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ABSTRACT

In this article we define a multimedia content analysis prob-
lem, which we call multimodal location estimation: Given a
video/image/audio file, the task is to determine where it was
recorded. A single indication, such as a unique landmark,
might already pinpoint a location precisely. In most cases,
however, a combination of evidence from the visual and the
acoustic domain will only narrow down the set of possible
answers. Therefore, approaches to tackle this task should be
inherently multimedia. While the task is hard, in fact some-
times unsolvable, training data can be leveraged from the In-
ternet in large amounts. Moreover, even partially successful
automatic estimation of location opens up new possibilities
in video content matching, archiving, and organization. It
could revolutionize law enforcement and computer-aided in-
telligence agency work, especially since both semi-automatic
and fully automatic approaches would be possible. In this
article, we describe our idea of growing multimodal location
estimation as a research field in the multimedia community.
Based on examples and scenarios, we propose a multimedia
approach to leverage cues from the visual and the acous-
tic portions of a video as well as from given metadata. We
also describe experiments to estimate the amount of avail-
able training data that could potentially be used as publicly
available infrastructure for research in this field. Finally, we
present an initial set of results based on acoustic and visual
cues and discuss the massive challenges involved and some
possible paths to solutions.

Categories and Subject Descriptors

H3.1 [Information Storage and Retrieval]: Indexing
methods; 14.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Sensor Fusion

General Terms

Experimentation
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1. INTRODUCTION

In the last few decades, branches of machine learning have
been divided along the types of data that were to be pro-
cessed because research communities have developed as soon
as a certain data type could be captured, stored, and pro-
cessed in a reasonable amount of time. As a result, artificial
intelligence is split into speech, computer vision, natural lan-
guage processing, and so on. Today’s computers have begun
to have the computational power and memory to be able to
process a large amount of data in different sensory modal-
ities. This, in combination with the large amount of mul-
timedia data freely accessible in the Internet, provides an
opportunity to improve the robustness of current machine
learning approaches and attack problems that are impossi-
ble to solve satisfactorily using only a single modality.

In this article, we introduce a new multimedia content
analysis task that has only recently become even remotely
possible to tackle: the estimation of the location of a media
recording that lacks geo-location metadata. We call this task
multimodal location estimation. Just as human analysts use
multiple sources of information to determine geo-location, it
is obvious that for location detection, the investigation of
clues across different sensory modalities and their combina-
tion can lead to better results than investigating only one
stream of sensor input. Therefore, approaches to tackle this
task should be inherently multi-media.

Let’s imagine a video in which the location is unknown.
Acoustic event detection on the audio track reveals a siren
usually only found in American police cars, and automatic
language identification detects English language spoken with
a southern-state dialect. An image object recognizer finds
several textures that are typical to a specific terrain with
vegetation found only in a humid, sub-tropical area. The
classification of birds singing in the background indicates
that the recording might be from the southern portion of
the US. For a couple of frames, a building is observed that
matches Flickr photos of the Parthenon. The combination of
these clues is sufficient evidence to conclude that the video
is from the Nashville, TN area. Location estimation is an
inherently hard problem, since in many cases it is completely
impossible to assign the location of a piece of video as there
are simply no indicators.

In this article we describe our idea of growing multimodal
location estimation as a research field in the multimedia



Figure 1: A figurative description of multimodal lo-
cation detection.

community. Based on examples and scenarios, we propose
different research directions to leverage cues from the visual
and the acoustic portions of a video as well as from any given
metadata. We describe experiments to estimate the amount
of available training data and argue that the research has
now become feasible. An initial set of results is presented
based on acoustic and visual cues. It again indicates the
general feasibility of the task but also serves as a base to
discuss the massive challenges involved and some possible
paths to solutions.

The article is organized as follows. We start with the
definition of multimodal location estimation in Section 2,
followed by a comparison of our definition with prior work
in Section 3. Section 4 then describes why we think this is an
interesting field to work on and the potential applications of
location estimation. Section 5 continues with proposed ini-
tial steps and research directions towards solving the task.
Section 6 then reports on our experiments estimating how
much training data would be available for this task in the
Internet before Section 7 presents a very first attempt of a
multimodal location estimation algorithm. Section 8 con-
cludes the article with final remarks.

