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Abstract—The accurate diagnosis of Alzheimers disease (AD)
is essential for patient care and will be increasingly important as
disease modifying agents become available, early in the course
of the disease. Although studies have applied machine learning
methods for the computer aided diagnosis (CAD) of AD, a
bottleneck in the diagnostic performance was shown in previous
methods, due to the lacking of efficient strategies for representing
neuroimaging biomarkers. In this study, we designed a novel
diagnostic framework with deep learning architecture to aid the
diagnosis of AD. This framework uses a zero-masking strategy for
data fusion to extract complementary information from multiple
data modalities. Compared to the previous state-of-the-art work-
flows, our method is capable of fusing multi-modal neuroimaging
features in one setting and has the potential to require less
labelled data. A performance gain was achieved in both binary
classification and multi-class classification of AD. The advantages
and limitations of the proposed framework are discussed.

Index Terms—Alzheimer’s Disease, Classification, Neuroimag-
ing, MRI, PET, Deep Learning.

I. INTRODUCTION

A
LZHEIMER’s disease (AD) is a degenerative brain dis-

order which is characterised by a progressive dementia

that is charactered by the degeneration of specific nerve cells,

presence of neuritic plaques and neurofibrillary tangles [1].

A decline in memory and other cognitive functions are the

usual early syndromes. AD will be a global burden over the

coming decades, due to the increasing age of societies. It was

reported that in 2006 there were 26.6 million AD cases in

the world, including about 56% of the cases that are at the

early stage. In 2050, the population of the AD patients is

predicted to grow fourfold to 106.8 million [2]. The precise

diagnosis of AD was considered as a difficult clinical task with

insufficient specificity because the evaluation of the mental

status cannot be made when the consciousness is impaired.
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Another difficulty is caused by the confusion of other non-

AD dementia syndromes. Mild Cognitive Impairment (MCI),

a prodromal stage of AD, has drawn attention of researchers

recently, because it is useful for clinical trials. Though MCI

does not notably interfere with daily activities, it has been

constantly proven that MCI patients are at a high risk of AD

progression [3]. To conduct prediction of transition risk of

MCI, MCI subjects can be further categorised as MCI Convert-

ers (cMCI) and MCI Non-converters (ncMCI). It is essential

to detect the early stages as well as across the full spectrum

of AD progression, therefore patients are allowed to control

the risk factors, for example isolated systolic hypertension [4],

[5], before irreversible brain damage develops. Neuroimaging

techniques, such as Magnetic Resonance Imaging (MRI) [6]–

[11] and Positron Emission Tomography (PET) [12]–[18],

have been widely used in the assessment of AD, along with

many other non-imaging biomarkers [6], [19], [20].

Machine learning methods have been proposed to aid the di-

agnosis of AD. Pre-computed medical descriptors were widely

used to represent biomedical images. Approximate measure-

ments, such as the volume [21] and the cerebral metabolic

rate of glucose (CMRGlc) [22], were normally computed from

segmented 3D brain regions of interest (ROI), and were used

for AD classification with Support Vector Machine (SVM)

[23], Bayesian method [24] or other methods [25], [26].

However, there are several constraints in such work-flows. The

methods based on these conventional machine learners often

work well in binary classification, such as categorising AD

subjects from normal control (NC) subjects, but it is difficult

to extend them to multi-classes [27]. As a result, although

the diagnosis of AD should be naturally modelled as a multi-

class classification problem, it was normally simplified as a

set of binary classification tasks [23], [28] which distinguish

AD or MCI subjects from NC subjects. Another constraint is

the embedding of clinical prior knowledge. A method based

on the graph cut algorithm was proposed recently by Liu

et al. [10]. This work-flow adjusted the graph cut algorithm

with parameters corresponding to the relationships between

different stages of AD. Though such customisation tends to

yield promising classification results, the work-flow can be

sensitive to changes in the dataset and can be difficult to

extend to a large scale. Another challenge of AD diagnosis

is to represent the original biomarkers in an unsupervised

approach. Some frameworks reduces the dimensionality of

each type of biomarker in a supervised way and then fuses

the feature modalities to form a new feature space [29]–

[31]. Such work-flows depend heavily on the quantity of the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TBME.2014.2372011

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. 2

labelled samples, which are difficult to achieve. Separating the

dimensionality reduction and the data fusion may also result

in losing complementary information.

