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Abstract

Analyzing human multimodal language is
an emerging area of research in NLP. In-
trinsically human communication is mul-
timodal (heterogeneous), temporal and
asynchronous; it consists of the language
(words), visual (expressions), and acoustic
(paralinguistic) modalities all in the form
of asynchronous coordinated sequences.
From a resource perspective, there is a gen-
uine need for large scale datasets that al-
low for in-depth studies of multimodal lan-
guage. In this paper we introduce CMU
Multimodal Opinion Sentiment and Emo-
tion Intensity (CMU-MOSEI), the largest
dataset of sentiment analysis and emo-
tion recognition to date. Using data from
CMU-MOSEI and a novel multimodal fu-
sion technique called the Dynamic Fusion
Graph (DFG), we conduct experimentation
to investigate how modalities interact with
each other in human multimodal language.
Unlike previously proposed fusion tech-
niques, DFG is highly interpretable and
achieves competitive performance com-
pared to the current state of the art.

1 Introduction

Theories of language origin identify the combina-
tion of language and nonverbal behaviors (vision
and acoustic modality) as the prime form of com-
munication utilized by humans throughout evolu-
tion (Müller, 1866). In natural language processing,
this form of language is regarded as human multi-
modal language. Modeling multimodal language
has recently become a centric research direction in
both NLP and multimodal machine learning (Haz-
arika et al., 2018; Zadeh et al., 2018a; Poria et al.,
2017a; Baltrušaitis et al., 2017; Chen et al., 2017).

Studies strive to model the dual dynamics of multi-
modal language: intra-modal dynamics (dynamics
within each modality) and cross-modal dynamics
(dynamics across different modalities). However,
from a resource perspective, previous multimodal
language datasets have severe shortcomings in the
following aspects:
Diversity in the training samples: The diversity
in training samples is crucial for comprehensive
multimodal language studies due to the complex-
ity of the underlying distribution. This complexity
is rooted in variability of intra-modal and cross-
modal dynamics for language, vision and acoustic
modalities (Rajagopalan et al., 2016). Previously
proposed datasets for multimodal language are gen-
erally small in size due to difficulties associated
with data acquisition and costs of annotations.
Variety in the topics: Variety in topics opens the
door to generalizable studies across different do-
mains. Models trained on only few topics gener-
alize poorly as language and nonverbal behaviors
tend to change based on the impression of the topic
on speakers’ internal mental state.
Diversity of speakers: Much like writing styles,
speaking styles are highly idiosyncratic. Training
models on only few speakers can lead to degen-
erate solutions where models learn the identity of
speakers as opposed to a generalizable model of
multimodal language (Wang et al., 2016).
Variety in annotations Having multiple labels to
predict allows for studying the relations between
labels. Another positive aspect of having variety of
labels is allowing for multi-task learning which has
shown excellent performance in past research.

Our first contribution in this paper is to intro-
duce the largest dataset of multimodal sentiment
and emotion recognition called CMU Multimodal
Opinion Sentiment and Emotion Intensity (CMU-
MOSEI). CMU-MOSEI contains 23,453 annotated
video segments from 1,000 distinct speakers and
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250 topics. Each video segment contains manual
transcription aligned with audio to phoneme level.
All the videos are gathered from online video shar-
ing websites 1. The dataset is currently a part of the
CMU Multimodal Data SDK and is freely available
to the scientific community through Github 2.

Our second contribution is an interpretable fu-
sion model called Dynamic Fusion Graph (DFG) to
study the nature of cross-modal dynamics in multi-
modal language. DFG contains built-in efficacies
that are directly related to how modalities interact.
These efficacies are visualized and studied in detail
in our experiments. Aside interpretability, DFG
achieves superior performance compared to previ-
ously proposed models for multimodal sentiment
and emotion recognition on CMU-MOSEI.

2 Background

In this section we compare the CMU-MOSEI
dataset to previously proposed datasets for mod-
eling multimodal language. We then describe the
baselines and recent models for sentiment analysis
and emotion recognition.

2.1 Comparison to other Datasets

We compare CMU-MOSEI to an extensive pool of
datasets for sentiment analysis and emotion recog-
nition. The following datasets include a combina-
tion of language, visual and acoustic modalities as
their input data.

