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ABSTRACT

In performing a Bayesian analysis of astronomical data, two difficult problems often emerge.

First, in estimating the parameters of some model for the data, the resulting posterior distribution

may be multimodal or exhibit pronounced (curving) degeneracies, which can cause problems

for traditional Markov Chain Monte Carlo (MCMC) sampling methods. Secondly, in selecting

between a set of competing models, calculation of the Bayesian evidence for each model is

computationally expensive using existing methods such as thermodynamic integration. The

nested sampling method introduced by Skilling, has greatly reduced the computational expense

of calculating evidence and also produces posterior inferences as a by-product. This method

has been applied successfully in cosmological applications by Mukherjee, Parkinson & Liddle,

but their implementation was efficient only for unimodal distributions without pronounced de-

generacies. Shaw, Bridges & Hobson recently introduced a clustered nested sampling method

which is significantly more efficient in sampling from multimodal posteriors and also deter-

mines the expectation and variance of the final evidence from a single run of the algorithm,

hence providing a further increase in efficiency. In this paper, we build on the work of Shaw

et al. and present three new methods for sampling and evidence evaluation from distributions

that may contain multiple modes and significant degeneracies in very high dimensions; we

also present an even more efficient technique for estimating the uncertainty on the evaluated

evidence. These methods lead to a further substantial improvement in sampling efficiency and

robustness, and are applied to two toy problems to demonstrate the accuracy and economy

of the evidence calculation and parameter estimation. Finally, we discuss the use of these

methods in performing Bayesian object detection in astronomical data sets, and show that they

significantly outperform existing MCMC techniques. An implementation of our methods will

be publicly released shortly.

Key words: methods: data analysis – methods: statistical.

1 I N T RO D U C T I O N

Bayesian analysis methods are now widely used in astrophysics

and cosmology, and it is thus important to develop methods for

performing such analyses in an efficient and robust manner. In

general, Bayesian inference divides into two categories: parame-

ter estimation and model selection. Bayesian parameter estimation

has been used quite extensively in a variety of astronomical appli-

cations, although standard Markov Chain Monte Carlo (MCMC)

methods, such as the basic Metropolis–Hastings algorithm or the

Hamiltonian sampling technique (see e.g. MacKay 2003), can ex-

perience problems in sampling efficiently from a multimodal pos-

terior distribution or one with large (curving) degeneracies between

⋆E-mail: f.feroz@mrao.cam.ac.uk

parameters. Moreover, MCMC methods often require careful tun-

ing of the proposal distribution to sample efficiently, and testing

for convergence can be problematic. Bayesian model selection has

been hindered by the computational expense involved in the cal-

culation to sufficient precision of the key ingredient, the Bayesian

evidence (also called the marginalized likelihood or the marginal

density of the data). As the average likelihood of a model over its

prior probability space, the evidence can be used to assign rela-

tive probabilities to different models (for a review of cosmological

applications, see Mukherjee et al. 2006). The existing preferred

evidence evaluation method, again based on MCMC techniques,

is thermodynamic integration (see e.g. O’Ruanaidh et al. 1996),

which is extremely computationally intensive but has been used

successfully in astronomical applications (see e.g. Hobson, Bridle

& Lahav 2002; Marshall, Hobson & Slosar 2003; Slosar et al. 2003;

Basset, Corasaniti & Kunz 2004; Niarchou, Jaffe & Pogosian 2004;
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450 F. Feroz and M. P. Hobson

Beltran et al. 2005; Trotta 2005; Bridges, Lasenby & Hobson 2006).

Some fast approximate methods have been used for evidence eval-

uation, such as treating the posterior as a multivariate Gaussian

centred at its peak (see e.g. Hobson, Bridle & Lahav 2002), but

this approximation is clearly a poor one for multimodal posteriors

(except perhaps if one performs a separate Gaussian approximation

at each mode). The Savage–Dickey density ratio has also been pro-

posed (Trotta 2005) as an exact, and potentially faster, means of

evaluating evidence, but is restricted to the special case of nested

hypotheses and a separable prior on the model parameters. Various

alternative information criteria for astrophysical model selection are

discussed by Liddle (2007), but the evidence remains the preferred

method.

The nested sampling approach (Skilling 2004) is a Monte Carlo

method targeted at the efficient calculation of the evidence, but also

produces posterior inferences as a by-product. In cosmological ap-

plications, Mukherjee et al. (2006) show that their implementation

of the method requires a factor of ∼100 fewer posterior evaluations

than thermodynamic integration. To achieve an improved accep-

tance ratio and efficiency, their algorithm uses an elliptical bound

containing the current point set at each stage of the process to re-

strict the region around the posterior peak from which new samples

are drawn. Shaw et al. (2007) point out, however, that this method

becomes highly inefficient for multimodal posteriors, and hence in-

troduce the notion of clustered nested sampling, in which multiple

peaks in the posterior are detected and isolated, and separate el-

lipsoidal bounds are constructed around each mode. This approach

significantly increases the sampling efficiency. The overall compu-

tational load is reduced still further by the use of an improved error

calculation (Skilling 2004) on the final evidence result that produces

a mean and standard error in one sampling, eliminating the need for

multiple runs.

In this paper, we build on the work of Shaw et al. (2007), by

pursuing further the notion of detecting and characterizing multiple

modes in the posterior from the distribution of nested samples. In

particular, within the nested sampling paradigm, we suggest three

new algorithms (the first two based on sampling from ellipsoidal

bounds and the third based on the Metropolis algorithm) for calcu-

lating the evidence from a multimodal posterior with high accuracy

and efficiency even when the number of modes is unknown, and for

producing reliable posterior inferences in this case. The first algo-

rithm samples from all the modes simultaneously and provides an

efficient way of calculating the ‘global’ evidence, while the second

and third algorithms retain the notion from Shaw et al. of identifying

each of the posterior modes and then sampling from each separately.

As a result, these algorithms can also calculate the ‘local’ evidence

associated with each mode as well as the global evidence. All the

algorithms presented differ from that of Shaw et al. in several key

ways. Most notably, the identification of posterior modes is per-

formed using the X-means clustering algorithm (Pelleg et al. 2000),

rather than k-means clustering with k = 2; we find that this leads

to a substantial improvement in sampling efficiency and robustness

for highly multimodal posteriors. Further innovations include a new

method for fast identification of overlapping ellipsoidal bounds, and

a scheme for sampling consistently from any such overlap region. A

simple modification of our methods also enables efficient sampling

from posteriors that possess pronounced degeneracies between pa-

rameters. Finally, we also present a yet more efficient method for

estimating the uncertainty in the calculated (local) evidence value(s)

from a single run of the algorithm. The above innovations mean that

our new methods constitute a viable, general replacement for tradi-

tional MCMC sampling techniques in astronomical data analyses.

The outline of this paper is as follows. In Section 2, we briefly

review the basic aspects of Bayesian inference for parameter es-

timation and model selection. In Section 3, we introduce nested

sampling and discuss the ellipsoidal nested sampling technique in

Section 4. We present two new algorithms based on ellipsoidal sam-

pling and compare them with previous methods in Section 5, and

in Section 6 we present a new method based on the Metropolis

algorithm. In Section 7, we apply our new algorithms to two toy

problems to demonstrate the accuracy and efficiency of the evidence

calculation and parameter estimation as compared with other tech-

niques. In Section 8, we consider the use of our new algorithms in

Bayesian object detection. Finally, our conclusions are presented in

Section 9.

2 BAY E S I A N I N F E R E N C E

Bayesian inference methods provide a consistent approach to the

estimation of a set of parameters θ in a model (or hypothesis) H for

the data D. Bayes’ theorem states that

Pr(θ | D, H ) =
Pr(D | θ, H )Pr(θ | H )

Pr(D | H )
, (1)

where Pr(θ | D, H) ≡ P(θ) is the posterior probability distribu-

tion of the parameters, Pr(D | θ, H) ≡ L(θ) is the likelihood,

Pr(Θ | H) ≡ π (Θ) is the prior, and Pr(D|H ) ≡ Z is the Bayesian

evidence.

In parameter estimation, the normalizing evidence factor is usu-

ally ignored, since it is independent of the parameters θ, and in-

ferences are obtained by taking samples from the (unnormalized)

posterior using standard MCMC sampling methods, where at equi-

librium the chain contains a set of samples from the parameter space

distributed according to the posterior. This posterior constitutes the

complete Bayesian inference of the parameter values, and can be

marginalized over each parameter to obtain individual parameter

constraints.

In contrast to parameter estimation problems, in model selection

the evidence takes the central role and is simply the factor required

to normalize the posterior over θ:

Z =
∫

L(θ)π (θ)dD
θ, (2)

where D is the dimensionality of the parameter space. As the av-

erage of the likelihood over the prior, the evidence is larger for a

model if more of its parameter space is likely and smaller for a

model with large areas in its parameter space having low likeli-

hood values, even if the likelihood function is very highly peaked.

Thus, the evidence automatically implements Occam’s razor: a sim-

pler theory with compact parameter space will have a larger evi-

dence than a more complicated one, unless the latter is significantly

better at explaining the data. The question of model selection be-

tween two models H0 and H1 can then be decided by comparing their

respective posterior probabilities, given the observed data set D, as

follows:

Pr(H1 | D)

Pr(H0 | D)
=

Pr(D | H1)Pr(H1)

Pr(D | H0)Pr(H0)
=

Z1

Z0

Pr(H1)

Pr(H0)
, (3)

where Pr(H1)/Pr(H0) is the a priori probability ratio for the two

models, which can often be set to unity but occasionally requires

further consideration.