We believe the previous work-flows can be optimised by

designing a new framework to efficiently represent the multi-

modal biomarkers and effectively characterise the multiple

stages of AD. The conventional feature engineering work-

flows with shallow structures and affine data transformation

often simply result in feature repetition or dimensionality

selection. As shown in many recent studies, deep data repre-

sentation can be more efficient than the shallow architectures

in multi-class classification by disentangling complex patterns

in the inputs [32]–[36]. Deep learning architectures extract

high-level features progressively via several layers of feature

representations [37]. The high-level features tend to be more

separable in classification problems due to the sequential

transformations of the feature space.

Brosch and Tam, using MR, reported that multi-layered

learning structure was effective in capturing shape variations of

the brain regions that correlate with demographic and disease

information, such as the ventricle size [38]. In the framework

proposed by Suk et al. [39], one setting of stacked auto-

encoders (SAE) was trained for each image modality, then

the learnt high-level features were further fused with a multi-

kernel support vector machine (MKSVM). In such work-flows,

the single-modal high-level features were learnt regardless of

the other modalities, which may ignore the synergy between

different modalities in the feature learning.

In this study, we propose a novel framework of multi-class

AD diagnosis with deep learning architecture embedded which

benefits from the synergy between multi-modal neuroimaging

features. The framework is constructed with an SAE and a

softmax logistic regressor. The auto-encoders represent the

data in an unsupervised way which can be extended to use

unlabelled data in practice. The proposed framework is capable

of data fusion when multi-modal neuroimaging image data are

available. Following the concepts of de-noising auto-encoder

[40], we applied the zero-mask strategy on bimodal deep

learning tasks to extract the synergy between different image

modalities. By randomly hiding one modality of the training

set, the hidden layers of the neural network tend to be able

to reconstruct the missing modality with corrupted inputs

by inferring the correlations between multi-modal features.

With the softmax regression embedded in the deep learning

architecture, our framework is capable of classifying AD

patients into four AD stages.

The rest of this paper is organised as follows. We introduce

the proposed learning framework and the training strategies

in Section II. The experiments and results of this study are

presented in Section III. We discuss the proposed framework

and conclusions of the paper in sections IV and V.

II. METHODOLOGY

The pipeline of the proposed framework is illustrated in

Fig. 1. In this study, MR and PET data are used as two

input neuroimaging modalities. All collected brain images are

firstly pre-processed and segmented into 83 functional ROI,

and a set of descriptors are computed from each ROI. The

dataset is divided into a training set and a testing set. We

perform Elastic Net [9], [41], [42] only on the training samples

to select the discriminative subset of the feature parameters.

A multi-layered neural network consisting of several auto-

encoders is then trained using the selected feature subset

in the training dataset. Each layer of the network obtains a

higher level of abstraction of the previous layer with non-linear

transformation [43]–[45]. The softmax layer is added on the

top of the stacked auto-encoders for classification. The trained

network is then evaluated with the labelled testing samples.

A. Data Acquisition and Feature Extraction

The neuroimaging data used in this study were obtained

from the Alzheimers Disease Neuroimaging Initiative (ADNI)

database1 [46]. This database was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food

and Drug Administration (FDA), private pharmaceutical com-

panies and non-profit organisations as a 5-year public part-

nership. The primary purpose of ADNI project was to study

the effects of combining multiple biomarkers, such as MRI,

PET and CSF data accompanied with neuropsychological

assessments, to predict the progression of MCI and early AD.

Around 200 normal instances and 400 MCI instances were

followed for 3 years, 200 AD patients were followed within 2

years. Determining the sensitive biomarkers to the progression

of AD might also aid the clinicians to discover new treatments,

as well as other possible biomedical exploration.

We obtained two datasets from ADNI. For the dataset

with only MR images, 816 age and sex matched subjects

were recruited from the ADNI repository and a T1-weighted

MR image was acquired from each subject. We excluded 20

subjects with multiple conversions or reversions as well as

21 MCI subjects whose data were incomplete. We labelled

the MCI subjects that converted to AD from 0.5 to 3 years

from the first scan as MCI converters (cMCI), otherwise the

MCI subjects were labelled as MCI non-converters (ncMCI).

The normal subjects and the AD patients were labelled as

Normal Control (NC) and Alzheimers Disease (AD) [10].

All raw MR images were corrected following the ADNI

MR image protocol, and were non-linearly registered to the

ICBM 152 template [47] using the Image Registration Toolkit

(IRTK) [48]. Only 17 images were excluded because of the

intolerable distortion. Finally, 758 MR subjects were reserved

for the experiments conducted in this study, including 180 AD

subjects, 160 cMCI subjects, 214 ncMCI subjects and 204

normal ageing control subjects.