2.1.1 Multimodal Datasets
CMU-MOSI (Zadeh et al., 2016b) is a collection
of 2199 opinion video clips each annotated with
sentiment in the range [-3,3]. CMU-MOSEI is the
next generation of CMU-MOSI. The ICT-MMMO
(Wöllmer et al., 2013) consists of online social re-
view videos annotated at the video level for sen-
timent. YouTube (Morency et al., 2011) contains
videos from the social media web site YouTube that
span a wide range of product reviews and opinion
videos. MOUD (Perez-Rosas et al., 2013) consists
of product review videos in Spanish. Each video
consists of multiple segments labeled to display
positive, negative or neutral sentiment. IEMO-
CAP (Busso et al., 2008) consists of 151 videos
of recorded dialogues, with 2 speakers per session
for a total of 302 videos across the dataset. Each

1following creative commons license allows for personal
unrestricted use and redistribution of the videos

2https://github.com/A2Zadeh/CMU-
MultimodalDataSDK

Dataset # S # Sp Mod Sent Emo TL (hh:mm:ss)
CMU-MOSEI 23,453 1,000 {l, v, a} 3 3 65:53:36
CMU-MOSI 2,199 98 {l, v, a} 3 7 02:36:17
ICT-MMMO 340 200 {l, v, a} 3 7 13:58:29
YouTube 300 50 {l, v, a} 3 7 00:29:41
MOUD 400 101 {l, v, a} 3 7 00:59:00
SST 11,855 – {l} 3 7 –
Cornell 2,000 – {l} 3 7 –
Large Movie 25,000 – {l} 3 7 –
STS 5,513 – {l} 3 7 –
IEMOCAP 10,000 10 {l, v, a} 7 3 11:28:12
SAL 23 4 {v, a} 7 3 11:00:00
VAM 499 20 {v, a} 7 3 12:00:00
VAM-faces 1,867 20 {v} 7 3 –
HUMAINE 50 4 {v, a} 7 3 04:11:00
RECOLA 46 46 {v, a} 7 3 03:50:00
SEWA 538 408 {v, a} 7 3 04:39:00
SEMAINE 80 20 {v, a} 7 3 06:30:00
AFEW 1,645 330 {v, a} 7 3 02:28:03
AM-FED 242 242 {v} 7 3 03:20:25
Mimicry 48 48 {v, a} 7 3 11:00:00
AFEW-VA 600 240 {v, a} 7 3 00:40:00

Table 1: Comparison of the CMU-MOSEI dataset
with previous sentiment analysis and emotion
recognition datasets. #S denotes the number of
annotated data points. #Sp is the number of distinct
speakers. Mod indicates the subset of modalities
present from {(l)anguage, (v)ision, (a)udio}.
Sent and Emo columns indicate presence of sen-
timent and emotion labels. TL denotes the total
number of video hours.

segment is annotated for the presence of 9 emo-
tions (angry, excited, fear, sad, surprised, frustrated,
happy, disappointed and neutral) as well as valence,
arousal and dominance.

2.1.2 Language Datasets
Stanford Sentiment Treebank (SST) (Socher
et al., 2013) includes fine grained sentiment labels
for phrases in the parse trees of sentences collected
from movie review data. While SST has larger pool
of annotations, we only consider the root level an-
notations for comparison. Cornell Movie Review
(Pang et al., 2002) is a collection of 2000 movie-
review documents and sentences labeled with re-
spect to their overall sentiment polarity or subjec-
tive rating. Large Movie Review dataset (Maas
et al., 2011) contains text from highly polar movie
reviews. Sanders Tweets Sentiment (STS) con-
sists of 5513 hand-classified tweets each classified
with respect to one of four topics of Microsoft,
Apple, Twitter, and Google.

2.1.3 Visual and Acoustic Datasets
The Vera am Mittag (VAM) corpus consists of
12 hours of recordings of the German TV talk-
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show “Vera am Mittag” (Grimm et al., 2008). This
audio-visual data is labeled for continuous-valued
scale for three emotion primitives: valence, acti-
vation and dominance. VAM-Audio and VAM-
Faces are subsets that contain on acoustic and vi-
sual inputs respectively. RECOLA (Ringeval et al.,
2013) consists of 9.5 hours of audio, visual, and
physiological (electrocardiogram, and electroder-
mal activity) recordings of online dyadic interac-
tions. Mimicry (Bilakhia et al., 2015) consists of
audiovisual recordings of human interactions in
two situations: while discussing a political topic
and while playing a role-playing game. AFEW
(Dhall et al., 2012, 2015) is a dynamic temporal
facial expressions data corpus consisting of close
to real world environment extracted from movies.

Detailed comparison of CMU-MOSEI to the
datasets in this section is presented in Table 1.
CMU-MOSEI has longer total duration as well as
larger number of data point in total. Furthermore,
CMU-MOSEI has a larger variety in number of
speakers and topics. It has all three modalities pro-
vided, as well as annotations for both sentiment
and emotions.