Unfortunately, evaluation of the multidimensional integral 2

is a challenging numerical task. The standard technique is ther-

modynamic integration, which uses a modified form of MCMC

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 384, 449–463
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Figure 1. Proper thermodynamic integration requires the log-likelihood to

be concave like in panel (a), not like in panel (b).

sampling. The dependence of the evidence on the prior requires that

the prior space is adequately sampled, even in regions of low like-

lihood. To achieve this, the thermodynamic integration technique

draws MCMC samples not from the posterior directly but from Lλ

π where λ is an inverse temperature that is raised from ≈0 to 1. For

low values of λ, peaks in the posterior are sufficiently suppressed

to allow improved mobility of the chain over the entire prior range.

Typically, it is possible to obtain accuracies of within 0.5 units in

log-evidence via this method, but in cosmological applications it

typically requires of the order of 106 samples per chain (with around

10 chains required to determine a sampling error). This makes ev-

idence evaluation at least an order of magnitude more costly than

parameter estimation.

Another problem faced by thermodynamic integration is in nav-

igating through phase changes as pointed out by Skilling (2004).

As λ increases from 0 to 1, one hopes that the thermodynamic

integration tracks gradually up in L and so inwards in X as illus-

trated in Fig. 1(a). λ is related to the slope of log L/log X curve as

d log L/d log X = −1/λ. This requires the log-likelihood curve to

be concave as shown in Fig. 1(a). If the log-likelihood curve is non-

concave as in Fig. 1(b), then increasing λ from 0 to 1 will normally

take the samples from A to the neighbourhood of B where the slope is

−1/λ = −1. In order to get the samples beyond B, λ will need to

be taken beyond 1. Doing this will take the samples around the

neighbourhood of the point of inflection C but here thermodynamic

integration sees a phase change and has to jump across, somewhere

near F, in which any practical computation exhibits hysteresis that

destroys the calculation of Z . As will be discussed in the next sec-

tion, nested sampling does not experience any problem with phase

changes and moves steadily down in the prior volume X regardless

of whether the log-likelihood is concave or convex or even differ-

entiable at all.

3 N E S T E D S A M P L I N G

Nested sampling (Skilling 2004) is a Monte Carlo technique not

only aimed at efficient evaluation of the Bayesian evidence, but also

produces posterior inferences as a by-product. It exploits the relation

between the likelihood and prior volume to transform the multidi-

mensional evidence integral (2) into a one-dimensional integral. The

‘prior volume’ X is defined by dX = π (θ)dD
θ, so that

X (λ) =
∫

L(θ)>λ

π (θ)dD
θ, (4)

where the integral extends over the region(s) of parameter space

contained within the iso-likelihood contour L(Θ) = λ. Assuming

that L(X), that is, the inverse of (4), is a monotonically decreasing

Figure 2. Cartoon illustrating: panel (a) the posterior of a two-dimensional

problem; and panel (b) the transformed L(X) function where the prior vol-

umes Xi are associated with each likelihood Li .

function of X (which is trivially satisfied for most posteriors), the

evidence integral (2) can then be written as

Z =
∫ 1

0

L(X ) dX . (5)

Thus, if one can evaluate the likelihoods Lj = L(X j ), where X j is a

sequence of decreasing values,

0 < X M < · · · < X2 < X1 < X0 = 1, (6)

as shown schematically in Fig. 2, the evidence can be approximated

numerically using standard quadrature methods as a weighted sum

Z =
M

∑

i=1

L iwi . (7)

In the following, we will use the simple trapezium rule, for which

the weights are given by wi = 1

2
(X i−1 − X i+1). An example of

a posterior in two dimensions and its associated function L(X) is

shown in Fig. 2.

3.1 Evidence evaluation

The nested sampling algorithm performs the summation (7) as fol-

lows. To begin, the iteration counter is set to i = 0 and N ‘live’ (or

‘active’) samples are drawn from the full prior π (θ) (which is often

simply the uniform distribution over the prior range), so the initial

prior volume is X0 = 1. The samples are then sorted in order of their

likelihood and the smallest (with likelihood L0) is removed from

the live set and replaced by a point drawn from the prior subject

to the constraint that the point has a likelihood L > L0. The corre-

sponding prior volume contained within this iso-likelihood contour

will be a random variable given by X1 = t1X0, where t1 follows the

distribution Pr(t) = NtN−1 (i.e. the probability distribution for the

largest of N samples drawn uniformly from the interval [0, 1]). At

each subsequent iteration i, the discarding of the lowest-likelihood

point Li in the live set, the drawing of a replacement with L > Li

and the reduction in the corresponding prior volume Xi = ti Xi−1 are

repeated, until the entire prior volume has been traversed. The al-

gorithm thus travels through nested shells of likelihood as the prior

volume is reduced.

The mean and standard deviation of ln t, which dominates the

geometrical exploration, are, respectively,

E[ln t] = −
1

N
and σ [ln t] =

1

N
. (8)
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452 F. Feroz and M. P. Hobson

Since each value of ln t is independent, after i iterations the prior

volume will shrink down such that ln X i ≈ −(i ±
√

i)/N . Thus,

one takes Xi = exp(−i/N).

3.2 Stopping criterion

The nested sampling algorithm should be terminated on determining

the evidence to some specified precision. One way would be to pro-

ceed until the evidence estimated at each replacement changes by

less than a specified tolerance. This could, however, underestimate

the evidence in (for example) cases where the posterior contains

any narrow peaks close to its maximum. Skilling (2004) provides

an adequate and robust condition by determining an upper limit on

the evidence that can be determined from the remaining set of cur-

rent active points. By selecting the maximum likelihood Lmax in the

set of active points, one can safely assume that the largest evidence

contribution that can be made by the remaining portion of the pos-

terior is �Zi = Lmax X i , that is, the product of the remaining prior

volume and maximum-likelihood value. We choose to stop when

this quantity would no longer change the final evidence estimate by

some user-defined value (we use 0.1 in log-evidence).

3.3 Posterior inferences

Once the evidenceZ is found, posterior inferences can be easily gen-

erated using the full sequence of discarded points from the nested

sampling process, that is, the points with the lowest-likelihood value

at each iteration i of the algorithm. Each such point is simply as-

signed the weight

pi =
L iwi

Z
. (9)

These samples can then be used to calculate inferences of posterior

parameters such as means, standard deviations, covariances and so

on, or to construct marginalized posterior distributions.

3.4 Evidence error estimation

If we could assign each Xi value exactly, then the only error in

our estimate of the evidence would be due to the discretization of

the integral (7). Since each ti is a random variable, however, the

dominant source of uncertainty in the final Z value arises from

the incorrect assignment of each prior volume. Fortunately, this

uncertainty can be easily estimated.

Shaw et al. made use of the knowledge of the distribution Pr(ti )

from which each ti is drawn to assess the errors in any quantities

calculated. Given the probability of the vector t = (t1, t2, . . . , tM )

as

Pr(t) =
M

∏

i=1

Pr(ti ), (10)

one can write the expectation value of any quantity F(t) as

〈F〉 =
∫

F(t)Pr(t)dM
t . (11)

Evaluation of this integral is possible by Monte Carlo methods by

sampling a given number of vectors t and finding the average F.

By this method one can determine the variance of the curve in

the X–L space, and thus the uncertainty in the evidence integral
∫

L(X )dX . As demonstrated by Shaw et al., this eliminates the

need for any repetition of the algorithm to determine the standard

error on the evidence value; this constitutes a significant increase in

efficiency.

In our new methods presented below, however, we use a differ-

ent error estimation scheme suggested by Skilling (2004); this also

provides an error estimate in a single sampling but is far less compu-

tationally expensive and proceeds as follows. The usual behaviour

of the evidence increments Li wi is initially to rise with the iteration

number i, with the likelihood Li increasing faster than the weight

wi = 1

2
(X i−1 − X i+1) decreases. At some point, L flattens off suf-

ficiently that the decrease in the weight dominates the increase in

likelihood; so the increment Li wi reaches a maximum and then starts

to drop with the iteration number. Most of the contribution to the

final evidence value usually comes from the iterations around the

maximum point, which occurs in the region of X ≈ e−H , where H

is the negative relative entropy,

H =
∫

ln

(

dP

dX

)

dX ≈
M

∑

i=1

L iwi

Z
ln

(

L i

Z

)

, (12)

where P denotes the posterior. Since ln X i ≈ (−i ±
√

i)/N , we

expect the procedure to take about N H ±
√

N H steps to shrink

down to the bulk of the posterior. The dominant uncertainty in Z is

due to the Poisson variability N H ±
√

N H in the number of steps to

reach the posterior bulk. Correspondingly, the accumulated values

ln Xi are subject to a standard deviation uncertainty of
√

H/N . This

uncertainty is transmitted to the evidence Z through 7, so that lnZ
also has a standard deviation uncertainty of

√
H/N . Thus, putting

the results together gives

lnZ = ln

(

M
∑

i=1

L iwi

)

±

√

H

N
. (13)

Alongside the above uncertainty, there is also the error due to

the discretization of the integral in 7. Using the trapezoidal rule,

this error will be O(1/M2), and hence will be negligible, given a

sufficient number of iterations.

4 E L L I P S O I DA L N E S T E D S A M P L I N G

The most-challenging task in implementing the nested sampling al-

gorithm is drawing samples from the prior within the hard constraint

L > Li at each iteration i. Employing a naive approach that draws

blindly from the prior would result in a steady decrease in the ac-

ceptance rate of new samples with decreasing prior volume (and

increasing likelihood).