For the dataset with multi-modal data fusion, 331 age and

sex matched subjects were selected from the baseline cohort,

including 77 NC-, 102 ncMCI-, 67 cMCI-, 85 AD-subjects

with both MR and PET data available. Each instance was

associated with T1-weighted volumes and FDG-PET images.

All the 3D images were pre-processed with the similar work-

flow described earlier for MR images. The PET images were

1The database is available at adni.loni.ucla.edu
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Fig. 1. The proposed diagnostic framework of Alzheimer’s Disease with deep learning architecture embedded.

aligned to the corresponding MR image using FSL FLIRT

[49].

For each registered 3D image, 83 brain regions were

mapped in the template space using multi-atlas propagation

with enhanced registration (MAPER) approach [50]. The grey

matter volumes were extracted from MR images, same as in

[9], [10]. For PET images, we extracted the regional average

CMRGlc feature same as in [22], [51]. We then normalised

features to be between 0 and 1 to support the sigmoidal

decoders by shifting the negative values and rescaling.

B. Learning Framework

1) Pre-Training Stacked Auto-Encoders: We applied

stacked auto-encoders (SAE) [45], [52], [53] to learn the high-

level features in an unsupervised way as shown in Fig. 2.

Each auto-encoder framework encodes an input vector x into

a hidden representation y with an affine mapping followed by

non-linear sigmoidal distortion,

y = σ(Wx+ b) (1)

where σ is set as a sigmoid function σ(x) = 1
1+e−x ; W is a

weight matrix and b is a vector of bias terms. y is the encodings

that represent the original input x. The ideal case is that we can

maximally reconstruct x with only knowing y. The decoder

reconstructs the input vector from the hidden representation

by

x∗ = τ(W
′

y + b
′

) (2)

where τ is another sigmoidal filter; W
′

is the decoding

weights. The number of the hidden neurons determines the di-

mensionality of the encodings at each layer. By controlling the

number of hidden units, we can either perform dimensionality

reduction or learn over-complete features. The decoding results

in a reconstruction of input vector x with high probability of

P (x∗|x). Therefore the reconstruction loss can be minimised

by optimising the log likelihood,

L(x, x∗) ∝ −logP (x∗|x) (3)

Since the features extracted from MR images were real

valued and were normalised to a domain x ∈ [0, 1], we used

the mean squared error to measure the reconstruction loss

L(x, x∗). To prevent the auto-encoder from learning merely

an identity function, the objective function is regularised by

adding a weight decay, e.g.

L(W, b, x, x∗) = min
W,b

L(x, x∗) + λ‖W‖22 (4)

where ‖W‖22 is the weight decay that controls over-fitting.

Though the objective function is not convex, the gradients

of the objective function in Eq. (4) can be exactly computed by

error back-propagation algorithm. In this study we applied the

Non-Linear Conjugate Gradient algorithm to optimise Eq. (4)

[52].

Following the greedy layer-wised training strategy, rather

than training all the hidden layers of the unsupervised network

altogether, we train one auto-encoder with a single hidden

layer at a time [43]. When an auto-encoder is trained with the

features obtained from the previously trained hidden layers,

the hidden layer of the current auto-encoder is then stacked

on the trained network. After training all the auto-encoders, the

final high-level features are obtained by feed-forwarding the

activation signals through the stacked sigmoidal filters. When

unlabelled subjects are available, the unsupervised feature

learning can be performed with a mixture of the labelled and

the unlabelled samples.

2) Multi-Modal Data Fusion: When more than one image

modality are used for model training, modality fusion meth-

ods are required to discover the synergy between different

modalities. Shared representation can be obtained by jointly

training the auto-encoders with the concatenated MR and PET

inputs. The first shared hidden layer is used to model the

correlations between different data modalities. However the

simple feature concatenation strategy often results in hidden

neurons that are only activated by one single modality, because

the correlations of MR and PET are highly non-linear. Inspired

by Ngiam et al. [54], we applied the pre-training method with

a proportion of corrupted inputs which had only one modality

presented, following the de-noising concepts of training deep

architecture. One of the modalities is randomly hidden by
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Fig. 2. Illustration of the single-modal & multi-modal architectures of the
proposed framework.

replacing these inputs with 0; the rest of the training samples

are presented with both modalities. The hidden layer of the

first auto-encoder is trained to reconstruct all of the original

inputs from the inputs that are mixed with hidden modalities.