2.2 Baseline Models

Modeling multimodal language has been the sub-
ject of studies in NLP and multimodal machine
learning. Notable approaches are listed as follows
and indicated with a symbol for reference in the
Experiments and Discussion section (Section 5).
# MFN: (Memory Fusion Network) (Zadeh

et al., 2018a) synchronizes multimodal sequences
using a multi-view gated memory that stores intra-
view and cross-view interactions through time.
∎ MARN: (Multi-attention Recurrent Network)
(Zadeh et al., 2018b) models intra-modal and multi-
ple cross-modal interactions by assigning multiple
attention coefficients. Intra-modal and cross-modal
interactions are stored in a hybrid LSTM mem-
ory component. ∗ TFN (Tensor Fusion Network)
(Zadeh et al., 2017) models inter and intra modal
interactions by creating a multi-dimensional tensor
that captures unimodal, bimodal and trimodal in-
teractions. ◇ MV-LSTM (Multi-View LSTM) (Ra-
jagopalan et al., 2016) is a recurrent model that des-
ignates regions inside a LSTM to different views
of the data. § EF-LSTM (Early Fusion LSTM)
concatenates the inputs from different modalities
at each time-step and uses that as the input to a
single LSTM (Hochreiter and Schmidhuber, 1997;

Graves et al., 2013; Schuster and Paliwal, 1997).
In case of unimodal models EF-LSTM refers to a
single LSTM.

We also compare to the following baseline mod-
els: † BC-LSTM (Poria et al., 2017b), ♣ C-MKL
(Poria et al., 2016), ♭ DF (Nojavanasghari et al.,
2016), ♡ SVM (Cortes and Vapnik, 1995; Zadeh
et al., 2016b; Perez-Rosas et al., 2013; Park et al.,
2014), ● RF (Breiman, 2001), THMM (Morency
et al., 2011), SAL-CNN (Wang et al., 2016), 3D-
CNN (Ji et al., 2013). For language only base-
line models: ∪ CNN-LSTM (Zhou et al., 2015),
RNTN (Socher et al., 2013), ×: DynamicCNN
(Kalchbrenner et al., 2014), ⊳ DAN (Iyyer et al.,
2015), ≀ DHN (Srivastava et al., 2015), ⊲ RHN
(Zilly et al., 2016). For acoustic only baseline
models: AdieuNet (Trigeorgis et al., 2016), SER-
LSTM (Lim et al., 2016).

3 CMU-MOSEI Dataset

Understanding expressed sentiment and emotions
are two crucial factors in human multimodal lan-
guage. We introduce a novel dataset for multimodal
sentiment and emotion recognition called CMU
Multimodal Opinion Sentiment and Emotion Inten-
sity (CMU-MOSEI). In the following subsections,
we first explain the details of the CMU-MOSEI
data acquisition, followed by details of annotation
and feature extraction.

3.1 Data Acquisition

Social multimedia presents a unique opportunity
for acquiring large quantities of data from various
speakers and topics. Users of these social multime-
dia websites often post their opinions in the forms
of monologue videos; videos with only one per-
son in front of camera discussing a certain topic
of interest. Each video inherently contains three
modalities: language in the form of spoken text,
visual via perceived gestures and facial expressions,
and acoustic through intonations and prosody.

During our automatic data acquisition process,
videos from YouTube are analyzed for the presence
of one speaker in the frame using face detection
to ensure the video is a monologue. We limit the
videos to setups where the speaker’s attention is
exclusively towards the camera by rejecting videos
that have moving cameras (such as camera on bikes
or selfies recording while walking). We use a di-
verse set of 250 frequently used topics in online
videos as the seed for acquisition. We restrict the
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Figure 1: The diversity of topics of videos in CMU-
MOSEI, displayed as a word cloud. Larger words
indicate more videos from that topic. The most fre-
quent 3 topics are reviews (16.2%), debate (2.9%)
and consulting (1.8%) while the remaining topics
are almost uniformly distributed.