2. DEFINITION

We define location estimation as the task of estimating the
geo-coordinates of all the content recorded in digital media.
Figure 1 figuratively describes the idea. Note that the loca-
tion of the shown content might not be identical to the loca-
tion where content was created. Also, use of split screen, cut-
ting, and other techniques might allow a video, for example,
to show multiple locations. For practical purposes, research
will likely concentrate on finding one unique location per file.
Multimodal location estimation denotes the utilization of one
or more cues potentially derivable from different media, e.g.
audio and video. Importantly, location estimation as defined
above is only one possible research direction. In many cases,
slight variations of the task might also provide valuable in-
formation. Location detection, for example can be defined
as the task of finding whether a video contains any cue that
might help find a location. For example, the detection of a
bird singing without actually classifying the bird would be a
first step in a chain of (automatic and non-automatic) anal-
ysis steps towards identifying the coarse location of a video.
Likewise, location verification is the task of finding whether
a video has been recorded at a given place. This is not only
very valuable for search and retrieval (“find all videos from
Times Square in Manhattan, NY”) it is also interesting for
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the validation of existing databases, i.e. verifying whether a
given description of a video is true; it thus has direct connec-
tions with the fields of cybersecurity and forensics. Location
estimation itself can either be interpreted as a classification
or as a regression task. While the accurate estimation of
concrete geo-coordinates is a regression task, due to practi-
cal concerns with data sparsity and maintaining tractability,
initial work in the field will surely start as a classification
task (compare Section 7). The classification task takes the
following form: Given training data at m locations assign n
test recordings to these locations. The closed classification
tasks would only include test data recorded at the given
trained locations, the open classification task would include
test recordings from different locations. In the latter case
systems must therefore be able to identify unknown loca-
tions. Finally, we define relative location estimation as the
task of detecting whether two recordings were recorded at
the same or similar place. Tasks include whether videos have
been located outdoors/indoors, in a city/outside a city, or
near a train station/far away from a train station. Any of
these tasks might be researched targeting a fully automatic
approach, in combination with (partially descriptive) meta-
data, or as interactive approaches.

3. PRIOR ART

Recent articles [12, 14] indicate initial results that al-
ready show that location estimation is solvable by comput-
ers to some extent. The approaches presented in the ref-
erenced articles reduce the location detection task to a re-
trieval problem on a self-produced, location-tagged image
database. The idea is that if the image is the same then the
location must be the same too. As discussed in Section 1, we
think that only a very small part of the location recognition
problem can be solved using image retrieval techniques. In
other recent work [7], the goal is to estimate just a rough
location of an image taken as opposed to close to exact GPS
location. For example, many pictures of certain types of
landscapes can occur only on certain places on Earth. All of
these cues, together with acoustic counterparts, could poten-
tially be fused together into a single robust estimate of loca-
tion under our proposed framework. Krotkov’s approach [3]
extracts sun altitudes from images while Jacobs’ system [8]
relies on matching images with satellite data. In both of
these settings single images have been used or images have
been acquired from stationary webcams. In the work of [10],
the geo-location is also determined based on the estimate of
the position of the sun. They provide a model of photomet-
ric effects of the sun on the scene, which does not require the
sun to be visible in the image. The assumption, however,
is that the camera is stationary and hence only the changes
due to illumination are modeled. This information in combi-
nation with time stamps is sufficient for the recovery of the
geolocation of the sequence. A similar path is taken in [9].

There are potentially many artificial intelligence tasks that
could assist in determining geo-location, such as keyword
spotting, language identification, and sign recognition. In
general, however, the systematic investigation of automatic
location estimation has a very short research history. As
far as we know, the problem of automatically estimating
geo-location has been considered only for images and only
under specific constrained conditions. Despite the potential,
described in the next Section, there has never been an at-



tempt on video or audio data and a multimodal attempt has
never even been considered.