The original inputs and the corrupted inputs are propagated to

the higher layers of the neural network independently to obtain

both the clean representation and the noisy representation us-

ing the same neural network. Each higher layer is then trained

progressively to reconstruct the clean high-level representation

from the propagated noisy representation. Thus some of the

hidden neurons are expected to infer the correlations between

different neuroimaging modalities.

3) Fine-Tuning for AD Classification: For the the AD

diagnosis, we modelled the task as a four-class classification

problem containing four pre-defined labels: NC, cMCI, ncMCI

and AD). Although the features learnt by the unsupervised

network can also be transferred to a conventional classifier,

such as SVM, softmax logistic regression enables us to jointly

optimise the entire network via fine-tuning.

The features extracted by the unsupervised network are fed

to an output layer with softmax regression [55]. The softmax

layer uses a different activation function, which might have

non-linearity different from the one applied in previous layers.

The softmax filter is defined as

P (Y = i|x) =
eW

(s)
i

a+b
(s)
i

∑
i e

W
(s)
i

a+b
(s)
i

(5)

where Y is the possible stages of AD progression; a is the

feature representation obtained from the last hidden layer of

the pre-trained network; W
(s)
i and b

(s)
i are the weight and bias

for the i-th possible decision. For example P (Y = ’cMCI’

|x(l)), is the probability that the patient is diagnosed as a MCI

converter. The label with the highest probability is selected as

the final diagnosis. Optimising softmax layer is similar to the

unsupervised network. The objective function of fine-tuning

the network with softmax layer is defined as

L(W, b,X, Y ) = min
W,b

J(X,Y ) + λ(s)‖W (s)‖22 (6)

where W and b are the weights and bias of the entire network,

including the pre-trained SAE and the softmax regression

layer; J(X,Y ) is the logistic regression cost between the

diagnosis generated with on the input features X and the pre-

labelled results Y ; λ(s) is the relative weight of the weight

decay on softmax layer, which can be tuned to control the

over-fitting problem. To fine-tune the pre-trained structure, the

softmax layer is then connected to the last hidden layer of

the unsupervised network. We then propagate the activation

signals through the entire neural network and optimise all the

parameters according to the classification loss as a supervised

neural network [43], [56] as shown in Fig. 2-A. When more

than one modality are used in training the supervised network,

a small proportion of the single modal inputs are dropped

out in a similar way described in Section II-B-2. The hidden

neurons are trained to make diagnosis even when one modality

is absent. This strategy is supposed to make some of the hidden

neurons at the first hidden layer easy to be activated by the

incoming weights from both modalities [54].

C. Feature Examination

Hidden neurons at the first layer of our network are trained

to catch different patterns of input subjects. In deep learning

tasks with general images the hidden neurons can be visualised

as

x
′

ij =
W

(l)
ij

‖W‖2
(7)

where x
′

ij is the input pattern that maximally activates the i-th

hidden neuron.

Unlike pixels, the patterns in biomarkers are brain ROI

measurements that may be non-trivial to be visualised. We

examined the representation quality by mapping the input

patterns produced by Eq. (7) back to a masked 3D MR image,

with 83 segmented ROIs. Each input x
′

ij corresponds to the

brain ROI where it was extracted. By splitting the pattern x

into m features (volumes, CMLGLc, etc.), we compute the

variance D
(m)
j of all of the same ROI, measuring how the

ROI activate different hidden neurons. When D
(m)
j is low, the
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biomarkers from region j are more effective for AD diagnosis

than the other regions. The overall feature stability Sj of the

j-th ROI can be computed as

Sj =
∑

m

∑
j D

(m)
j

D
(m)
j

(8)

S can be convolved with a Gaussian filter to enlarge the

distinctions between different ROIs. The brain ROIs with

relatively high stability score are considered as more effective

to the AD progression. These mappings on the MR image can

be examined with the clinical prior-knowledge to monitor the

performance of the feature learning network in the context of

AD diagnosis.

III. EXPERIMENTS AND RESULTS

A. Visualisation of High-level Biomarkers

With the feature examination method described in Section

II-C, we calculated the stability score of each brain ROI and

mapped the stability score to a masked 3D MR image (83

ROIs) of a Normal Control subject as shown in Fig. 3. The

distinctions between various ROIs were clearly visualised. The

darker regions tend to be more sensitive to the progression of

AD and MCI than the lighter ROIs, since features extracted

from these ROIs tend to benefit all the hidden neurons equally.

The light regions are not denoted to be totally trivial, but

carrying less predictive information.