number of videos acquired from each channel to
a maximum of 10. This resulted in discovering
1,000 identities from YouTube. The definition of a
identity is proxy to the number of channels since
accurate identification requires quadratic manual
annotations, which is infeasible for high number
of speakers. Furthermore, we limited the videos
to have manual and properly punctuated transcrip-
tions provided by the uploader. The final pool of
acquired videos included 5,000 videos which were
then manually checked for quality of video, au-
dio and transcript by 14 expert judges over three
months. The judges also annotated each video
for gender and confirmed that each video is an
acceptable monologue. A set of 3228 videos re-
mained after manual quality inspection. We also
performed automatic checks on the quality of video
and transcript which are discussed in Section 3.3 us-
ing facial feature extraction confidence and forced
alignment confidence. Furthermore, we balance the
gender in the dataset using the data provided by the
judges (57% male to 43% female). This constitutes
the final set of raw videos in CMU-MOSEI. The
topics covered in the final set of videos are shown
in Figure 1 as a Venn-style word cloud (Copper-
smith and Kelly, 2014) with the size proportional
to the number of videos gathered for that topic.
The most frequent 3 topics are reviews (16.2%), de-
bate (2.9%) and consulting (1.8%). The remaining
topics are almost uniformly distributed 3.

The final set of videos are then tokenized into
3more detailed analysis such as exact percentages and

number of videos per topic are available in the supplementary
material

Total number of sentences 23453
Total number of videos 3228
Total number of distinct speakers 1000
Total number of distinct topics 250
Average number of sentences in a video 7.3
Average length of sentences in seconds 7.28
Total number of words in sentences 447143
Total of unique words in sentences 23026
Total number of words appearing at least 10 times in the dataset 3413
Total number of words appearing at least 20 times in the dataset 1971
Total number of words appearing at least 50 times in the dataset 888

Table 2: Summary of CMU-MOSEI dataset statis-
tics.

sentences using punctuation markers manually pro-
vided by transcripts. Due to the high quality of
the transcripts, using punctuation markers showed
better sentence quality than using the Stanford
CoreNLP tokenizer (Manning et al., 2014). This
was verified on a set of 20 random videos by two ex-
perts. After tokenization, a set of 23,453 sentences
were chosen as the final sentences in the dataset.
This was achieved by restricting each identity to
contribute at least 10 and at most 50 sentences to
the dataset. Table 2 shows high-level summary
statistics of the CMU-MOSEI dataset.

3.2 Annotation

Annotation of CMU-MOSEI follows closely the an-
notation of CMU-MOSI (Zadeh et al., 2016a) and
Stanford Sentiment Treebank (Socher et al., 2013).
Each sentence is annotated for sentiment on a [-3,3]
Likert scale of: [−3: highly negative, −2 negative,
−1 weakly negative, 0 neutral, +1 weakly positive,
+2 positive, +3 highly positive]. Ekman emotions
(Ekman et al., 1980) of {happiness, sadness, anger,
fear, disgust, surprise} are annotated on a [0,3] Lik-
ert scale for presence of emotion x: [0: no evidence
of x, 1: weakly x, 2: x, 3: highly x]. The anno-
tation was carried out by 3 crowdsourced judges
from Amazon Mechanical Turk platform. To avert
implicitly biasing the judges and to capture the raw
perception of the crowd, we avoided extreme anno-
tation training and instead provided the judges with
a 5 minutes training video on how to use the annota-
tion system. All the annotations have been carried
out by only master workers with higher than 98%
approval rate to assure high quality annotations 4.

Figure 2 shows the distribution of sentiment and
emotions in CMU-MOSEI dataset. The distribution

4Extensive statistics of the dataset including the crawl-
ing mechanism, the annotation UI, training procedure for the
workers, agreement scores are available in submitted supple-
mentary material available on arXiv.
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Figure 2: Distribution of sentiment and emotions in
the CMU-MOSEI dataset. The distribution shows
a natural skew towards more frequently used emo-
tions. However, the least frequent emotion, fear,
still has 1,900 data points which is an acceptable
number for machine learning studies.

shows a slight shift in favor of positive sentiment
which is similar to distribution of CMU-MOSI and
SST. We believe that this is an implicit bias in
online opinions being slightly shifted towards posi-
tive, since this is also present in CMU-MOSI. The
emotion histogram shows different prevalence for
different emotions. The most common category is
happiness with more than 12,000 positive sample
points. The least prevalent emotion is fear with
almost 1900 positive sample points which is an
acceptable number for machine learning studies.

3.3 Extracted Features
Data points in CMU-MOSEI come in video format
with one speaker in front of the camera. The ex-
tracted features for each modality are as follows
(for other benchmarks we extract the same fea-
tures):

Language: All videos have manual transcrip-
tion. Glove word embeddings (Pennington et al.,
2014) were used to extract word vectors from tran-
scripts. Words and audio are aligned at phoneme
level using P2FA forced alignment model (Yuan
and Liberman, 2008). Following this, the visual
and acoustic modalities are aligned to the words
by interpolation. Since the utterance duration of
words in English is usually short, this interpolation
does not lead to substantial information loss.

