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Abstract

Nonlinear microscopy has become widely used in biophotonic imaging. Pulse shaping provides
control over nonlinear optical processes of ultrafast pulses for selective imaging and contrast
enhancement. In this study, nonlinear microscopy, including two-photon fluorescence, second
harmonic generation, and third harmonic generation, was performed using pulses shaped from a
fiber supercontinuum (SC) spanning from 900 to 1160 nm. The SC generated by coupling pulses
from a Yb:KYW pulsed laser into a photonic crystal fiber was spectrally filtered and compressed
using a spatial light modulator. The shaped pulses were used for nonlinear optical imaging of
cellular and tissue samples. Amplitude and phase shaping the fiber SC offers selective and
efficient nonlinear optical imaging over a broad bandwidth with a single-beam and an easily
tunable setup.
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[. Introduction

NONLINEAR microscopy has emerged as a powerful technique in biophotonic imaging.
Several modalities, such as two-photon fluorescence (TPF) [1], second harmonic generation
(SHG) [2], and third harmonic generation (THG) [3] microscopy, have been investigated
and applied in biomedical research. Because of the nonlinear processes and longer laser
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wavelength, these modalities generally provide the advantages of 3-D localized excitation
and separate excitation and emission spectra, reduced photodamage, and deeper penetration

[4]-16].

Coherent control enables engineering of light—-matter interactions to extract more
information in nonlinear optical microscopy and spectroscopy [7]-[9]. Control of two-
photon excitation by shaping femtosecond laser pulses has been demonstrated [10], [11].
Sinusoidal phase shaping [12], binary phase shaping [13], antisymmetric phase shaping [14],
and adaptive phase shaping [15] of ultrafast pulses have been demonstrated to selectively
image fluorophores in biological samples. While phase-only shaping techniques have been
studied extensively in TPF imaging, the potential of amplitude shaping has not been fully
utilized. Amplitude shaping to select the fundamental excitation spectra is practically robust
and simple, and phase shaping in addition can compensate the dispersion to higher order to
enhance the excitation efficiency [16], [17]. To date, pulse shaping techniques have not
found wide applications in SHG and THG imaging [18], [19]. This method can also be
applied for SHG and THG imaging with arbitrary spectral range within the fundamental
spectrum to improve efficiency.

Supercontinuum (SC) generation by pumping a photonic crystal fiber (PCF) with laser
pulses offers an alternative broadband light source to mode-locked solid-state lasers [20].
The ultrabroad bandwidth and versatility of a PCF as an add-on to a solid-state laser makes
it appealing for biophotonic imaging. Fiber SC has been utilized in TPF microscopy.
Improved TPF efficiency using a compressed SC [21], short-wavelength TPF imaging [22],
simultaneous excitation of multiple fluorophores [23], and selective excitation by spectrally
filtering an SC [24] have been reported. The combination of an SC source and pulse shaping
can offer control of two-photon excitation over an ultrabroad spectral range. Adaptive pulse
shaping of the excitation source to achieve selective flurophore excitation has been
demonstrated [25]. However, pulse shaping of SC for TPF, SHG, and THG imaging of
biological samples has not been shown.

In this study, nonlinear optical imaging by amplitude and phase shaping a fiber SC from 900
to 1160 nm is demonstrated. The SC generated by pumping a PCF was spectrally filtered
and compressed by a pulse shaper to perform TPF, SHG, and THG imaging of biological
samples. Selective and efficient TPF imaging of fluorophores was achieved, as shown by
comparing images with different excitation control. Improved efficiency of SHG and THG
imaging was also demonstrated by pulse compression.

Il. Experiments

The experimental setup is shown in Fig. 1. Pulses from a Yb:KYW laser (femtoTRAIN
IC-1040-3000, High Q Laser, Austria) of 1040 nm, 76 MHz were coupled into a highly
nonlinear PCF (NL-1050-NEG-1, NKT Photonics, Denmark) for SC generation. Details
about the fiber SC can be found in our other studies [26]-[28]. The SC was collimated by a
parabolic mirror and modulated by a multiphoton intrapulse interference phase scan
(MI1IPS)-assisted 4-f pulse shaper, which allows amplitude and phase shaping from 700 to
1350 nm over a 640-pixel liquid crystal (MIIPS Box 640, Biophotonics Solutions). The SC
was guided into an upright microscope (BX61WI, Olympus) modified for nonlinear optical
imaging. A dichroic mirror (T700spxc-1500, Chroma Technology, VT) reflected the SC into
an objective (LUMPLFL60XWI/IR2, NA = 0.9, Olympus) and transmitted the backward
nonlinear optical signal from the samples. Imaging was performed by scanning a motorized
stage (Bioprecision, Ludl Electronic Products). The nonlinear optical signal was detected by
a photomultiplier tube (H7421-40, Hamamatsu, Japan) after passing a bandpass filter wheel.
The SHG signal generated from a 10-um-think beta barium borate (BBO) crystal was
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acquired in the forward direction by a spectrometer (USB4000, Ocean Optics) to perform
MIIPS scans, for /n situ pulse measurement and dispersion compensation [29].