4.1 Single ellipsoid sampling

Ellipsoidal sampling (Mukherjee et al. 2006) partially overcomes

the above problem by approximating the iso-likelihood contour of

the point to be replaced by a D-dimensional ellipsoid determined

from the covariance matrix of the current set of live points. This

ellipsoid is then enlarged by some factor f to account for the iso-

likelihood contour not being exactly ellipsoidal. New points are then

selected from the prior within this (enlarged) ellipsoidal bound until

one is obtained that has a likelihood exceeding that of the discarded

lowest-likelihood point. In the limit that the ellipsoid coincides with

the true iso-likelihood contour, the acceptance rate tends to unity. An

elegant method for drawing uniform samples from a D-dimensional

ellipsoid is given by Shaw et al. (2007), and is easily extended to

non-uniform priors.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 384, 449–463
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(a) (b) (c) (d) (e)

Figure 3. Cartoon of ellipsoidal nested sampling from a simple bimodal distribution. In panel (a), we see that the ellipsoid represents a good bound to the

active region. In panels (b)–(d), as we nest inwards we can see that the acceptance rate will rapidly decrease as the bound steadily worsens. Panel (e) illustrates

the increase in efficiency obtained by sampling from each clustered region separately.

4.2 Recursive clustering

Ellipsoidal nested sampling as described above is efficient for simple

unimodal posterior distributions, but is not well suited to multimodal

distributions. The problem is illustrated in Fig. 3, in which one sees

that the sampling efficiency from a single ellipsoid drops rapidly

as the posterior value increases (particularly in higher dimensions).

As advocated by Shaw et al., and illustrated in the final panel of the

figure, the efficiency can be substantially improved by identifying

distinct clusters of live points that are well separated and construct-

ing an individual ellipsoid for each cluster. The linear nature of the

evidence means that it is valid to consider each cluster individually

and sum the contributions, provided one correctly assigns the prior

volumes to each distinct region. Since the collection of N active

points is distributed evenly across the prior, one can safely assume

that the number of points within each clustered region is propor-

tional to the prior volume contained therein.

Shaw et al. (2007) identify clusters recursively. Initially, at each

iteration i of the nested sampling algorithm, k-means clustering (see

e.g. MacKay 2003) with k = 2 is applied to the live set of points

to partition them into two clusters and an (enlarged) ellipsoid is

constructed for each one. This division of the live set will only be

accepted if two further conditions are met: (i) the total volume of the

two ellipsoids is less than some fraction of the original pre-clustering

ellipsoid and (ii) clusters are sufficiently separated by some distance

to avoid overlapping regions. If these conditions are satisfied, clus-

tering will occur and the number of live points in each cluster is

topped up to N by sampling from the prior inside the correspond-

ing ellipsoid, subject to the hard constraint L > Li . The algorithm

then searches independently within each cluster attempting to di-

vide it further. This process continues recursively until the stopping

criterion is met. Shaw et al. also show how the error estimation pro-

cedure can be modified to accommodate clustering by finding the

probability distribution of the volume fraction in each cluster.

5 I M P ROV E D E L L I P S O I DA L S A M P L I N G

M E T H O D S

In this section, we present two new methods for ellipsoidal nested

sampling that improve significantly in terms of sampling efficiency

and robustness on the existing techniques outlined above, in partic-

ular for multimodal distributions and those with pronounced degen-

eracies.

5.1 General improvements

We begin by noting several general improvements that are employed

by one or other of our new methods.

5.1.1 Identification of clusters

In both methods, we wish to identify isolated modes of the poste-

rior distribution without prior knowledge of their number. The only

information we have is the current live point set. Rather than us-

ing k-means clustering with k = 2 to partition the points into just

two clusters at each iteration, we instead attempt to infer the appro-

priate number of clusters from the point set. After experimenting

with several clustering algorithms to partition the points into the

optimal number of clusters, we found X-means (Pelleg et al. 2000),

G-means (Hamerly et al. 2003) and PG-means (Feng et al. 2006)

to be the most promising. X-means partitions the points into the

number of clusters that optimizes the Bayesian Information Criteria

measure. The G-means algorithm is based on a statistical test for the

hypothesis that a subset of data follows a Gaussian distribution and

runs k-means with increasing k in a hierarchical fashion until the

test accepts the hypothesis that the data assigned to each k-means

centre are Gaussian. PG-means is an extension of G-means that is

able to learn the number of clusters in the classical Gaussian mixture

model without using k-means. We found PG-means to outperform

both X-means and G-means, especially in higher dimensions and

if there are cluster intersections, but the method requires Monte

Carlo simulations at each iteration to calculate the critical values of

the Kolmogorov–Smirnov test it uses to check for Gaussianity. As

a result, PG-means is considerably more computationally expen-

sive than both X-means and G-means, and this computational cost

quickly becomes prohibitive. Comparing X-means and G-means,

we found the former to produce more consistent results, particu-

larly in higher dimensions. Since we have to cluster the live points

at each iteration of the nested sampling process, we thus chose to

use the X-means clustering algorithm. This method performs well

overall, but does suffer from some occasional problems that can

result in the number of clusters identified being more or less than

the actual number. We discuss these problems in the context of both

our implementations in Sections 5.2 and 5.3, but conclude that they

do not adversely affect out methods. Ideally, we require a fast and

robust clustering algorithm that always produces reliable results,

particularly in high dimensions. If such a method became available,

it could easily be substituted for X-means in either of our sampling

techniques described below.

5.1.2 Dynamic enlargement factor

Once an ellipsoid has been constructed for each identified cluster

such that it (just) encloses all the corresponding live points, it is en-

larged by some factor f, as discussed in Section 4. It is worth remem-

bering that the corresponding increase in volume is (1 + f )D , where

D is the dimension of the parameter space. The factor f does not,

however, have to remain constant. Indeed, as the nested sampling al-

gorithm moves into higher likelihood regions (with decreasing prior
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454 F. Feroz and M. P. Hobson

volume), the enlargement factor f by which an ellipsoid is expanded

can be made progressively smaller. This holds since the ellipsoidal

approximation to the iso-likelihood contour obtained from the N live

points becomes increasingly accurate with decreasing prior volume.

Also, when more than one ellipsoid is constructed at some itera-

tion, the ellipsoids with fewer points require a higher enlargement

factor than those with a larger number of points. This is due to the

error introduced in the evaluation of the eigenvalues from the co-

variance matrix calculated from a limited sample size. The standard

deviation uncertainty in the eigenvalues is given by Girshick (1939)

as follows:

σ (λ̂ j ) ≈ λ j

√

2

n
, (14)

where λj denotes the jth eigenvalue and n is the number of points

used in the calculation of the covariance matrix.

The above considerations lead us to set the enlargement factor for

the kth ellipsoid at iteration i as fi,k = f0 Xα
i

√
N/nk where N is the

total number of live points, f0 is the initial user-defined enlargement

factor (defining the percentage by which each axis of an ellipsoid

enclosing N points, is enlarged), Xi is the prior volume at the ith

iteration, nk is the number of points in the kth cluster, and α is a

value between 0 and 1 that defines the rate at which the enlargement

factor decreases with decreasing prior volume.

5.1.3 Detection of overlapping ellipsoids

In some parts of our sampling methods, it is important to have a very

fast method to determine whether two ellipsoids intersect, as this

operation is performed many times at each iteration. Rather than ap-

plying the heuristic criteria used by Shaw et al., we instead employ

an exact algorithm proposed by Alfano et al. (2003) which involves

the calculation of eigenvalues and eigenvectors of the covariance

matrix of the points in each ellipsoid. Since we have already calcu-

lated these quantities in constructing the ellipsoids, we can rapidly

determine if two ellipsoids intersect at very little extra computational

cost.

5.1.4 Sampling from overlapping ellipsoids

As illustrated earlier in Fig. 3, for a multimodal distribution mul-

tiple ellipsoids represent a much better approximation to the iso-

likelihood contour than a single ellipsoid containing all the live

points. At likelihood levels around which modes separate, X-means

will often partition the point set into a number of distinct clusters, but

the (enlarged) ellipsoids enclosing distinct identified clusters will

tend to overlap (see Fig. 4) and the partitioning will be discarded.

At some sufficiently higher likelihood level, the corresponding el-

lipsoids will usually no longer overlap, but it is wasteful to wait for

Figure 4. If the ellipsoids corresponding to different modes are overlapping,

then sampling from one ellipsoid, enclosing all the points, can be quite

inefficient. Multiple overlapping ellipsoids present a better approximation

to the iso-likelihood contour of a multimodal distribution.

this to occur. Hence, in both of our new sampling methods described

below it will prove extremely useful to be able to sample consis-

tently from ellipsoids that may be overlapping, without biassing the

resultant evidence value or posterior inferences.

Suppose at iteration i of the nested sampling algorithm, a set of

live points is partitioned into K clusters by X-means, with the kth

cluster having nk points. Using the covariance matrices of each set

of points, each cluster then is enclosed in an ellipsoid which is then

expanded using an enlargement factor f i,k . The volume Vk of each

resulting ellipsoid is then found and one ellipsoid is chosen with

probability pk equal to its volume fraction:

pk =
Vk

Vtot

, (15)

where Vtot =
∑K

k=1
Vk . Samples are then drawn from the chosen

ellipsoid until a sample is found for which the hard constraint L >

Li is satisfied, where Li is the lowest-likelihood value among all the

live points under consideration. There is, of course, a possibility that

the chosen ellipsoid overlaps with one or more other ellipsoids. In

order to take an account of this possibility, we find the number of

ellipsoids, ne, in which the sample lies and only accept the sample

with probability 1/ne. This provides a consistent sampling procedure

in all cases.