Visual: Frames are extracted from the full
videos at 30Hz. The bounding box of the face
is extracted using the MTCNN face detection al-
gorithm (Zhang et al., 2016). We extract facial
action units through Facial Action Coding System
(FACS) (Ekman et al., 1980). Extracting these
action units allows for accurate tracking and un-
derstanding of the facial expressions (Baltrušaitis

et al., 2016). We also extract a set of six basic
emotions purely from static faces using Emotient
FACET (iMotions, 2017). MultiComp OpenFace
(Baltrušaitis et al., 2016) is used to extract the set
of 68 facial landmarks, 20 facial shape parameters,
facial HoG features, head pose, head orientation
and eye gaze (Baltrušaitis et al., 2016). Finally,
we extract face embeddings from commonly used
facial recognition models such as DeepFace (Taig-
man et al., 2014), FaceNet (Schroff et al., 2015)
and SphereFace (Liu et al., 2017).

Acoustic: We use the COVAREP software (De-
gottex et al., 2014) to extract acoustic features
including 12 Mel-frequency cepstral coefficients,
pitch, voiced/unvoiced segmenting features (Drug-
man and Alwan, 2011), glottal source parameters
(Drugman et al., 2012; Alku et al., 1997, 2002),
peak slope parameters and maxima dispersion quo-
tients (Kane and Gobl, 2013). All extracted fea-
tures are related to emotions and tone of speech.

4 Multimodal Fusion Study

From the linguistics perspective, understanding the
interactions between language, visual and audio
modalities in multimodal language is a fundamen-
tal research problem. While previous works have
been successful with respect to accuracy metrics,
they have not created new insights on how the fu-
sion is performed in terms of what modalities are
related and how modalities engage in an interaction
during fusion. Specifically, to understand the fu-
sion process one must first understand the n-modal
dynamics (Zadeh et al., 2017). n-modal dynam-
ics state that there exists different combination of
modalities and that all of these combinations must
be captured to better understand the multimodal
language. In this paper, we define building the
n-modal dynamics as a hierarchical process and
propose a new fusion model called the Dynamic
Fusion Graph (DFG). DFG is easily interpretable
through what is called efficacies in graph connec-
tions. To utilize this new fusion model in a multi-
modal language framework, we build upon Mem-
ory Fusion Network (MFN) by replacing the origi-
nal fusion component in the MFN with our DFG.
We call this resulting model the Graph Memory
Fusion Network (Graph-MFN). Once the model
is trained end to end, we analyze the efficacies in
the DFG to study the fusion mechanism learned
for modalities in multimodal language. In addi-
tion to being an interpretable fusion mechanism,
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Figure 3: The structure of Dynamic Fu-
sion Graph (DFG) for three modalities of
{(l)anguage, (v)ision, (a)coustic}. Dashed
lines in DFG show the dynamic connections be-
tween vertices controlled by the efficacies (α).

Graph-MFN also outperforms previously proposed
state-of-the-art models for sentiment analysis and
emotion recognition on the CMU-MOSEI.

4.1 Dynamic Fusion Graph

In this section we discuss the internal structure
of the proposed Dynamic Fusion Graph (DFG)
neural model (Figure 3. DFG has the following
properties: 1) it explicitly models the n-modal
interactions, 2) does so with an efficient num-
ber of parameters (as opposed to previous ap-
proaches such as Tensor Fusion (Zadeh et al.,
2017)) and 3) can dynamically alter its structure
and choose the proper fusion graph based on the
importance of each n-modal dynamics during in-
ference. We assume the set of modalities to be
M = {(l)anguage, (v)ision, (a)coustic}. The
unimodal dynamics are denoted as {l},{v},{a},
the bimodal dynamics as {l, v},{v, a},{l, a} and
trimodal dynamics as {l, v, a}. These dynamics are
in the form of latent representations and are each
considered as vertices inside a graph G = (V,E)
with V the set of vertices and E the set of edges.
A directional neural connection is established be-
tween two vertices vi and vj only if vi ⊂ vj . For
example, {l} ⊂ {l, v} which results in a connection
between < language > and < language, vision >.
This connection is denoted as an edge eij . Dj takes
as input all vi that satisfy the neural connection
formula above for vj .