4. POTENTIAL IMPACT AND USES
4.1 Research Impact

Work in the field of location estimation will create progress
in many areas of multimedia research. As discussed in Sec-
tion 5 cues used to estimate locations can be extracted us-
ing methods derived from current research areas. Acous-
tic processing fields that could contribute mostly would be
speech recognition, language recognition, and acoustic event
detection. From computer vision, optical character, sign,
and general object recognition methods will be very useful.
We already described the use of image retrieval methods
in Section 3. Similarly, natural language processing meth-
ods would be helpful in many regards as well. In addition,
knowledge from geography, for example used to calculate
distances, will shape the field as much as new HCI methods
for building interfaces that allow semi-automatic location
estimation applications. The rather young field of multi-
modal integration in computer science will develop further
as new methods for the combination of cues and media will
be demanded. New classification tasks, similar to the one
described in Section 7 on ambulances, will gain attention.
Since found data from the Internet is used, multimodal lo-
cation estimation work is performed using much larger test
and training sets than traditional multimedia content anal-
ysis tasks and the data is more diverse as the recording
sources and locations (sic!) differ greatly. This offers the
chance to create machine learning algorithms of potentially
higher generality. Overall, multimodal location estimation
has the potential to advance many fields, some of which we
don’t even know of as they will be created based on users
demanding applications. Some of these are discussed in the
following two paragraphs.

4.2 Media Organisation and Retrieval

Location-based services are rapidly gaining traction in
the online world. An extensive and rapidly growing set of
online services is collecting, providing, and analyzing geo-
information. Besides major players like Google and Yahoo!,
there are many smaller start-ups in the space as well. The
main driving force behind these services is the enabling of
a very personalized experience. Foursquare for example en-
courages its users to constantly “check-in” their current po-
sition, which they then propagate on to friends; Yowza!!
provides an iPhone application that automatically locates
discount coupons for stores in the user’s current geographi-
cal area; and SimpleGeo aims at being a one-stop aggregator
for location data, making it particularly easy for others to
find and combine information from different sources. In a
parallel development, a growing number of sites now provide
public APIs for structured access to their content, and many
of these already come with geo-location functionality. Flickr,
YouTube, and Twitter all allow queries for results originat-
ing at a certain location. Likewise, we believe retro-fitting
archives with location information will be attractive to many
businesses and enables usage scenarios we don’t even think
of yet. Also, except for specialized solutions, GPS is not
available indoors or where there is no line of sight with the
satellites. So multimodal location estimation would help en-
abling geo-location where it is not regularly available. For
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example, vacation videos and photos could now be grouped
even if location isn’t available. Movie producers have long
searched for methods to find scenes at specific locations or
showing specific events in order to be able to reuse them.
This would partly be enabled by retrofitting location infor-
mation.

4.3 Law Enforcement

After an incident, law enforcement agancies spend many
person-month to find images and videos, including tourist
recordings, that show a specific address to find a suspect
or other evidence. Also, intercepted audio, terrorist videos,
and evidence of kidnappings is often most useful to law en-
forcement when the location can be inferred from the record-
ing. Until today, however, human expert analysts have to
spend many hours watching for clues on the location of a
target video. Even when there is an obvious clue that could
easily be identified by a computer, humans have to pay at-
tention and watch the video carefully until the point where
the hint is revealed. If the human expert happens not to pay
attention at the particular set of frames where the audio or
image clue appears, the location might never be determined.
There are many clues that are hard to perceive for a human
being, such as a masked sound, a small object, or slight vari-
ations on lighting conditions that are the result of a unique
landscape not captured by the camera. Therefore, even only
partially successful semi-automatic location detection would
reduce the work for human analysts to detect the location of
videos, especially in cases that are obvious. Human experts
could concentrate on the more difficult cases. The computer
might provide confidence output and suggestions that might
be judged by the analyst, which will save workload, even on
videos that are not completely classifiable by the computer.