5.2 Method 1: simultaneous ellipsoidal sampling

This method is built in large part around the above technique for

sampling consistently from potentially overlapping ellipsoids. At

each iteration i of the nested sampling algorithm, the method pro-

ceeds as follows. The full set of N live points is partitioned using

X-means, which returns K clusters with n1, n2, . . . , nK points, re-

spectively. For each cluster, the covariance matrix of the points is

calculated and used to construct an ellipsoid that just encloses all

the points; each ellipsoid is then expanded by the enlargement factor

f i,k (which can depend on iteration number i as well as the number

of points in the kth ellipsoid, as outlined above). This results in a set

of K ellipsoids e1, e2, . . . , eK at each iteration, which we refer to as

sibling ellipsoids. The lowest-likelihood point (with likelihood Li )

from the full set of N live points is then discarded and replaced by a

new point drawn from the set of sibling ellipsoids, correctly taking

into account any overlaps.

It is worth noting that at early iterations of the nested sampling

process, X-means usually identifies only K = 1 cluster and the cor-

responding (enlarged) ellipsoid completely encloses the prior range,

in which case sampling is performed from the prior range instead.

Beyond this minor inconvenience, it is important to recognize that

any drawbacks of the X-means clustering method have little impact

on the accuracy of the calculated evidence or posterior inferences.

We use X-means only to limit the remaining prior space from which

to sample, in order to increase efficiency. If X-means returns greater

or fewer than the desired number of clusters, one would still sam-

ple uniformly from the remaining prior space since the union of

the corresponding (enlarged) ellipsoids would still enclose all the

remaining prior volume. Hence, the evidence calculated and pos-

terior inferences would remain accurate to within the uncertainties

discussed in Section 3.4.

5.3 Method 2: clustered ellipsoidal sampling

This method is closer in spirit to the recursive clustering technique

advocated by Shaw et al. At the ith iteration of the nested sampling

algorithm, the method proceeds as follows. The full set of N live
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Multimodal nested sampling 455

points is again partitioned using X-means to obtain K clusters with

n1, n2, . . . , nK points, respectively, and each cluster is enclosed in

an expanded ellipsoid as outlined above. In this second approach,

however, each ellipsoid is then tested to determine if it intersects

with any of its sibling ellipsoids or any other non-ancestor ellip-

soid.1 The nested sampling algorithm is then continued separately

for each cluster contained within a non-intersecting ellipsoid ek , af-

ter in each case (i) topping up the number of points to N by sampling

N −nk points within ek that satisfy L > Li ; and (ii) setting the cor-

responding remaining prior volume to X
(k)
i = Xi−1(nk/N). Finally,

the remaining set of Nr points contained within the union of the

intersecting ellipsoids at the iteration i is topped up to N using the

method for sampling from such a set of ellipsoids outlined in Sec-

tion 5.1.4, and the associated remaining prior volume is set to Xi =
Xi−1(Nr/N).

As expected, in the early stages, X-means again usually identifies

only K = 1 cluster and this is dealt with as in Method 1. Once again,

the drawbacks of X-means do not have much impact on the accuracy

of the global evidence determination. If X-means finds fewer clusters

than the true number of modes, then some clusters correspond to

more than one mode and will have an enclosing ellipsoid larger

than it would if X-means had done a perfect job; this increases the

chances of the ellipsoid intersecting with some of its sibling or non-

ancestor ellipsoids. If this ellipsoid is non-intersecting, then it can

still split later and hence we do not lose accuracy. On the other hand,

if X-means finds more clusters than the true number of modes, it is

again likely that the corresponding enclosing ellipsoids will overlap.

It is only in the rare case where some of such ellipsoids are non-

intersecting, that the possibility exists for missing part of the true

prior volume. Our use of an enlargement factor strongly mitigates

against this occurring. Indeed, we have not observed such behaviour

in any of our numerical tests.

5.4 Evaluating ‘local’ evidence

For a multimodal posterior, it can prove useful to estimate not only

the total (global) evidence, but also the ‘local’ evidence associated

with each mode of the distribution. There is inevitably some arbi-

trariness in defining these quantities, since modes of the posterior

necessarily sit on top of some general ‘background’ in the prob-

ability distribution. Moreover, modes lying close to one another

in the parameter space may only ‘separate out’ at relatively high

likelihood levels. None the less, for well-defined, isolated modes, a

reasonable estimate of the posterior volume that each contains (and

hence the local evidence) can be defined and estimated. Once the

nested sampling algorithm has progressed to a likelihood level such

that (at least locally) the ‘footprint’ of the mode is well defined, one

needs to identify at each subsequent iteration those points in the

live set belonging to that mode. The practical means of performing

this identification and evaluating the local evidence for each mode

differs between our two sampling methods.

5.4.1 Method 1

The key feature of this method is that at each iteration the full live set

of N points is evolved by replacing the lowest-likelihood point with

one drawn (consistently) from the complete set of (potentially over-

lapping) ellipsoids. Thus, once a likelihood level is reached such

1 A non-ancestor ellipsoid of ek is any ellipsoid that was non-intersecting at

an earlier iteration and does not completely enclose ek .

that the footprint of some mode is well defined, to evaluate its local

evidence, one requires that at each subsequent iteration the points

associated with the mode are consistently identified as a single clus-

ter. If such an identification were possible, at the ith iteration one

would simply proceed as follows: (i) identify the cluster (contained

within the ellipsoid el ) to which the point with the lowest likelihood

Li value belongs; (ii) update the local prior volume of each of the

clusters as X
(k)
i = (nk/N)Xi , where nk is the number of points belong-

ing to the kth cluster and Xi is the total remaining prior volume; and

(iii) increment the local evidence of the cluster contained within el

by 1

2
L i (X

(l)
i−1 − X

(l)
i+1). Unfortunately, we have found that X-means

is not capable of consistently identifying the points associated with

some mode as a single cluster. Rather, the partitioning of the live

point set into clusters can vary appreciably from one iteration to the

next. PG-means produced reasonably consistent results, but as men-

tioned above is far too computationally intensive. We are currently

exploring ways to reduce the most computationally expensive step

in PG-means of calculating the critical values for the Kolmogorov–

Smirnov test, but this is not yet completed. Thus, in the absence of a

fast and consistent clustering algorithm, it is currently not possible

to calculate the local evidence of each mode with our simultaneous

ellipsoidal sampling algorithm.

5.4.2 Method 2

The key feature of this method is that once a cluster of points have

been identified such that its (enlarged) enclosing ellipsoid does not

intersect with any of its sibling ellipsoids (or any other non-ancestor

ellipsoid), that set of points are evolved independently of the rest (af-

ter topping up the number of points in the cluster to N). This approach

therefore has some natural advantages in evaluating local evidence.

There remain, however, some problems associated with modes that

are sufficiently close to one another in the parameter space that they

are only identified as separate clusters (with non-intersecting en-

closing ellipsoids) once the algorithm has proceeded to likelihood

values somewhat larger than the value at which the modes actually

separate. In such cases, the local evidence of each mode will be

underestimated. The simplest solution to this problem would be to

increment the local evidence of each cluster even if its correspond-

ing ellipsoid intersects with other ellipsoids, but as mentioned above

X-means cannot produce the consistent clustering required. In this

case, we have the advantage of knowing the iteration beyond which

a non-intersecting ellipsoid is regarded as a separate mode (or a

collection of modes) and hence we can circumvent this problem by

storing information (eigenvalues, eigenvectors, enlargement factors,

etc.) of all the clusters identified, as well as the rejected points and

their likelihood values, from the last few iterations. We then attempt

to match the clusters in the current iteration to those identified in the

last few iterations, allowing for the insertion or rejection of points

from clusters during the intervening iterations. On finding a match

for some cluster in a previous iteration i′, we check to see which (if

any) of the points discarded between the iteration i′ and the current

iteration i were members of the cluster. For each iteration j (between

i′ and i inclusive) where this occurs, the local evidence of the cluster

is incremented by L j X j , where Lj and X j are the lowest likelihood

value and the remaining prior volume corresponding to the iteration

j. This series of operations can be performed quite efficiently; even

storing information as far as back as 15 iterations does not increase

the running time of the algorithm appreciably. Finally, we note that

if closely lying modes have very different amplitudes, the mode(s)

with low amplitude may never be identified as being separate and
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456 F. Feroz and M. P. Hobson

will eventually be lost as the algorithm moves to higher likelihood

values.

5.5 Dealing with degeneracies

As will be demonstrated in Section 7, the above methods are very ef-

ficient and robust at sampling from multimodal distributions where

each mode is well described at most likelihood levels by a multi-

variate Gaussian. Such posteriors might be described colloquially as

resembling a ‘bunch of grapes’ (albeit in many dimensions). In some

problems, however, some modes of the posterior might possess a

pronounced curving degeneracy so that it more closely resembles

a (multidimensional) ‘banana’. Such features are problematic for

all sampling methods, including our proposed ellipsoidal sampling

techniques. Fortunately, we have found that a simple modification

to our methods allows for efficient sampling even in the presence of

pronounced degeneracies.

The essence of the modification is illustrated in Fig. 5. Consider

an isolated mode with an iso-likelihood contour displaying a pro-

nounced curved degeneracy. X-means will usually identify all the

live points contained within it as belonging to a single cluster and

hence the corresponding (enlarged) ellipsoid will represent a very

poor approximation. If, however, one divides each cluster identi-

fied by X-means into a set of subclusters, one can more accurately

approximate the iso-likelihood contour with many small overlap-

ping ellipsoids and sample from them using the method outlined in

Section 5.1.4.