We define an efficacy for each edge eij denoted
as αij . vi is multiplied by αij before being used as
input toDj . Each α is a sigmoid activated probabil-
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Figure 4: The overview of Graph Memory Fusion
Network (Graph-MFN) pipeline. Graph-MFN re-
places the fusion block in MFN with a Dynamic
Fusion Graph (DFG). For description of variables
and memory formulation please refer to the origi-
nal Memory Fusion Network paper (Zadeh et al.,
2018a).

ity neuron which indicates how strong or weak the
connection is between vi and vj . αs are the main
source of interpretability in DFG. The vector of
all αs is inferred using a deep neural network Dα
which takes as input singleton vertices in V (l, v,
and a). We leave it to the supervised training objec-
tive to learn parameters of Dα and make good use
of efficacies, thus dynamically controlling the struc-
ture of the graph. The singleton vertices are chosen
for this purpose since they have no incoming edges
thus no efficacy associated with those edges (no
efficacy is needed to infer the singleton vertices).
The same singleton vertices l, v, and a are the in-
puts to the DFG. In the next section we discuss
how these inputs are given to DFG. All vertices are
connected to the output vertex Tt of the network
via edges scaled by their respective efficacy. The
overall structure of the vertices, edges and respec-
tive efficacies is shown in Figure 3. There are a
total of 8 vertices (counting the output vertex), 19
edges and subsequently 19 efficacies.

4.2 Graph-MFN

To test the performance of DFG, we use a similar
recurrent architecture to Memory Fusion Network
(MFN). MFN is a recurrent neural model with three
main components 1) System of LSTMs: a set of
parallel LSTMs with each LSTM modeling a sin-
gle modality. 2) Delta-memory Attention Network
is the component that performs multimodal fusion
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Dataset MOSEI Sentiment MOSEI Emotions
Task Sentiment Anger Disgust Fear Happy Sad Surprise
Metric A2 F1 A5 A7 MAE r WA F1 WA F1 WA F1 WA F1 WA F1 WA F1
LANGUAGE
SOTA2 74.1§ 74.1⊳ 43.1≀ 42.9≀ 0.75§ 0.46≀ 56.0∪ 71.0× 59.0§ 67.1⊳ 56.2§ 79.7§ 53.0⊳ 44.1⊳ 53.8≀ 49.9≀ 53.2× 70.0⊳

SOTA1 74.3⊳ 74.1§ 43.2§ 43.2§ 0.74⊳ 0.47§ 56.6≀ 71.8● 64.0⊳ 72.6● 58.8× 89.8● 54.0§ 47.0§ 54.0§ 61.2● 54.3⊳ 85.3●

VISUAL
SOTA2 73.8§ 73.5§ 42.5⊳ 42.5⊳ 0.78≀ 0.41♡ 54.4≀ 64.6§ 54.4♡ 71.5⊲ 51.3§ 78.4§ 53.4≀ 40.8§ 54.3⊳ 60.8● 51.3⊳ 84.2§

SOTA1 73.9⊳ 73.7⊳ 42.7≀ 42.7≀ 0.78§ 0.43≀ 60.0§ 71.0● 60.3≀ 72.4● 64.2♡ 89.8● 57.4● 49.3● 57.7§ 61.5⊲ 51.8§ 85.4●

ACOUSTIC
SOTA2 74.2≀ 73.8△ 42.1△ 42.1△ 0.78⊳ 0.43§ 55.5⊲ 51.8△ 58.9⊳ 72.4● 58.5⊳ 89.8● 57.2∩ 55.5∩ 58.9⊲ 65.9⊲ 52.2♡ 83.6∩

SOTA1 74.2△ 73.9≀ 42.4∩ 42.4∩ 0.74∩ 0.43⊳ 56.4△ 71.9● 60.9§ 72.4● 62.7§ 89.8⊲ 61.5§ 61.4§ 62.0∩ 69.2∩ 54.3⊲ 85.4●

MULTIMODAL
SOTA2 76.0# 76.0# 44.7† 44.6† 0.72∗ 0.52∗ 56.0◇ 71.4♭ 65.2# 71.4# 56.7§ 89.9# 57.8§ 66.6∗ 58.9∗ 60.8# 52.2∗ 85.4●

SOTA1 76.4◇ 76.4◇ 44.8∗ 44.7∗ 0.72# 0.52# 60.5∗ 72.0● 67.0♭ 73.2● 60.0♡ 89.9● 66.5∗ 71.0∎ 59.2§ 61.8● 53.3# 85.4#

Graph-MFN 76.9 77.0 45.1 45.0 0.71 0.54 62.6 72.8 69.1 76.6 62.0 89.9 66.3 66.3 60.4 66.9 53.7 85.5