5. DIRECTIONS OF RESEARCH

In this section we indicate some potential directions and
first steps for location estimation research by breaking up
the tasks by media type, i.e. the search for visual and acous-
tic cues as well as the cues from accompanying metadata.

5.1 Visual Location Estimation

As discussed in Section 3, research on image-based lo-
cation estimation has already begun with an approach of
reducing the location estimation problem to an image re-
trieval problem in a large database of environmental im-
ages. In order to tackle the location estimation problem
at a larger scale, using a broader class of media (image,
video, audio, text), a hierarchy of tasks and associated tech-
niques needs to be developed. In addition to feature match-
ing and large scale indexing techniques at a fine scale, a
variety of visual/non-visual clues (such as text, street signs,
landmarks, specific architecture) can be used for determin-
ing the location at an intermediate scale, for example at the
level of specific countries or certain county regions (urban,
rural). At the coarsest scale, broader image/video categories
can be determined and correlated with various geographical
locations based on whether they have been taken in urban
areas, suburban areas, mountainous landscape, etc. The fol-
lowing is a non-exhaustive list of visual cues that could be
exploited for location detection:

e Visual landmarks: “Eiffel tower” or “Berlin Reichstag”,
architecture styles, structure and color of buildings



e Landscapes: Mountain and river shapes, desert illumi-
nations, sand color, street shapes, urban/non-urban

e Written text: Recognition of character-types, language
recognition, word recognition (e.g., street names), lo-
calized information (e.g., how dates and times are ex-
pressed)

e Signs: Traffic signs, car license plates

e Lighting: Indoor/outdoor, night/day, weather, posi-
tion of the sun (related to time stamp of the video)

For written text recognition, it is well known that state-
of-the-art video OCR methods can be applied to cellphone
imagery; coarse illumination detection and direction estima-
tion (e.g., for time-of-day constraints on location) may also
be feasible — this approach is especially appealing when rich
camera metadata is available in the image file (see below).

5.2 Acoustic Location Estimation

A similar taxonomy of acoustic cues is available to infer
location. At the scale of a city, speech recognition of named
entities and environmental sound classification, such as the
presence or absence of car sound or the presence or absence
of noise produced by a crowd, will help to determine lo-
cation. For example, a farmers’ market might include car
noise in the background, crowd noise, and spoken words
such as the names of fruits and vegetables. At an intermedi-
ate scale, dialect identification, as well as noise classification
(police siren, bird calls) could be very useful. At a large
scale, language and localized information (what are the units
for dates, times, distances, volumes, mass, temperature?)
are among the cues that will contribute to an overall confi-
dence score. Acoustic landmarks, such as the sound of Lon-
don’s Big Ben or the playing of the UC Berkeley Campanile,
should be among the top providers of a high-confidence level
at all scales. The following is a non-exhaustive list of acous-
tic cues that could be exploited for location estimation:

e Acoustic landmarks: Specific church bell, specific re-
verberation inside a certain building, 50/60Hz power
hum

e Recorded noise: Cars/no-cars, police car siren types,
birds, water flowing, crowd noise

e Recorded speech: Language and dialect identification,
word recognition of named entities, recognition of di-
rections

e Environments: Jungle (fauna), street noise (frequency
and types of vehicles), urban/non-urban (acoustically),
airport proximity, room shape through reverberation

5.3 Metadata-based Estimation

Internet multimedia repositories such as YouTube, Flickr,
and WikiMedia Commons, store (sometimes exhaustive) ac-
companying metadata close to the media object. The meta-
data might sometimes contain the actual location or a vague
descriptions of it (e.g. “Berlin” or “USA”). Of course, meta-
data description might be wrong and then location verifica-
tion needs to be developed (see Section 2). Other metadata
might indirectly give hints to a possible location, including:
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e Words used: Terms used to describe the video might
clearly indicate locations, such as landmarks, localized
information, street and city names

e Language used: Combinations of words together with
specific language can identify location, e.g. a Finish
description of finish traffic laws is most likely pointing
to a video in Finland

e Relative location is often implicitly described in meta-
data, e.g. garden party, will most likely point to an
outdoor video as do activity words such as “sailing”,
“driving”, “boating”.