Our pulse shaping strategy was to obtain transform-limited (TL) pulses of different spectral
ranges for selective and efficient nonlinear optical imaging. First, amplitude shaping was
used to select the fundamental spectra by blocking undesired wavelengths, as illustrated by
the shaded areas in Fig. 2. The selected bands of 930-990 nm and 1100-1160 nm were
designated as green uncompressed and red uncompressed pulses, respectively. Second,
phase shaping was used to compress the pulses by compensating the dispersion measured at
the focus of the objective, as illustrated by the color dashed lines in Fig. 2. The SC spectral
phase measurement and pulse compression to the TL were discussed in [27] and [28]. The
compressed pulses spanning the spectral ranges of 930-990 nm and 1100-1160 nm were
designated as green compressed and red compressed pulses, respectively.

The mitochondria of mouse green fluorescent protein (GFP)-transfected 3T3 fibroblasts
were labeled with Mitotracker Red CMXRos (M7512, Invitrogen) at a concentration of 100
nM for 15 min. Excess dye was then washed off and replaced by culture medium before TPF
imaging. The two-photon excitation spectra of fluorophores were used to determine the
pulses used for selective excitation. GFP can be excited by green pulses from 930 to 990 nm
[30]; and Mitotracker Red CMXRos can be excited by red pulses from 1100 to 1160 nm
[31].

The SC power was controlled by a neutral density filter before entering the microscope and
prior to amplitude shaping. The imaging power under the objective in the GFP channel (520
+ 17 nm) was 3.1 mW for green pulses and 7.5 mW for red pulses. The power in the red
channel (620 + 26 nm) was 0.6 mW for green pulses and 1.4 mW for red pulses. Because
only phase shaping was performed to compress the spectrally filtered pulses, the average
power was the same when imaging with compressed and uncompressed pulses. Different
power levels were employed in the two channels due to the different sensitivity of targeted
fluorophores and detection bandwidths.

Frozen porcine skin was cut to 100-pm-thick cross sections and thawed before label-free
multimodal nonlinear optical imaging. Green pulses, the short-wavelength end of the SC,
were used in TPF imaging in order to excite endogenous fluorescent biomolecules. Red
pulses, the long-wavelength end of the SC, were used to avoid excitation crosstalk of TPF in
SHG imaging and to have better detection quantum efficiency in THG imaging. Different
bandpass filters were employed in front of the photomultiplier tube for acquiring different
signals (TPF: 542 + 25 nm, SHG: 562 + 40 nm, THG: 376 £ 20 nm). The imaging under the
objective for TPF, SHG, and THG were 3.3, 1.7, and 9 mW, respectively. These power
levels provided sufficient signal without saturating the photomultiplier tube for each
modality.

The SHG spectra of green/red and compressed/uncompressed pulses are shown in Fig. 3 for
evaluating their two-photon excitation spectra. The SHG spectral ranges were limited by
their fundamental spectra as controlled by amplitude shaping. The spectra are normalized to
the maximal SHG intensity of compressed pulses in each color. By pulse compression, the
SHG intensity within the desired spectral ranges was improved by 4.4- and 2.8-fold for
green and red pulses, respectively.

TPF images of the cell samples from different detection channels (row) illuminated with
different colors of compressed pulses (columns) are shown in Fig. 4. In the GFP channel, the
fluorescence signal from green compressed pulses is clearly seen while that from red
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compressed pulses is not observable. In the red channel, the fluorescence signal from red
compressed pulses is clearly seen while that from green compressed pulses is relatively
weak. This weak signal has similar spatial distribution as that in the GFP channel and can be
identified as emission crosstalk from the GFP fluorescence. The images in the same
channels are represented with the same normalized contrast. These results demonstrate
selective two-photon excitation of GFP and Mitotracker Red CMXRos by green and red
compressed pulses, respectively.

TPF images of the cell samples illuminated by compressed and uncompressed pulses are
compared in Fig. 5. Images in which fluorophores were selectively excited are combined for
illustration. Fig. 5(a) is merged from the image of green compressed pulses in the GFP
channel and from red compressed pulses in the red channel. Fig. 5(b) shows the
uncompressed control. The fluorescence signal from compressed pulses is significantly
improved compared to that from uncompressed pulses. The improvement of fluorescence
intensity within the entire cellular area is calculated to be 3.6- and 3.2-fold for green and red
signals, respectively.