B. Performance Evaluation

We compared the proposed framework with the widely

applied methods using the single-kernel SVM and the multi-

kernel SVM (MKSVM) [23], [28]. To evaluate the proposed

data fusion method, we compared the zero-mask method

to the architecture proposed in [39] that trains two stacked

auto-encoders independently and then fuses the high-level

features with MKSVM after each SAE is fine-tuned. All of the

experiments were evaluated with the same features extracted

from MR images and PET images as described in Section

II-A.

The proposed framework was implemented on Matlab

2013a. The SVM-based experiments were performed using

LIBSVM [58]. The multi-kernel SVM was implemented by

using precomputed kernels and fusing the multiple kernels

with relative weights.

The evaluation was conducted by using 10-fold cross-

validation. In experiments including multiple modalities, we

compared the performance with only single modal data, MR

or PET, and the data fusion methods with both modalities.

To avoid the ’lucky trials’, we randomly sampled the training

and testing instances from each class to ensure they have

similar distributions as the original dataset. The entire network

was trained and fine-tuned with the 90% of data and then

tested with the rest of samples in each validation trial. The

hyper-parameters of all compared methods were chosen in

each validation trial using the approx search in log-domain to

obtain the best performed model [59]. Two hidden layers were

used in all neural network based experiments because adding

Fig. 3. The image was generated using 3D Slicer (V4.3) [57]. The stability
map denotes that the darker ROIs tend to be more affected by AD, hence
more sensitive to the AD progression than the brighter regions. The features
extracted from the darker areas are also considered as more stable predictors
for our deep learning model and tend to be beneficial to all of the hidden
neurons in the neural network.

additional hidden layers did not show further improvements on

AD classification. It is reasonable to assume that 2 non-linear

transformations could be ideal to represent the neuroimaging

features for AD classification. The number of neurons at

hidden layers were chosen between 30 to 200 according to

the classification performance in each fold. In each neural

network, hidden layers shared the same number of hidden

neurons [60]. The MKSVM was trained with the training

samples. Following the work-flow in [23], the relative weights

of each kernel in MKSVM were chosen through a coarse-grid

search with a step size of 0.1. In the experiments that used

MKSVM for fusing two SAE networks, each SAE was firstly

pre-trained and fine-tuned with the training data, and then the

high-level features obtained from each network were fused

with MKSVM with the procedure stated before.

1) Experiments on MR (758 Subjects): We firstly evaluated

the proposed framework with 758 3D MR images. Since only

one modality is presented, no modality fusion strategy was

used in both SVM and the proposed method.

The performance of binary classification (NC vs. AD and

NC vs. MCI) is displayed in Table I. The first two columns are

precisions on individual classes. The following three columns/

are the overall performance including accuracy, sensitivity,

specificity. The proposed method (SAE) outperformed SVM in

classifying AD subjects from the NC subjects by leading the
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TABLE I
THE PERFORMANCE (%) OF BINARY AD CLASSIFICATION WITH MR-ONLY SAMPLES.

NC vs. AD

Methods NC AD ACC SEN SPE

SVM 82.95 ± 8.57 80.16± 6.46 81.04± 6.28 82.83± 6.02 78.89 ± 14.66

SAE 82.23± 6.54 84.31 ± 7.36 82.59 ± 5.33 86.83 ± 6.83 77.78± 10.83

NC vs. MCI

Methods NC MCI ACC SEN SPE

SVM 62.39± 4.87 74.81± 4.34 71.27± 3.26 47.02± 12.37 84.50 ± 4.25

SAE 67.44 ± 13.14 75.80 ± 3.58 71.98 ± 5.48 49.52 ± 13.68 84.31± 13.15

TABLE II
THE PERFORMANCE (%) OF MULTI-CLASS AD CLASSIFICATION WITH MR-ONLY SAMPLES.

Methods NC ncMCI cMCI AD ACC SEN SPE

SVM 46.96± 3.95 42.95 ± 10.80 37.88± 10.18 44.62± 8.04 44.45± 3.07 75.00 ± 9.04 68.59± 5.13

SAE 52.40 ± 8.43 41.25± 7.16 38.71 ± 23.18 46.89 ± 4.40 46.30 ± 4.24 66.14± 10.57 77.78 ± 4.48

TABLE III
THE PERFORMANCE (%) OF THE BINARY AD CLASSIFICATION WITH MR AND PET.