In addition, embedded metadata, such as EXIF might be
helpful even if geo-coordinates are not present: Indoor and
outdoor camera settings, time and date, and other specific
information might be able to limit the search domain fur-
ther. Also, GPS coordinates, even when embedded are often
only embedded with a certain accuracy and might be refined
using location estimation.

5.4 Multimodal Integration

As described previously, location detection is inherently
multimodal since the output of individual classifiers will of-
ten only result in vague assumptions. Given a video, a typ-
ical output would consist of a bag of categories and their
associated probabilities. Example output could have the
following structured form:

1. Outdoor: 70 %,

2. Urban area: 80 %,

3. Language: East German dialect: 35 %,

4. Landmark similarity to Brandenburg Gate: 35 %,

5. Recording channel: amateur camera 70 %

In order to enable fully automatic location estimation, i.e.
in order to interpret the bag of categories and probabilities,
an appropriate scheme for multimodal integration is a key
challenge in this approach. Traditional schemes for “late fu-
sion” (see for example [6]) may be inappropriate, as the spe-
cific set of candidate locations may not be obvious a-priori,
and/or there may be an extremely large number of them,
rendering a classic product or sum late fusion inaccurate.
On the other hand, it is unfeasible to adopt a pure early fu-
sion approach, as the image and video measurements come
from distinct spaces with differing observation properties;
a naive concatenation of features from different modalities
will likely be biased inappropriately to one modality or the
other. The multimodal location estimation problem is inter-
esting and somewhat unique in that the fusion required can
change depending on the situation: When a Boston accent is
heard and a Boston landmark image is observed, our confi-
dence of the video being in Boston should be high. However,
the presence of a German voice is not necessarily a signifi-
cant negative, as it may well be the voice of the tourist. So
fusion schemes must amplify when there is agreement, but
when there is disagreement, it may be appropriate to main-
tain distinct location estimates to fill different “roles” in the
video interpretation.



6. TRAINING DATA

A major distinguishing point of this task as proposed is
the availability of directly useable training data “in the wild”.
In 2006, our planet hosted about two billion cell phones of
which about 50 million had a built-in video camera. As
these numbers grow, more and more videos are uploaded to
the Internet for public access on sites like YouTube, Flickr,
and Liveleak. For a significant amount of these data, corre-
sponding geolocations in the form of GPS coordinates exist.
This represents a massive amount of annotated training data
for the task that can be taken from the Internet, i.e. there is
no need for explicit recording and hand-annotation. In this
Section, we discuss experiments, also presented in [5], that
quantify our claim about the availability of geo-tagged data.

6.1 Background

The most common mechanism to associate locations with
photos are EXIF records, which were originally introduced
by the Japan Electronic Industry Development Association
for attaching metadata to images such as exposure time and
color space. Since then EXIF has been extended to also
cover geographical coordinates in the form of latitude and
longitude. Currently, EXIF is used only with JPEG & TIFF
(image) and WAV (audio) files. However, most other mul-
timedia formats can contain metadata as well, often includ-
ing geo-tags. In addition, most camera manufacturers spec-
ify proprietary metadata formats. For videos, these “maker
notes” are the most common form for storing locations. Both
Flickr and YouTube have comprehensively integrated geo-
location into their infrastructure, and they provide powerful
APIs for localized queries. Leveraging these APIs, we can es-
timate the number of public geo-tagged photos/videos they
offer.

6.2 Flickr

Flickr’s API allows to directly query for the number of im-
ages that are, or are not, geo-tagged during a certain time
interval. Examining all 158 million images uploaded during
the first four months of 2010, we found that about 4.3% are
geo-tagged. We also examined the brands of cameras used
for taking the photos that have geo-information, derived
from their EXIF records which can be retrieved via Flickr’s
API as well. Doing so however requires one API request per
image, and hence we resorted to randomly sampling a 5%
set of all geo-tagged images uploaded in 2010. We found
that the top-five brands were Canon (31%), Nikon (20%),
Apple (6%), Sony (6%), and Panasonic (5%). A closer look
at the individual models reveals that today mostly devices
at the higher end of the price scale are geo-tagging. His-
torically, it has often been observed that high-end models
become the commonly used one and their features become
standard even for the lower end at some point in time. We
therefore think that the amount of geo-tagged information
is going to accumulate rapidly.