To sample with maximum efficiency from a pronounced degen-

eracy (particularly in higher dimensions), one would like to divide

every cluster found by X-means into as many subclusters as possible

to allow maximum flexibility in following the degeneracy. In order

to be able to calculate covariance matrices, however, each subcluster

must contain at least (D + 1) points, where D is the dimensional-

ity of the parameter space. This in turn sets an upper limit on the

number of subclusters.

Subclustering is performed through an incremental k-means al-

gorithm with k = 2. The process starts with all the points assigned to

the original cluster. At iteration i of the algorithm, a point is picked

at random from the subcluster cj that contains the most points. This

point is then set as the centroid, mi+1, of a new cluster ci+1. All

those points in any of the other subclusters that are closer to mi+1

than the centroid of their own subcluster, and whose subcluster has

more than (D + 1) points are then assigned to ci+1 and mi+1 is up-

dated. All the points not belonging to ci+1 are again checked with

the updated mi+1 until no new point is assigned to ci+1. At the end

of the iteration i, if ci+1 has less than (D + 1) points then the points

Figure 5. Cartoon of the subclustering approach used to deal with degen-

eracies. The true iso-likelihood contour contains the shaded region. The

large enclosing ellipse is typical of that constructed using our basic method,

whereas subclustering produces the set of small ellipses.

in cj that are closest to mi+1 are assigned to ci+1 until ci+1 has (D +
1) points. In the case that cj has fewer than 2(D + 1) points, then

points are assigned from ci+1 to cj . The algorithm stops when, at

the start of an iteration, the subcluster with most points has fewer

than 2(D + 1) members, since that would result in a new subcluster

with fewer than 2(D + 1) points. This process can result in quite

a few subclusters with more than 2(D + 1) but less than 2(D + 1)

points and hence there is a possibility for even more subclusters to

be formed. This is achieved by finding the subcluster cl closest to

the cluster, ck . If the sum of points in cl and ck is greater than or

equal to 3(D + 1), an additional subcluster is created out of them.

Finally, we further reduce the possibility that the union of the

ellipsoids corresponding to different subclusters might not enclose

the entire remaining prior volume as follows. For each subcluster

ck , we find the one point in each of the n nearest subclusters that

is closest to the centroid of ck . Each such point is then assigned to

ck and its original subcluster, that is, it is ‘shared’ between the two

subclusters. In this way, all the subclusters and their corresponding

ellipsoids are expanded, jointly enclosing the whole of the remaining

prior volume. In our numerical simulations, we found that setting

n = 5 performs well.

6 M E T RO P O L I S N E S T E D S A M P L I N G

An alternative method for drawing samples from the prior within

the hard constraint L > Li where Li is the lowest likelihood value at

an iteration i, is the standard Metropolis algorithm (see e.g. MacKay

2003) as suggested in Sivia et al. (2006). In this approach, at each

iteration, one of the live points, Θ, is picked at random and a new

trial point, Θ′, is generated using a symmetric proposal distribution

Q(Θ′, Θ). The trial point Θ′ is then accepted with probability

α =

{

1 if π (Θ′) > π (Θ) and L(Θ′) > L i

π (Θ′)/π (Θ) if π (Θ′) � π (Θ) and L(Θ′) > L i

0 otherwise

(16)

A symmetric Gaussian distribution is often used as the proposal dis-

tribution. The dispersion σ of this Gaussian should be sufficiently

large compared to the size of the region satisfying L > Li that the

chain is reasonably mobile, but without being so large that the like-

lihood constraint stops nearly all proposed moves. Since an inde-

pendent sample is required, nstep steps are taken by the Metropolis

algorithm so that the chain diffuses far away from the starting po-

sition Θ and the memory of it is lost. In principle, one could cal-

culate convergence statistics to determine at which point the chain

is sampling from the target distribution. Sivia et al. (2006) propose,

however, that one should instead simply take nstep ≈ 20 steps in all

cases. The appropriate value of σ tends to diminish as the nested

algorithm moves towards higher likelihood regions and decreasing

prior mass. Hence, the value of σ is updated at the end of each nested

sampling iteration, so that the acceptance rate is around 50 per cent,

as follows:

σ →
{

σe1/Na if Na > Nr

σe−1/Nr if Na � Nr

, (17)

where Na and Nr are the numbers of accepted and rejected samples

in the latest Metropolis sampling phase.

In principle, this approach can be used quite generally and does

not require any clustering of the live points or construction of el-

lipsoidal bounds. In order to facilitate the evaluation of ‘local’ evi-

dence, however, we combine this approach with the clustering pro-

cess performed in Method 2 above to produce a hybrid algorithm,

which we describe below. Moreover, as we show in Section 7.1,
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Multimodal nested sampling 457

this hybrid approach is significantly more efficient in sampling from

multimodal posteriors than using just the Metropolis algorithm with-

out clustering.

At each iteration of the nested sampling process, the set of live

points is partitioned into clusters, (enlarged) enclosing ellipsoids

are constructed, and overlap detection is performed precisely in

the clustered ellipsoidal method. Once again, the nested sampling

algorithm is then continued separately for each cluster contained

within a non-intersecting ellipsoid ek . This proceeds by (i) topping

up the number of points in each cluster to N by sampling N −nk

points that satisfy L > Li using the Metropolis method described

above, and (ii) setting the corresponding remaining prior mass to

X
(k)
i = Xi−1(nk/N). Prior to topping up a cluster in step (i), a ‘mini’

burn-in is performed during which the width σk of the proposal

distribution is adjusted as described above; the width σk is then kept

constant during the topping-up step.

During the sampling, the starting point Θ for the random walk is

chosen by picking one of the ellipsoids with probability pk equal to

its volume fraction:

pk =
Vk

Vtot

, (18)

where Vk is the volume occupied by the ellipsoid ek and Vtot =
∑K

k=1
Vk , and then picking randomly from the points lying inside

the chosen ellipsoid. This is done so that the number of points in-

side the modes is proportional to the prior volume occupied by

those modes. We also supplement condition (16) for a trial point to

be accepted by the requirement that it must not lie inside any of the

non-ancestor ellipsoids in order to avoid oversampling any region

of the prior space. Moreover, in step (i) if any sample accepted dur-

ing the topping-up step lies outside its corresponding (expanded)

ellipsoid, then that ellipsoid is dropped from the list of those to

be explored as an isolated likelihood region in the current iteration

since that would mean that the region has not truly separated from

the rest of the prior space.

Metropolis nested sampling can be quite efficient in higher dimen-

sional problems as compared with the ellipsoidal sampling methods

since, in such cases, even a small region of an ellipsoid lying out-

side the true iso-likelihood contour would occupy a large volume

and hence result in a large drop in efficiency. Metropolis nested sam-

pling method does not suffer from this curse of dimensionality as it

only uses the ellipsoids to separate the isolated likelihood regions

and consequently the efficiency remains approximately constant at

∼1/nstep, which is 5 per cent in our case. This will be illustrated in

the next section in which Metropolis nested sampling is denoted as

Method 3.

7 A P P L I C AT I O N S

In this section, we apply the three new algorithms discussed in the

previous sections to two toy problems to demonstrate that they in-

deed calculate the Bayesian evidence and make posterior inferences

accurately and efficiently.

7.1 Toy model 1

For our first example, we consider the problem investigated by Shaw

et al. (2007) as their Toy Model II, which has a posterior of known

functional form so that an analytical evidence is available to com-

pare with those found by our nested sampling algorithms. The two-

dimensional posterior consists of the sum of five Gaussian peaks of

varying width, σk , and amplitude, Ak , placed randomly within the

Table 1. The parameters Xk , Yk , Ak and σk defining the five Gaussians in

Fig. 6. The log-volume (or local log-evidence) of each Gaussian is also

shown.

Peak X Y A σ Local lnZ

1 −0.400 −0.400 0.500 0.010 −9.210

2 −0.350 0.200 1.000 0.010 −8.517

3 −0.200 0.150 0.800 0.030 −6.543

4 0.100 −0.150 0.500 0.020 −7.824

5 0.450 0.100 0.600 0.050 −5.809

Figure 6. Toy Model 1a: a two-dimensional posterior consisting of the sum

of five Gaussian peaks of varying widths and heights placed randomly in

the unit circle in the x–y plane. The dots denote the set of live points at each

successive likelihood level in the nested sampling algorithm using Method

1 (simultaneous ellipsoidal sampling).

Figure 7. As in Fig. 6, but using Method 2 (clustered ellipsoidal sampling).

The different colours denote points assigned to isolated clusters as the algo-

rithm progresses.

unit circle in the x–y plane. The parameter values defining the Gaus-

sians are listed in Table 1, leading to an analytical total log-evidence

lnZ = −5.271. The analytical ‘local’ log-evidence associated with

each of the five Gaussian peaks is also shown in the table.

The results of applying Method 1 (simultaneous ellipsoidal sam-

pling), and Method 2 (clustered ellipsoidal sampling) to this prob-

lem are illustrated in Figs 6 and 7, respectively; a very similar plot

to Fig. 7 is obtained for Method 3 (Metropolis nested sampling).

For all three methods, we used N = 300 live points, switched off

the subclustering modification (for Methods 1 and 2) outlined in

Section 5.5, and assumed a flat prior within the unit circle for the

parameters X and Y in this two-dimensional problem. In each figure,

the dots denote the set of live points at each successive likelihood

level in the nested sampling algorithm. For Methods 2 and 3, the
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458 F. Feroz and M. P. Hobson

Table 2. The calculated global log-evidence, its uncertainty and the number

of likelihood evaluations required in analysing toy model 1a using Method 1

(simultaneous nested sampling), Method 2 (clustered ellipsoidal sampling)

and the recursive clustering method described by Shaw et al. (2007). The

values correspond to a single run of each algorithm. The analytical global

log-evidence is −5.271.