NC vs. AD

Methods NC AD ACC SEN SPE

SVM-MR 87.83± 11.81 84.06± 10.42 84.67± 8.45 80.54± 11.59 88.33± 12.19

SVM-PET 84.58± 7.02 87.57± 10.12 84.60± 4.05 84.11± 12.86 84.58± 9.07

MKSVM 89.68± 5.67 91.50± 9.37 90.11± 5.57 89.64± 11.43 90.56± 4.76

SAE-MR 88.28± 11.68 88.74± 10.82 87.79± 9.12 87.32± 11.19 88.47± 12.19

SAE-PET 83.27± 12.44 85.91± 10.73 83.53± 9.80 82.86± 15.59 83.75± 12.41

SAE-CONCAT 88.67± 12.84 92.56± 8.35 90.15± 9.54 92.14± 9.08 88.19± 12.72

2SAE-MKSVM 91.35 ± 8.15 92.42± 8.81 91.40 ± 6.82 90.89± 10.40 91.67 ± 7.40

SAE-ZEROMASK 90.38± 7.36 92.89 ± 6.17 91.40 ± 5.56 92.32 ± 6.29 90.42± 6.93

NC vs. MCI

Methods NC MCI ACC SEN SPE

SVM-MR 67.52± 14.15 83.92 ± 7.56 77.70± 5.27 62.50 ± 20.11 84.60± 6.60

SVM-PET 62.66± 22.67 77.17± 4.78 72.35± 8.67 45.54± 10.23 84.60± 10.94

MKSVM 70.85± 17.69 80.16± 3.40 76.88± 5.83 52.14± 8.56 88.16± 8.73

SAE-MR 65.56± 24.61 76.86± 5.59 74.02± 7.58 40.36± 15.63 89.26± 7.61

SAE-PET 50.69± 22.53 77.12± 7.51 70.00± 9.33 46.96± 19.12 80.44± 8.42

SAE-CONCAT 73.56± 16.55 80.00± 4.94 77.65± 5.18 49.46± 14.35 90.51± 7.09

2SAE-MKSVM 90.42 ± 11.46 73.85± 10.01 77.90± 5.18 61.43± 18.99 92.92 ± 7.64

SAE-ZEROMASK 81.95± 14.99 83.88± 4.99 82.10 ± 4.91 60.00± 13.93 92.32± 8.74

TABLE IV
THE PERFORMANCE (%) OF MULTI-CLASS AD CLASSIFICATION WITH MR AND PET.

Methods NC ncMCI cMCI AD ACC SEN SPE

SVM-MR 49.74± 8.79 44.58± 14.91 46.45± 31.63 53.74± 10.20 47.74± 1.82 66.43 ± 14.46 78.78± 8.13

SVM-PET 30.30± 20.15 36.90± 11.63 45.79± 27.08 50.30± 7.00 42.60± 2.90 35.36± 23.00 79.95± 8.33

MKSVM 47.71± 12.73 52.76 ± 19.33 38.17± 31.94 53.81± 6.81 48.65± 4.29 61.07± 18.95 79.86± 6.43

SAE-MR 47.80± 17.97 40.39± 9.46 45.08± 24.95 56.33± 14.03 45.61± 8.31 48.04± 14.97 82.69± 7.88

SAE-PET 41.79± 11.76 35.17± 10.10 41.06± 10.06 54.25± 11.79 42.91± 6.63 43.04± 17.45 82.26± 5.36

SAE-CONCAT 49.21± 14.74 43.54± 9.43 49.62± 9.66 56.35± 14.21 48.96± 5.32 46.61± 22.04 84.63± 8.51

2SAE-MKSVM 53.86± 11.47 52.08± 18.65 53.17 ± 26.63 55.58± 13.06 51.39± 5.64 66.25± 18.34 82.66± 6.16

SAE-ZEROMASK 59.07 ± 19.74 52.21± 11.84 40.17± 14.42 64.07 ± 15.24 53.79 ± 4.76 52.14± 11.81 86.98 ± 9.62
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overall accuracy (82.59%) and overall sensitivity (86.83%).

The overall specificities between these two methods were

very closed (78.89% and 77.78%). The proposed method

outperformed SVM in all overall performance measurements

of classifying NC from MCI. The proposed method achieved

5% higher precision on classifying the normal control subjects.

The performance of multi-class classification is displayed

in Table II. The first four columns are the precisions of

the individual classes and the following three are the overall

performance. The proposed method performed better preci-

sions than SVM in three classes (52.40% on NC, 38.71% on

cMCI and 46.89% on AD). The proposed method leads in the

overall accuracy (46.30%) and overall specificity (77.78%).