6.3 YouTube
With YouTube, due to restrictions of the API, it is not

possible to directly determine the number of geo-tagged videos,

as we could with Flickr. YouTube restricts the maximum
number of responses per query to 1,000; and while it also
returns an (estimated) number of total results, that figure is
also capped at 1,000,000. Furthermore, the granularity for
time-based queries is coarse: YouTube only allows to spec-
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Figure 2: Confusion matrix of our GMM/SVM
audio-based ambulance classifier (described in Sec-
tion 7).

ify the attributes all_time, this_month, this_week, and
today. Still, we believe we can estimate the number of geo-
tagged videos in the following way: We submitted an uncon-
strained query, which results in an estimation of 1,000,000
results. The query was then refined by filtering for all videos
that contain geo-location. Repeating the experiment a num-
ber of times resulted in total result estimates ranging from
about 30,000 to 33,000 videos. In other words, out of what
we assume to be a random sample of 1,000,000 YouTube
videos, roughly 3% have geo-location. While this number
is clearly just an estimate, it matches with what we derived
for Flickr. A note: YouTube’s API distinguishes between
videos without location, with coarse location (usually man-
ually added, e.g. “Berlin”), and with ezact location. For our
experiments, we only considered the latter.

If one takes YouTube and Flickr as two samples represen-
tative of the Internet one can say that about 3 % of the con-
sciously uploaded multimedia in the Internet is geo-tagged.
Of that, many media might not be useful as training data
for location estimation because of manual editing, dubbed
music, or simply because they do not contain any clues.
However, given the accumulation effect of persistent storage
and the increasing number of geo-enabled capturing devices,
even if only 1% of the entire geo-tagged multimedia on the
Internet is useable, this represents a training set of never
before-seen magnitudes in the field. Also, we clearly see that
location estimation is needed as at least 97 % of all videos
and photos are not yet location enabled.

7. A FIRST EXPERIMENT

This section exemplifies an ambulance classifier that has
been created as an initial approach towards multimodal lo-
cation estimation.

7.1 Input Data

As a first task, we considered a scenario that would be a
common case for city-level location estimation: the classifi-
cation of distinctive objects commonly found in cities, and,
as an initial detailed case study, we focused on the classifi-
cation of ambulances. Therefore, we collected 200 YouTube
videos filmed in 11 cities, manually chosen to contain an
ambulance. The data is inherently challenging as it derives
from real users and is not recorded under controlled condi-



tions. Our first task towards understanding location detec-
tion is thus limited to classifying which city an ambulance
comes from. The amount of data we have collected so far is
small, making the training of models challenging. Further-
more, some cities do not have enough data, and thus we had
to make some classes broader than a city (e.g. Argentina, or
Quebec/Montreal area).

7.2 Methods

The first system that we considered contained only audio
information. Given the nature of the data, we expected this
system to perform significantly better than chance on video
data. We extracted 19-dimensional Mel frequency cepstrum
coefficients (MFCCs). A Gaussian mixture model (GMM)
was trained on a per-city level on the acoustic feature space.
Classification based on likelihood was performed on an inde-
pendent set of videos. The split between training and testing
data was 70% and 30% respectively. Besides this generative
approach baseline, we also considered SVM classification on
the Gaussian mixture space (a system with state-of-the-art
performance on the speaker identification task[2]).