Table 3: Results for sentiment analysis and emotion recognition on the MOSEI dataset (reported results
are as of 5/11/2018. please check the CMU Multimodal Data SDK github for current state of the art and
new features for CMU-MOSEI and other datasets). SOTA1 and SOTA2 refer to the previous best and
second best state-of-the-art models (from Section 2) respectively. Compared to the baselines Graph-MFN
achieves superior performance in sentiment analysis and competitive performance in emotion recognition.
For all metrics, higher values indicate better performance except for MAE where lower values indicate
better performance.

by assigning coefficients to highlight cross-modal
dynamics. 3) Multiview Gated Memory is a com-
ponent that stores the output of multimodal fusion.
We replace the Delta-memory Attention Network
with DFG and refer to the modified model as Graph
Memory Fusion Network (Graph-MFN). Figure 4
shows the overall architecture of the Graph-MFN.

Similar to MFN, Graph-MFN employs a system
of LSTMs for modeling individual modalities. cl,
cv, and ca represent the memory of LSTMs for lan-
guage, vision and acoustic modalities respectively.
Dm, m ∈ {l, v, a} is a fully connected deep neural
network that takes in hm

[t−1,t] the LSTM represen-
tation across two consecutive timestamps, which
allows the network to track changes in memory
dimensions across time. The outputs of Dl, Dv

and Da are the singleton vertices for the DFG. The
DFG models cross-modal interactions and encodes
the cross-modal representations in its output vertex
Tt for storage in the Multi-view Gated Memory
ut. The Multi-view Gated Memory functions using
a network Du that transforms Tt into a proposed
memory update ût. γ1 and γ2 are the Multi-view
Gated Memory’s retain and update gates respec-
tively and are learned using networks Dγ1 and Dγ2 .
Finally, a network Dz transforms Tt into a multi-
modal representation zt to update the system of
LSTMs. The output of Graph-MFN in all the ex-
periments is the output of each LSTM hmT as well
as contents of the Multi-view Gated Memory at
time T (last recurrence timestep), uT . This output

is subsequently connected to a classification or re-
gression layer for final prediction (for sentiment
and emotion recognition).

5 Experiments and Discussion

In our experiments, we seek to evaluate how modal-
ities interact during multimodal fusion by studying
the efficacies of DFG through time.

Table 3 shows the results on CMU-MOSEI. Ac-
curacy is reported as Ax where x is the number
of sentiment classes as well as F1 measure. For
regression we report MAE and correlation (r). For
emotion recognition due to the natural imbalances
across various emotions, we use weighted accuracy
(Tong et al., 2017) and F1 measure. Graph-MFN
shows superior performance in sentiment analy-
sis and competitive performance in emotion recog-
nition. Therefore, DFG is both an effective and
interpretable model for multimodal fusion.

To better understand the internal fusion mecha-
nism between modalities, we visualize the behavior
of the learned DFG efficacies in Figure 5 for vari-
ous cases (deep red denotes high efficacy and deep
blue denotes low efficacy).

Multimodal Fusion has a Volatile Nature:
The first observation is that the structure of the
DFG is changing case by case and for each case
over time. As a result, the model seems to be selec-
tively prioritizing certain dynamics over the others.
For example, in case (I) where all modalities are
informative, all efficacies seem to be high, imply-
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Acoustic modality uninformativeVision modality uninformative

Too much too fast, I mean we basically just 
get introduced to this character…

(angry voice)Acoustic:

Language:

Vision:

𝑙 → 𝑙, 𝑎
𝑎 → 𝑙, 𝑎
𝑙 → 𝑙, 𝑣

𝑎, 𝑣 → 𝒯
𝑙, 𝑎, 𝑣 → 𝒯

𝑎 → 𝑎, 𝑣

𝑙, 𝑣 → 𝒯

𝑣 → 𝑙, 𝑣

𝑣 → 𝑎, 𝑣
𝑙 → 𝑙, 𝑎, 𝑣
𝑎 → 𝑙, 𝑎, 𝑣
𝑣 → 𝑙, 𝑎, 𝑣

𝑙, 𝑎 → 𝑙, 𝑎, 𝑣
𝑙, 𝑣 → 𝑙, 𝑎, 𝑣
𝑎, 𝑣 → 𝑙, 𝑎, 𝑣
𝑙 → 𝒯
𝑎 → 𝒯
𝑣 → 𝒯

𝑙, 𝑎 → 𝒯

All I can say is he’s a pretty average guy.

(disappointed voice)

Language modality uninformative

What disappointed me was that one of the actors 
in the movie was there for short amount of time.