Toy model 1a Method 1 Method 2 Method 3 Shaw et al.

lnZ −5.247 −5.178 −5.358 −5.296

Error 0.110 0.112 0.115 0.084

Nlike 39 911 12 569 161 202 101 699

different colours denote points assigned to isolated clusters as the

algorithm progresses. We see that all three algorithms sample ef-

fectively from all the peaks, even correctly isolating the narrow

Gaussian peak (cluster 2) superposed on the broad Gaussian mode

(cluster 3).

The global log-evidence values, their uncertainties and the num-

ber of likelihood evaluations required for each method are shown

in Table 2. Methods 1, 2 and 3, all produce evidence values that are

accurate to within the estimated uncertainties. Also, listed in the ta-

ble are the corresponding quantities obtained by Shaw et al. (2007),

which are clearly consistent. Of particular interest, is the number

of likelihood evaluations required to produce these evidence esti-

mates. Methods 1 and 2 made around 40 000 and 10 000 likelihood

evaluations, respectively, whereas the Shaw et al. method required

more than three times this number (in all cases just one run of the

algorithm was performed, since multiple runs are not required to

estimate the uncertainty in the evidence). Method 3 required about

170 000 likelihood evaluations since its efficiency remains constant

at around 6.7 per cent. It should be remembered that Shaw et al.

showed that using thermodynamic integration, and performing 10

separate runs to estimate the error in the evidence, required ∼3.6 ×
106 likelihood evaluations to reach the same accuracy. As an aside,

we also investigated a ‘vanilla’ version of the Metropolis nested

sampling approach, in which no clustering was performed. In this

case, over 570 000 likelihood evaluations were required to estimate

the evidence to the same accuracy. This drop in efficiency relative to

Method 3 resulted from having to sample inside different modes us-

ing a proposal distribution with the same width σ in every case. This

leads to a high rejection rate inside narrow modes and random walk

behaviour in the wider modes. In higher dimensions, this effect will

be exacerbated. Consequently, the clustering process seems crucial

for sampling efficiently from multimodal distributions of different

sizes using Metropolis nested sampling.

Using Methods 2 (clustered ellipsoidal sampling) and 3 (Metropo-

lis sampling), it is possible to calculate the ‘local’ evidence and

make posterior inferences for each peak separately. For Method 2,

the mean values inferred for the parameters X and Y and the local ev-

idence thus obtained are listed in Table 3, and clearly compare well

Table 3. The inferred mean values of X and Y and the local evidence for

each Gaussian peak in Toy model 1a using Method 2 (clustered ellipsoidal

sampling).

Peak X Y Local lnZ

1 −0.400 ± 0.002 −0.400 ± 0.002 −9.544 ± 0.162

2 −0.350 ± 0.002 0.200 ± 0.002 −8.524 ± 0.161

3 −0.209 ± 0.052 0.154 ± 0.041 −6.597 ± 0.137

4 0.100 ± 0.004 −0.150 ± 0.004 −7.645 ± 0.141

5 0.449 ± 0.011 0.100 ± 0.011 −5.689 ± 0.117

Table 4. The true and estimated global log-evidence, local log-evidence

and number of likelihood evaluations required in analysing toy model 1b

using Method 2 (clustered ellipsoidal sampling) and Method 3 (Metropolis

sampling).

Toy model 1b Real Value Method 2 Method 3

lnZ 4.66 4.47 ± 0.20 4.52 ± 0.20

Local lnZ1 4.61 4.38 ± 0.20 4.40 ± 0.21

Local lnZ2 1.78 1.99 ± 0.21 2.15 ± 0.21

Local lnZ3 0.00 0.09 ± 0.20 0.09 ± 0.20

Nlike 130 529 699 778

with the true values given in Table 1. Similar results were obtained

using Method 3.

In real applications, the parameter space is usually of higher di-

mension and different modes of the posterior may vary in amplitude

by more than an order of magnitude. To investigate this situation, we

also considered a modified problem in which three 10-dimensional

Gaussians are placed randomly in the unit hypercube [0, 1] and have

amplitudes differing by two orders of magnitude. We also make one

of the Gaussians elongated. The analytical local log-evidence val-

ues and those found by applying Method 2 (without subclustering)

and Method 3 are shown in Table 4. We used N = 600 live points

with both of our methods. We see that both methods detected all

three Gaussians and calculated their evidence values with reason-

able accuracy within the estimated uncertainties. Method 2 required

approximately four times fewer likelihood calculations than Method

3, since in this problem the ellipsoidal methods can still achieve very

high efficiency (28 per cent), while the efficiency of the Metropolis

method remains constant (5 per cent) as discussed in Section 6.

7.2 Toy model 2

We now illustrate the capabilities of our methods in sampling from

a posterior containing multiple modes with pronounced (curving)

degeneracies in high dimensions. Our toy problem is based on that

investigated by Allanach et al. (2007), but we extend it to more than

two dimensions.

The likelihood function is defined as

L(θ) = circ(θ; c1, r1, w1) + circ(θ; c2, r2, w2), (19)

where

circ(θ; c, r , w) =
1

√
2πw2

exp

[

−
(|θ − c| − r )2

2w2

]

. (20)
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Figure 8. Toy model 2: a two-dimensional example of the likelihood func-

tion defined in equations (19) and (20).
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Multimodal nested sampling 459

Table 5. The true and estimated global and local logZ for toy model 3, as a function of the dimensions D of the parameter space, using Method 2 (with

subclustering) and Method 3.

Analytical Method 2 (with sub-clustering) Method 3

D lnZ Local lnZ lnZ Local lnZ1 Local lnZ2 lnZ Local lnZ1 Local lnZ2

2 −1.75 −2.44 −1.71 ± 0.08 −2.41 ± 0.09 −2.40 ± 0.09 −1.63 ± 0.08 −2.35 ± 0.09 −2.31 ± 0.09

5 −5.67 −6.36 −5.78 ± 0.13 −6.49 ± 0.14 −6.46 ± 0.14 −5.69 ± 0.13 −6.35 ± 0.13 −6.41 ± 0.14

10 −14.59 −15.28 −14.50 ± 0.20 −15.26 ± 0.20 −15.13 ± 0.20 −14.31 ± 0.19 −15.01 ± 0.20 14.96 ± 0.20

20 −36.09 −36.78 −35.57 ± 0.30 −36.23 ± 0.30 −36.20 ± 0.30 −36.22 ± 0.30 −36.77 ± 0.31 −37.09 ± 0.31

30 −60.13 −60.82 −60.49 ± 0.39 −61.69 ± 0.39 −60.85 ± 0.39

50 −112.42 −113.11 −112.27 ± 0.53 −112.61 ± 0.53 −113.53 ± 0.53

70 −168.16 −168.86 −167.71 ± 0.64 −167.98 ± 0.64 −169.32 ± 0.65

100 −255.62 −256.32 −253.72 ± 0.78 −254.16 ± 0.78 −254.77 ± 0.78

In two dimensions, this toy distribution represents two well sepa-

rated rings, centred on the points c1 and c2, respectively, each of ra-

dius r and with a Gaussian radial profile of width w (see Fig. 8). With

a sufficiently small w value, this distribution is representative of the

likelihood functions one might encounter in analysing forthcoming

particle physics experiments in the context of beyond-the-standard-

model paradigms; in such models the bulk of the probability lies

within thin sheets or hypersurfaces through the full parameter

space.

We investigate the above distribution up to a 100-dimensional

parameter space θ. In all cases, the centres of the two rings are sep-

arated by 7 units in the parameter space, and we take w1 = w2 =
0.1 and r1 = r2 = 2. We make r1 and r2 equal, since in higher

dimensions any slight difference between these two would result

in a vast difference between the volumes occupied by the rings

and consequently the ring with the smaller r value would occupy

vanishingly small probability volume making its detection almost

impossible. It should also be noted that setting w = 0.1 means the

rings have an extremely narrow Gaussian profile and hence they

represent an ‘optimally difficult’ problem for our ellipsoidal nested

sampling algorithms, even with subclustering, since many tiny ellip-

soids are required to obtain a sufficiently accurate representation of

the iso-likelihood surfaces. For the two-dimensional case, with the

parameters described above, the likelihood function is that shown

in Fig. 8.

Sampling from such a highly non-Gaussian and curved distribu-

tion can be very difficult and inefficient, especially in higher di-

mensions. In such problems, a re-parameterization is usually per-

formed to transform the distribution into one that is geometrically

simpler (see e.g. Dunkley et al. 2005 and Verde et al. 2003), but

such approaches are generally only feasible in low-dimensional

problems. In general, in D dimensions, the transformations usu-

ally employed introduce D −1 additional curvature parameters

and hence become rather inconvenient. Here, we choose not to at-

tempt a re-parameterization, but instead sample directly from the

distribution.

Applying the ellipsoidal nested sampling approaches (Methods 1

and 2) to this problem without using the subclustering modification

would result in highly inefficient sampling as the enclosing ellipsoid

would represent an extremely poor approximation to the ring. Thus,

for this problem, we use Method 2 with subclustering and Method

3 (Metropolis nested sampling). We use 400 live points in both

algorithms. The sampling statistics are listed in Table 5 and Table 6,

respectively. The two-dimensional sampling results using Method

2 (with subclustering) are also illustrated in Fig. 9, in which the set

of live points at each successive likelihood level are plotted; similar

results are obtained using Method 3.

Table 6. The number of likelihood evaluations and sampling efficiency for

Method 2 (with subclustering) and Method 3 when applied to toy model 3,

as a function of the dimension D of the parameter space.