Since the audio features we extracted are optimized for
speech recognition, they may be a poor match to our data
as, a priori, ambulance sound is quite different from natu-
ral speech. Thus, we created another baseline system based
on vector quantization: we form a codebook of 20 clusters
using k-means on the MFCC feature space, and extract the
histogram of these feature occurrences on a per video basis,
similar to bag of words (BoW) approaches that are typically
used in natural language and computer vision [1]. The his-
togram obtained is used as the observation vector for train-
ing a Support Vector Machine (SVM) classifier.

Lastly, we extracted features based on color SIFT [11] on
a uniform grid on each frame in the videos. A codebook of
1000 clusters is then extracted, and histogram features are
extracted and fed into a SVM classifier similarly as in the
previously described procedure.

For the fusion systems, we performed both early and late
fusion as baselines for multimodal processing. In the early
fusion system, we concatenated the features prior to the
SVM classifier. For the late fusion, we used the SVM clas-
sifier scores and fed them as features for a third SVM, as
described in [13].

7.3 Results

Table 1 shows the accuracies of the various systems, as
well as what a random classifier would output (since all the
classes are balanced, chance would give us an accuracy of
i5). We see that even the GMM model performs signifi-
cantly better than chance, even though it is wrong more than
half the time. The simpler bag of words system performed
worse than the GMM approach, which leads us to conclude
that GMM based clustering for audio data is better than
simpler k-means (albeit slower). It is worth noting than on
a smaller development dataset containing only three cities,
the BoW approach performed better with the same number
of clusters. It appears that more than 20 clusters may be
necessary for the more complex classification task, and thus
other clustering techniques that scale better with number
of clusters and samples should be used. The obtained mul-
timodal results favor the early fusion scheme, although the
performance is dissimilar for both modalities, making multi-
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System Accuracy
Random 9.1%
GMM (audio) 45.20%
GMM SVM (audio) 47.72%
BoW SVM (audio) 35.5%
BoW SVM (video) 23.1%
BoW early fusion SVM (audio+video) 37.5%
BoW late fusion SVM (audio+video) 36.9%

Table 1: Results on the testing set for the ambu-
lance detection task on a set of 11 cities/regions.
See Section 7 for details.

modal combination more challenging and a topic to further
work on in the future.

Other lines of future work could include the training of
purified models. This can be achieved by means of tempo-
ral clustering to avoid fitting non informative frames in the
video (e.g. when someone is speaking on top of an ambu-
lance sound, or when the ambulance sound is not present).
Different clustering techniques other than k-means or finite
mixture models for codeword generation could be explored,
such as Latent Dirichlet Allocation [1] or Dirichlet Process
mixture models [4], and features other than MFCC or SIFT
will be explored as we gain more knowledge on which aspects
of data classification are challenging.

Interestingly, our classifier has significantly different per-
formance across cities. As can be seen in Figure 2, the best
performing cities/regions are Argentina, Barcelona, Berlin,
Holland, Japan, LA, and London. Australia and Telaviv get
confused with LA, partially due to the fact that there are
several ambulance companies operating in LA, which may
cause the class to be too broad. Quebec/Montreal and New
York get confused with Argentina and Australia, and we
cannot explain this behavior. It is worth noting that, even
though the classifier based on BoW features had worse over-
all accuracy, the behavior per city was more uniform. Again,
an indication of how hard it is to work with heterogenous
data from YouTube.

8. FINAL REMARKS

This article describes a new research problem, possible
directions for tackling it, and our initial work in the field.
While at first glance it is almost impossible, and indeed
for many media unsolveable, the multimodal location es-
timation task offers research opportunities in many fields
connected to multimedia. As the solution can be mostly
described as a search for cues, the task is inherently multi-
modal. With the large amounts of training data available
on the Internet, the task offers a chance to tackle machine
learning problems using more and more heterogeneous in-
put, which in turn might lead to better understanding and
more generalizable solutions. Therefore, we want to encour-
age multimedia researchers to actively engage in the tasks
involved and create a brand new community working on
a very challenging but exiting problem. We want to en-
courage readers to contact us and visit our project website
http://mmle.icsi.berkeley.edu, where we will post up-
dates on our progress and, more importantly, continuously
develop publicly available training and test sets for bench-
marking.
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