(neutral voice)

𝑙 → 𝑙, 𝑎
𝑎 → 𝑙, 𝑎
𝑙 → 𝑙, 𝑣

𝑎, 𝑣 → 𝒯
𝑙, 𝑎, 𝑣 → 𝒯

𝑎 → 𝑎, 𝑣

𝑙, 𝑣 → 𝒯

𝑣 → 𝑙, 𝑣

𝑣 → 𝑎, 𝑣
𝑙 → 𝑙, 𝑎, 𝑣
𝑎 → 𝑙, 𝑎, 𝑣
𝑣 → 𝑙, 𝑎, 𝑣

𝑙, 𝑎 → 𝑙, 𝑎, 𝑣
𝑙, 𝑣 → 𝑙, 𝑎, 𝑣
𝑎, 𝑣 → 𝑙, 𝑎, 𝑣
𝑙 → 𝒯
𝑎 → 𝒯
𝑣 → 𝒯

𝑙, 𝑎 → 𝒯

Vision and acoustic modalities informative

And he I don’t think he got mad when hah 
I don’t know maybe.

(frustrated voice)
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Figure 5: Visualization of DFG efficacies across time. The efficacies (thus the DFG structure) change
over time as DFG is exposed to new information. DFG is able choose which n-modal dynamics to rely
on. It also learns priors about human communication since certain efficacies (thus edges in DFG) remain
unchanged across time and across data points.

ing that the DFG is able to find useful informa-
tion in unimodal, bimodal and trimodal interac-
tions. However, in cases (II) and (III) where the
visual modality is either uninformative or contra-
dictory, the efficacies of v → l, v and v → l, a, v
and l, a→ l, a, v are reduced since no meaningful
interactions involve the visual modality.

Priors in Fusion: Certain efficacies remain un-
changed across cases and across time. These are
priors from Human Multimodal Language that
DFG learns. For example the model always seems
to prioritize fusion between language and audio in
(l → l, a), and (a → l, a). Subsequently, DFG
gives low values to efficacies that rely unilater-
ally on language or audio alone: the (l → τ) and
(a→ τ) efficacies seem to be consistently low. On
the other hand, the visual modality appears to have
a partially isolated behavior. In the presence of in-
formative visual information, the model increases
the efficacies of (v → τ) although the values of
other visual efficacies also increase.

Trace of Multimodal Fusion: We trace the
dominant path that every modality undergoes dur-
ing fusion: 1) language tends to first fuse with
audio via (l → l, a) and the language and acoustic
modalities together engage in higher level fusions
such as (l, a → l, a, v). Intuitively, this is aligned
with the close ties between language and audio
through word intonations. 2) The visual modality
seems to engage in fusion only if it contains mean-
ingful information. In cases (I) and (IV), all the
paths involving the visual modality are relatively
active while in cases (II) and (III) the paths involv-

ing the visual modality have low efficacies. 3) The
acoustic modality is mostly present in fusion with
the language modality. However, unlike language,
the acoustic modality also appears to fuse with the
visual modality if both modalities are meaningful,
such as in case (I).

An interesting observation is that in almost all
cases the efficacies of unimodal connections to ter-
minal T is low, implying that T prefers to not rely
on just one modality. Also, DFG always prefers
to perform fusion between language and audio as
in most cases both l → l, a and a → l, a have high
efficacies; intuitively in most natural scenarios lan-
guage and acoustic modalities are highly aligned.
Both of these cases show unchanging behaviors
which we believe DFG has learned as natural pri-
ors of human communicative signal.

With these observations, we believe that DFG
has successfully learned how to manage its internal
structure to model human communication.

6 Conclusion

In this paper we presented the largest dataset of
multimodal sentiment analysis and emotion recog-
nition called CMU Multimodal Opinion Sentiment
and Emotion Intensity (CMU-MOSEI). CMU-
MOSEI consists of 23,453 annotated sentences
from more than 1000 online speakers and 250 dif-
ferent topics. The dataset expands the horizons of
Human Multimodal Language studies in NLP. One
such study was presented in this paper where we
analyzed the structure of multimodal fusion in sen-
timent analysis and emotion recognition. This was
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done using a novel interpretable fusion mechanism
called Dynamic Fusion Graph (DFG). In our stud-
ies we investigated the behavior of modalities in in-
teracting with each other using built-in efficacies of
DFG. Aside analysis of fusion, DFG was trained in
the Memory Fusion Network pipeline and showed
superior performance in sentiment analysis and
competitive performance in emotion recognition.
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