SVM achieved higher sensitivity (75.00%). In summary, our

proposed method outperformed the state-of-the-art SVM-based

methods in most of the performance measurements in both

binary and multi-class AD classification problems when only

MR data are presented.

2) Experiments on MR and PET (331 Subjects): There are

totally 331 subjects with both MR and PET data available. We

firstly evaluated the performance of SVM and the proposed

SAE based method with only MR images (SVM-MR, SAE-

MR) or PET images (SVM-PET, SAE-PET). The performance

of fusing modalities with multi-kernel SVM is shown as

MKSVM. For deep learning methods, we compared the pro-

posed zero-masking training strategy (SAE-ZEROMASK) to

the simple feature concatenation (SAE-CONCAT).

The binary classification performance is displayed in Ta-

ble III. It can be observed that the experiments with both

modalities (MKSVM, SAE-CONCAT and SAE-ZEROMASK)

yielded better performance than those with only single modal-

ity in both binary classification tasks. SAE-CONCAT out-

performed MKSVM slightly in the overall accuracy (90.15%

- 90.11% and 77.65% - 76.88%). It can be observed that

when the proposed SAE-ZEROMASK method is used, the

performance is enhanced in all measurements comparing to

SAE-CONCAT. MKSVM performed slightly higher speci-

ficity in classifying NC and AD comparing to ZERO-MASK.

Though SVM-MR achieved slightly higher precision (83.92%)

on MCI, it is reasonable to assume this performance may

be due to an unbalanced decision making (only 67% on

NC). Among all the methods, SAE-ZEROMASK achieved

the most balanced performance in the classification between

NC and MCI (81.95% on NC and 83.88% on AD), which is

relatively difficult when MCI occupies a big proportion of the

dataset (169 out of 246). The proposed data fusion method

SAE-ZEROMASK with only one neural network achieved

comparable performance with 2SAE-MKSVM, which fuses

two high-level feature matrices from two independently trained

networks. The accuracy of 2SAE-MKSVM was not obviously

higher than that of simple feature concatenation (77.90% to

77.65%), because it was observed in the experiments the

MKSVM added for feature fusion only preserved the higher

accuracy achieved by a single modal network in some of the

validation trials.

The performance of the multi-class classification is shown in

Table IV. The proposed framework with the corrupted inputs

(SAE-ZEROMASK) leads the overall accuracy and specificity

(53.79% and 86.98%). Deep learning based methods (SAE-

CONCAT and SAE-ZEROMASK) lead the precision on NC,

cMCI and AD. The precision of cMCI was constrained by the

quantity of cMCI instances (67 out of 331) and was effected by

its sibling class ncMCI with 102 instances. For ncMCI the pre-

cision achieved by SAE-ZEROMASK and MKSVM were very

closed. Comparing to the simple feature concatenation (SAE-

CONCAT), SAE-ZEROMASK increased the overall accuracy

by about 5%. SAE-ZEROMASK also outperformed the other

data fusion option 2SAE-MKSVM in the overall accuracy and

specificity. SVM-based methods tend to have better sensitivity.

IV. DISCUSSION

A. Model Designing and Training

Studies have shown that learning architecture with multi-

layered non-linear representations of the original data would

yield meaningful features for classification [56], [61]–[63]. For

accurate diagnosis in AD subjects, we investigated the use

of multi-layered representations of neuroimaging biomarkers

on AD classification. Our results showed that multi-layered

structure can be used to distinguish MR and PET subjects

along the spectrum of AD progression with higher accuracy

than conventional shallow architectures. The performance of

classification primarily benefited from the depth (a notion

derived from complexity theory) of the learning architec-

ture, which can be illustrated as a sequence of non-linear

transformations of the feature space. During fine-tuning, the

neuroimaging feature space is distorted and folded to min-

imise the classification loss on the training data. Thus, after

several layers of transformations, the inseparable samples

would become separable in the learnt high-level feature space.

Compared to traditional methods, the proposed framework is

more powerful in extracting the complex correlations between

neuroimaging ROI based biomarkers as well as different

feature modalities. Another motivation of using multi-layered

structure for AD diagnosis is to reuse the high-level features

for semi-supervised learning [64]. Besides the supervised data

fusion or dimensionality reduction [29], the proposed work-

flow can be easily extended to use unlabelled neuroimaging

data.