Method 2 (with sub-clustering) Method 3

D Nlike Efficiency Nlike Efficiency

2 27 658 15.98 per cent 76 993 6.07 per cent

5 69 094 9.57 per cent 106 015 6.17 per cent

10 579 208 1.82 per cent 178 882 5.75 per cent

20 43 093 230 0.05 per cent 391 113 5.31 per cent

30 572 542 5.13 per cent

50 1141 891 4.95 per cent

70 1763 253 4.63 per cent

100 3007 889 4.45 per cent
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Figure 9. Toy Model 2: a two-dimensional posterior consisting of two rings

with narrow Gaussian profiles as defined in equation (20). The dots denote

the set of live points at each successive likelihood level in the nested sampling

algorithm using Method 2 (with subclustering).

We see that both methods produce reliable estimates of the global

and local evidence as the dimension D of the parameter space in-

creases. As seen in Table 6, however, the efficiency of Method 2,

even with subclustering, drops significantly with increasing dimen-

sionality. As a result, we do not explore the problem with Method

2 for dimensions greater than D = 20. This drop in efficiency is

caused due to the following reasons. (i) In higher dimensions even a

small region of an ellipsoid that lies outside the true iso-likelihood

contour occupies a large volume and hence results in a drop in sam-

pling efficiency; and (ii) in D dimensions, the minimum number of

points in an ellipsoid can be (D + 1), as discussed in Section 5.5,
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460 F. Feroz and M. P. Hobson

and consequently with a given number of live points, the number of

subclusters decreases with increasing dimensionality, resulting in

a poor approximation to the highly curved iso-likelihood contour.

None the less, Method 3 is capable of obtaining evidence estimates

with reasonable efficiency up to D = 100, and should continue to

operate effectively at even higher dimensionality.

8 BAY E S I A N O B J E C T D E T E C T I O N

We now consider how our multimodal nested sampling approaches

may be used to address the difficult problem of detecting and char-

acterizing discrete objects hidden in some background noise. A

Bayesian approach to this problem in an astrophysical context was

first presented by Hobson & McLachlan (2003, hereinafter HM03),

and our general framework follows this closely. For brevity, we will

consider our data vector D to denote the pixel values in a single

image in which we wish to search for discrete objects, although D

could equally well represent the Fourier coefficients of the image,

or coefficients in some other basis.

8.1 Discrete objects in background

Let us suppose that we are interested in detecting and characterizing

some set of (two-dimensional) discrete objects, each of which is

described by a template τ (x; a), which is parametrized in terms of

a set of parameters a that might typically denote (collectively) the

position (X, Y) of the object, its amplitude A and some measure R

of its spatial extent. In particular, in this example we will assume

circularly symmetric Gaussian-shaped objects defined by

τ (x; a) = A exp

[

−
(x − X )2 + (y − Y )2

2R2

]

, (21)

so that a = {X, Y , A, R}. If Nobj such objects are present and the

contribution of each object to the data is additive, we may write

D = n +
Nobj
∑

k=1

s(ak), (22)

where s (ak) denotes the contribution to the data from the kth discrete

object and n denotes the generalized ‘noise’ contribution to the data

from other ‘background’ emission and instrumental noise. Clearly,

we wish to use the data D to place constraints on the values of the

unknown parameters Nobj and ak(k = 1, . . . , Nobj).

Figure 10. The toy model discussed in Section 8.2. The 200 × 200-pixel test image (left-hand panel) contains eight Gaussian objects of varying widths and

amplitudes; the parameters Xk , Yk , Ak and Rk for each object are listed in Table 7. The right-hand panel shows the corresponding data map with independent

Gaussian noise added with an rms of 2 units.

Table 7. The parameters Xk , Yk , Ak and Rk (k = 1, ... , 8) defining the

Gaussian-shaped objects in Fig. 10.

Object X Y A R

1 43.71 22.91 10.54 3.34

2 101.62 40.60 1.37 3.40

3 92.63 110.56 1.81 3.66

4 183.60 85.90 1.23 5.06

5 34.12 162.54 1.95 6.02

6 153.87 169.18 1.06 6.61

7 155.54 32.14 1.46 4.05

8 130.56 183.48 1.63 4.11

8.2 Simulated data

Our underlying model and simulated data are shown in Fig. 10,

and are similar to the example considered by HM03. The left-hand

panel shows the 200 × 200-pixel test image, which contains eight

Gaussian objects described by equation (21) with the parameters

Xk , Yk , Ak and Rk(k = 1, ... , 8) listed in Table 7. The X and Y

coordinates are drawn independently from the uniform distribution

U(0, 200). Similarly, the amplitude A and size R of each object are

drawn independently from the uniform distributions U(1, 2) and

U(3, 7), respectively. We multiply the amplitude of the first object

by 10 to see how sensitive our nested sampling methods are to this

order of magnitude difference in amplitudes. The simulated data

map is created by adding independent Gaussian pixel noise with

an rms of 2 units. This corresponds to a signal-to-noise ratio 0.5–

1 as compared to the peak amplitude of each object (ignoring the

first object). It can be seen from the figure that with this level of

noise, apart from the first object, only a few objects are (barely)

visible with the naked eye and there are certain areas where the

noise conspires to give the impression of an object where none is

present. This toy problem thus presents a considerable challenge for

any object-detection algorithm.

8.3 Defining the posterior distribution

As discussed in HM03, in analysing the above simulated data map

the Bayesian purist would attempt to infer simultaneously the full

set of parameters Θ ≡ (Nobj, a1, a2, . . . , aNobj
). The crucial com-

plication inherent to this approach is that the length of the parameter

vector Θ is variable, since it depends on the unknown value Nobj.

Thus, any sampling-based approach must be able to move between
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Multimodal nested sampling 461

spaces of different dimensionality, and such techniques are investi-

gated in HM03.

An alternative approach, also discussed by HM03, is simply to

set Nobj = 1. In other words, the model for the data consists of just

a single object and so the full parameter space under consideration

is a = {X, Y , A, R}, which is fixed and only four-dimensional.

Although fixing Nobj = 1, it is important to understand that this

does not restrict us to detecting just a single object in the data map.

Indeed, by modelling the data in this way, we would expect the

posterior distribution to possess numerous local maxima in the four-

dimensional parameter space, each corresponding to the location in

this space of one of the objects present in the image. HM03 show that

this vastly simplified approach is indeed reliable when the objects

of interest are spatially well separated, and so for illustration we

adopt this method here.

In this case, if the background ‘noise’ n is a statistically homo-

geneous Gaussian random field with covariance matrix N = 〈nn
t〉,

then the likelihood function takes the form

L(a) =
exp

{

− 1

2

[

D − s(a)
]t

N
−1

[

D − s(a)
]

}

(2π)Npix/2 |N|1/2
. (23)

In our simple problem, the background is just independent pixel

noise, so N = σ 2
I, where σ is the noise rms. The prior on the

parameters is assumed to be separable, so that

π (a) = π (X )π (Y )π (A)π (R). (24)

The priors on X and Y are taken to be the uniform distribution U(0,

200), whereas the priors on A and R are taken as the uniform distri-

butions U(1, 12.5) and U(2, 9), respectively.

The problem of object identification and characterization then

reduces to sampling from the (unnormalized) posterior to infer pa-

rameter values and calculating the ‘local’ Bayesian evidence for

each detected object to assess the probability that it is indeed real.

In the most straightforward approach, the two competing models

between which we must select are H0 = ‘the detected object is fake

(A = 0)’ and H1 = ‘the detected object is real (A > 0)’. One could,

of course, consider alternative definitions of these hypotheses, such

as setting H0: A � Alim and H1: A > Alim, where Alim is some (non-

zero) cut-off value below which one is not interested in the identified

object.

8.4 Results

Since Bayesian object detection is of such interest, we analyse this

problem using Methods 1–3. For Methods 1 and 2, do not use sub-

clustering, since the posterior peaks are not expected to exhibit

pronounced (curving) degeneracies. We use 400 live points with

Method 1 and 300 with Methods 2 and 3. In Methods 1 and 2, the

initial enlargement factor was set to f 0 = 0.3.

In Fig. 11, we plot the live points, projected into the (X, Y)-

subspace, at each successive likelihood level in the nested sampling

algorithm (above an arbitrary base level) for each method. For the

Methods 2 and 3 results, plotted in panel (b) and (c), respectively, the

different colours denote points assigned to isolated clusters as the al-

gorithm progresses; we note that the base likelihood level used in the

figure was chosen to lie slightly below that at which the individual

clusters of points separate out. We see from the figure, that all three

approaches have successfully sampled from this highly multimodal

posterior distribution. As discussed in HM03, this represents a very

difficult problem for traditional MCMC methods, and illustrates the

clear advantages of our methods. In detail, the figure shows that

Figure 11. The set of live points, projected into the (X, Y)-subspace, at

each successive likelihood level in the nested sampling in the analysis of

the data map in Fig. 10 (right-hand panel) using: panel (a) Method 1 (no

subclustering); panel (b) Method 2 (no subclustering); and panel (c) Method

3. In panels (b) and (c), the different colours denote points assigned to isolated

clusters as the algorithm progresses.

samples are concentrated in eight main areas. A comparison with

Fig. 10 shows that seven of these regions do indeed correspond to the

locations of the real objects (one being a combination of two real ob-

jects), whereas the remaining cluster corresponds to a ‘conspiration’

of the background noise field. The CPU time required for Method

1 was only ∼5 min on a single Itanium 2 (Madison) processor of

the Cosmos supercomputer; each processor has a clock speed of

1.3 GHz, a 3-Mb L3 cache and a peak performance of 5.2 Gflops.

The global evidence results are summarized in Table 8. We see

that all three approaches yield consistent values within the estimated
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462 F. Feroz and M. P. Hobson

Table 8. Summary of the global evidence estimates for toy model 3 and the

number of likelihood evaluations required using different sampling meth-

ods. The ‘null’ log-evidence for the model in which no object is present is

−85 219.44.

