32,35. 
Such iterative techniques—which have a broader domain of applicability because they make fewer assumptions 
than is the case for our work—are computationally expensive, as the multimodal signals are reconstructed with 
no definite initial guess. The initialisation of these iterative approaches with the DF signals calculated using the 
presented MIST approach may help the approaches converge more rapidly to a solution that correctly represents 
the sample, also making these approaches more appealing for broader adoption.

 Data availability
 The Python script, with appropriate test data, is available in the open-access repository on  GitHub74. Further 
experimental data are available upon reasonable request, please contact the corresponding author, S. J. Alloo.

Received: 22 December 2022; Accepted: 14 March 2023

Figure 7.  Image quality metrics, (a) reciprocal of the NIQE and (b) SNR, of the reconstructed effective 
diffusion coefficients using Alloo et al.’s42 approach (denoted by the red “SV-MIST” label), and that presented 
within this study (denoted by the green “RV-MIST” label). Subscript “Global” and “Local” denote the region of 
interest used for calculations; these are indicated in Figs. 3f and 5f for the wattle flower (wattle) and red currant 
(currant), respectively.
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