We combined different data modalities with the proposed

zero-mask fusion strategy by propagating noisy signals with

one modality randomly hidden. The auto-encoders were

trained to reconstruct the original incoming signals with the

corrupted incoming signals. We also tried to avoid training

separate neural networks on different data modalities, because

this may ignore the complementary information during feature

learning. The training subjects with one hidden modality tend

to force some neurons to be sensitive to MR and PET inputs,

which makes the zero-mask fusion network different as it has

two independent feature learning networks. It was noticeable

that 2SAE+MKSVM also achieved an overall classification

accuracy of 91.4% and a higher specificity of 91.67% in

the binary classification of NC and AD. It may indicate

that when relatively larger margins exist between different

feature clusters, the binary decision boundaries might be

similar between both feature fusion methods. Observing the
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experimental results with non-convertible and convertible MCI

subjects involved, we assume that the proposed zero-mask

method may have more advantages when subtler differences

and more outliers are included in a noisy training set.

Instead of using raw image patches for the medical feature

learning, we applied the feature engineering pipeline to extract

the initial ROI measurements of MR and PET images as

inputs. The differences between 3D medical images of AD

related patients tend to be subtle and the variance tends to

be large. From this perspective, the hidden neurons of the

network decision system can also be interpreted as automati-

cally encoded inferences of diagnostic rules [65]. Our exper-

iments showed that when using ROI precomputed features,

the unsupervised network achieved the best performance with

two hidden layers in pre-training. This means that relatively

shallower architectures are practically required when using

the approximately measured imaging features, compared with

the learning tasks which use raw images as inputs [38]. The

networks with the same number of neurons in all hidden layers

often performed better in our experiments. We found that

both over-completed manifolds or low-dimensional manifolds

yielded effective features for AD classification. The number

of hidden neurons was chosen according to different training

sets.

The feature selection, using Elastic Net, enhanced the per-

formance of all examined methods. It helped control the over-

fitting caused by the noisy and redundant feature parameters.

Notably, the majority of the selected feature parameters were

consistently chosen by Elastic Net. The validation trials,

with fewer chosen feature parameters, tended to have higher

generalisation errors, which might be due to the biased outliers

that were included in the training set.

Although the extracted features can be used by some other

conventional classifiers, such as SVM, we connected an output

layer with softmax regression to the unsupervised network.

With a different non-linearity from the one used in other

layers, softmax regression corresponded to multinomial log-

output-variables. As a result, it is capable of classifying

samples among several AD stages; it also simplified the fine-

tuning phase of training because the softmax layer can be

jointly optimised with the hidden layers. We also investigated

the framework designs of transferring the fine-tuned features to

popular classifiers other than the embedded softmax regressor.

It was interesting to see that, taking as input the same high-

level features learnt by our deep learning network, all of

the investigated classifiers tended to make highly consistent

decisions.

B. Limitations and Future Work

Considering the limited quantity of the available neu-

roimaging data, we assume that the synergy between differ-

ent biomarkers can be further extracted with more training

samples which may have smaller variance. The proposed data

fusion strategy follows the de-noising fashion of training auto-

encoders, which theoretically increased the difficulty of feature

learning, but controlled the over-fitting. Although the predicted

probability distribution of the 4-class AD classification may

be of more practical use in a decision-making system, the

performance that we achieved with the available dataset should

be improved before multi-class classification frameworks are

applied to clinical use. All the methods that we compared our

methodology to, tended to over-fit, but had high accuracy on

the training set and low accuracy on the testing set. Since

the multi-modal learning architectures with neural networks

(2SAE-MKSVM and SAE-ZEROMASK) are parametric mod-

els, we assume that they may have the potential to achieve

better diagnostic accuracy on multi-class AD diagnosis when

larger datasets are available. This will allow better extraction

of subject-independent features with lower variance.

V. CONCLUSION

We propose a novel framework for the diagnosis of AD with

deep learning embedded. The framework can distinguish four

stages of AD progression with less clinical prior knowledge

required. Since the unsupervised feature representation is

embedded in this work-flow, it has potential to be extended

to more unlabelled data for feature engineering in practice.

In the unsupervised pre-training stage, we used stacked auto-

encoders to obtain high-level features. When more than one

neuroimaging modality was used, we applied a zero-masking

strategy to extract the synergy between different modalities

following a de-noising fashion. After the unsupervised feature

engineering, a softmax regression was used. We used a novel

method of visualising high-level brain biomarkers to analyse

the high-level features that were extracted.

The proposed framework was evaluated with AD classifica-

tion between stage two and four. Based on MR and PET ADNI

data repository, our framework outperformed the state-of-the-

art SVM based method and other deep learning frameworks.

We argue that, therefore, the proposed method can be a power-

ful means to represent multi-modal neuroimaging biomarkers.
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