Method 1 Method 2 Method 3

(no subclustering) (no subclustering)

lnZ −84 765.63 −84 765.41 −84 765.45

Error 0.20 0.24 0.24

Nlike 55 521 74 668 478 557

uncertainties, which is very encouraging, given their considerable

algorithmic differences. We note, in particular, that Method 3 re-

quired more than six times the number of likelihood evaluations as

compared to the ellipsoidal methods. This is to be expected, given

the non-degenerate shape of the posterior modes and the low dimen-

sionality of this problem. The global evidence value of ∼ −84 765

may be interpreted as corresponding to the model H1 = ‘there is a

real object somewhere in the image’. Comparing this with the ‘null’

evidence value ∼ −85 219 for H0 = ‘there is no real object in the

image’, we see that H1 is strongly favoured, with a log-evidence

difference of � lnZ ∼ 454.

In object detection, however, one is more interested in whether or

not to believe the individual objects identified. As discussed in Sec-

tions 5.3 and 5.4, using Methods 2 and 3, samples belonging to each

identified mode can be separated and local evidence and posterior

inferences calculated. In Table 9, for each separate cluster of points,

we list the mean and standard errors of the inferred object param-

eters and the local log-evidence obtained using Method 2; similar

results are obtained from Method 3. Considering first the local evi-

dence and comparing them with the ‘null’ evidence of −85 219.44,

we see that all the identified clusters should be considered as real

detections, except for cluster 8. Comparing the derived object pa-

rameters with the inputs listed in Table 7, we see that this conclusion

is indeed correct. Moreover, for the seven remaining clusters, we see

that the derived parameter values for each object are consistent with

the true values.

It is worth noting, however, that cluster 6 does in fact correspond

to the real objects 6 and 8, as listed in Table 7. This occurs because

object 8 lies very close to object 6, but has a much lower amplitude.

Although one can see a separate peak in the posterior at the location

of object 8 in Fig. 11(c) (indeed this is visible in all three panels),

Method 2 was not able to identify a separate, isolated cluster for this

object. Thus, one drawback of the clustered ellipsoidal sampling

method is that it may not identify all objects in a set lying very

close together and with very different amplitudes. This problem can

be overcome by increasing the number of objects assumed in the

Table 9. The mean and standard deviations of the evidence and inferred object parameters Xk , Yk , Ak and Rk for toy model 4

using Method 2.

Cluster Local lnZ X Y A R

1 −84 765.41 ± 0.24 43.82 ± 0.05 23.17 ± 0.05 10.33 ± 0.15 3.36 ± 0.03

2 −85 219.61 ± 0.19 100.10 ± 0.26 40.55 ± 0.32 1.93 ± 0.16 2.88 ± 0.15

3 −85 201.61 ± 0.21 92.82 ± 0.14 110.17 ± 0.16 3.77 ± 0.26 2.42 ± 0.13

4 −85 220.34 ± 0.19 182.33 ± 0.48 85.85 ± 0.43 1.11 ± 0.07 4.85 ± 0.30

5 −85 194.16 ± 0.19 33.96 ± 0.36 161.50 ± 0.35 1.56 ± 0.09 6.28 ± 0.29

6 −85 185.91 ± 0.19 155.21 ± 0.31 169.76 ± 0.32 1.69 ± 0.09 6.48 ± 0.24

7 −85 216.31 ± 0.19 154.87 ± 0.32 31.59 ± 0.22 1.98 ± 0.17 3.16 ± 0.20

8 −85 223.57 ± 0.21 158.12 ± 0.17 96.17 ± 0.19 2.02 ± 0.10 2.15 ± 0.09

model from Nobj = 1 to some appropriate larger value, but we will

not explore this further here. It should be noted, however, that failure

to separate out every real object has no impact on the accuracy of the

estimated global evidence, since the algorithm still samples from a

region that includes all the objects.

9 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have presented various methods that allow the ap-

plication of the nested sampling algorithm (Skilling 2004) to gen-

eral distributions, particular those with multiple modes and/or pro-

nounced (curving) degeneracies. As a result, we have produced a

general Monte Carlo technique capable of calculating Bayesian ev-

idence values and producing posterior inferences in an efficient and

robust manner. As such, our methods provide a viable alternative to

MCMC techniques for performing Bayesian analyses of astronom-

ical data sets. Moreover, in the analysis of a set of toy problems, we

demonstrate that our methods are capable of sampling effectively

from posterior distributions that have traditionally caused problems

for MCMC approaches. Of particular interest is the excellent per-

formance of our methods in Bayesian object detection and valida-

tion, but our approaches should provide advantages in all areas of

Bayesian astronomical data analysis.

A critical analysis of Bayesian methods and MCMC sampling

has recently been presented by Bryan et al. (2007), who advocate

a frequentist approach to cosmological parameter estimation from

the cosmic microwave background power spectrum. While we re-

fute wholeheartedly their criticisms of Bayesian methods per se, we

do have sympathy with their assessment of MCMC methods as a

poor means of performing a Bayesian inference. In particular, Bryan

et al. (2007) note that for MCMC sampling methods ‘if a posterior

is comprised of two narrow, spatially separated Gaussians, then the

probability of transition from one Gaussian to the other will be van-

ishingly small. Thus, after the chain has rattled around in one of

the peaks for a while, it will appear that the chain has converged;

however, after some finite amount of time, the chain will suddenly

jump to the other peak, revealing that the initial indications of con-

vergence were incorrect. They also go on to point out that MCMC

methods often require considerable tuning of the proposal distri-

bution to sample efficiently, and that by their very nature MCMC

samples are concentrated at the peak(s) of the posterior distribu-

tion often leading to underestimation of confidence intervals when

time allows only relatively few samples to be taken. We believe our

multimodal nested sampling algorithms address all these criticisms.

Perhaps of most relevance is the claim by Bryan et al. (2007) that

their analysis of the one-year WMAP (Bennett et al. 2003) identifies

two distinct regions of high posterior probability in the cosmological

parameter space. Such multimodality suggests that our methods will
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be extremely useful in analysing WMAP data and we will investigate

this in a forthcoming publication.

The progress of our multimodel nested sampling algorithms based

on ellipsoidal sampling (Methods 1 and 2) is controlled by three

main parameters: (i) the number of live points N; (ii) the initial

enlargement factor f0; and (iii) the rate α at which the enlarge-

ment factor decreases with decreasing prior volume. The approach

based on Metropolis nested sampling (Method 3) depends only on

N. These values can be chosen quite easily as outlined below and

the performance of the algorithm is relatively insensitive to them.

First, N should be large enough that, in the initial sampling from the

full prior space, there is a high probability that at least one point lies

in the ‘basin of attraction’ of each mode of the posterior. In later

iterations, live points will then tend to populate these modes. Thus,

as a rule of thumb, one should take N � Vπ/Vmode, where Vmode is

(an estimate of) the volume of the posterior mode containing the

smallest probability volume (of interest) and Vπ is the volume of

the full prior space. It should be remembered, of course, that N

must always exceed the dimensionality D of the parameter space.

Secondly, f0 should usually be set in the range 0–0.5. At the initial

stages, a large value of f0 is required to take into account the error in

approximating a large prior volume with ellipsoids constructed from

limited number of live points. Typically, a value of f 0 ∼ 0.3 should

suffice for N ∼ 300. The dynamic enlargement factor f i,k gradually

goes down with decreasing prior volume and consequently, increas-

ing the sampling efficiency as discussed in Section 5.1.2. Thirdly,

α should be set in the range 0–1, but typically a value of α ∼ 0.2 is

appropriate for most problems. The algorithm also depends on a few

additional parameters, such as the number of previous iterations to

consider when matching clusters in Method 2 (see Section 5.3), and

the number of points shared between subclusters when sampling

from degeneracies (see Section 5.5), but there is generally no need

to change them from their default values.

Looking forward to the further development of our approach,

we note that the new methods presented in this paper operate by

providing an efficient means for performing the key step at each it-

eration of a nested sampling process, namely drawing a point from

the prior within the hard constraint that its likelihood is greater than

that of the previous discarded point. In particular, we build on the el-

lipsoidal sampling approaches previously suggested by Mukherjee

et al. (2006) and Shaw et al. (2007). One might, however, consider

replacing each hard-edged ellipsoidal bound by some softer-edged

smooth probability distribution. Such an approach would remove the

potential (but extremely unlikely) problem that some part of the true

iso-likelihood contour may lie outside the union of the ellipsoidal

bounds, but it does bring additional complications. In particular,

we explored the use of multivariate Gaussian distributions defined

by the covariance matrix of the relevant live points, but found that

the large tails of such distributions considerably reduced the sam-

pling efficiency in higher dimensional problems. The investigation

of alternative distributions with heavier tails is ongoing. Another

difficulty in using soft-edged distributions is that the method for

sampling consistently from overlapping regions becomes consider-

ably more complicated, and this too is currently under investigation.

We intend to apply our new multimodal nested sampling methods

to a range of astrophysical data-analysis problems in a number of

forthcoming papers. Once we are satisfied that the code performs as

anticipated in these test cases, we plan to make a FORTRAN library

containing our routines publicly available. Anyone wishing to use

our code prior to the public release should contact the authors.
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