Label-free multimodal nonlinear optical images of porcine skin cross sections illuminated by
compressed and uncompressed pulses are compared in Fig. 6(a) and (b). TPF, SHG, and
THG signals are represented in red, green, and blue pseudocolors. All of the nonlinear
optical signals from compressed pulses were greatly improved compared to those from
uncompressed pulses. The improvement of TPF, SHG, and THG signals was calculated to
be 1.9-, 2.4-, and 8.5-fold, respectively. TPF emission was strongest from the stratum
corneum (left) and from collagen in the papillary dermis and reticular dermis (right) [32].
SHG also showed the collagen structure, as expected, in the papillary dermis and reticular
dermis. THG revealed optical inhomogeneities, mainly coming from the stratum granulosum
cells in the epidermis, and the stratum spinosum and stratum basale cells in epidermis—
dermis junction [33].

V. Discussion

While phase shaping alone can tailor two-photon excitation, SHG, and THG spectra from
ultrafast laser pulses, amplitude shaping to first spectrally filter desired wavelengths is
practically robust and easy to implement as long as the laser power is sufficient. Phase
shaping techniques can be sensitive to spectral phase acquired in biological samples, thus
deteriorating the excitation selectivity [34]. Amplitude shaping does not need a complex
spectral phase, which requires expertise in coherent control theory [35] and frequently
employs an adaptive algorithm that can be time-consuming when adapting to different
biological systems [15]. The total power of our SC before entering the microscope was 100
mW, which is more than sufficient for nonlinear optical imaging of biological samples.
Fortuitously, amplitude shaping reduces the number of photons sent into the samples,
potentially lowering photodamage due to linear absorption.

In addition to amplitude-based spectral filtering, phase shaping to compress pulses to the TL
can effectively improve the efficiency of nonlinear optical processes. The enhancement of
the TPF signal was more than threefold in the cell imaging experiment. This approach
provides higher order dispersion compensation besides group delay dispersion and rapid
switching between different excitation without modifying any optical setup, as compared to
using bandpass filters [24] or to changing the wavelength of a narrow-band pulsed laser
source [36], [37]. Higher order dispersion compensation can significantly improve TPF
efficiency for broadband pulses (>30 nm), reduce necessary imaging power, and thus further
lower photodamage to biological samples [17], [19]. Fast switching with a programmable
shaper can ease alignment tasks and assist image coregistration of fluorophores. The
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switching speed is of tens of milliseconds and is limited by the liquid crystal spatial light
modulator used in this study (SLM-640-D-NM, CRi). This method can easily be applied to
SHG and THG imaging as demonstrated in the tissue imaging experiment (see Fig. 6). The
TPF and SHG signal improvement in the skin tissue experiment is lower than that in the cell
experiment. This might be due to loss of scattered photons in biological tissue. The THG
signal had a greater improvement as compared to the SHG signal. This is likely because
THG is a third-order process while SHG is a second-order process. Therefore, pulses with
group delay dispersion experienced more attenuation in THG than SHG, as compared to TL
pulses.

By spectral filtering and subsequent compression, the maximum group delay needed to
compress the selected bandwidth is reduced, compared to that of compression and
subsequent spectral filtering. As a result, smoother spectral phase is introduced, providing
higher accuracy in phase shaping. This is because a pixilated shaper can only introduce
discretized phase, and smaller phase differences between two adjacent pixels can ensure the
fidelity of pulse shaping [38].

The Yh:KYW laser-based SC wavelengths span from 900 to 1160 nm, which are centered in
the optical window of biological tissue and, thus, suffer little scattering and absorption in
tissue imaging. The spectral range provides a longer wavelength two-photon excitation from
450 to 580 nm, filling the gap between Ti:Sa and Cr:forsterite broadband lasers [39]. This
spectral range can also be used for SHG and THG imaging with sufficient quantum
efficiency for most silicon-based photodetectors. Our ongoing work is to extend the SC
bandwidth by increasing the PCF length and/or pumping power and develop it as a useful
light source for biophotonic imaging. Several SC sources of similar spectral ranges have
been demonstrated in microscopy and spectroscopy applications. The Ti:Sa laser-based SCs
have spectra within 600-1000 nm [40]-[42], and the Er:fiber SC has a spectrum from 900 to
1500 nm [43].

V. Conclusion

Multimodal nonlinear optical microscopy in biological samples was performed by amplitude
and phase shaping a fiber SC from 900 to 1160 nm. The SC generated by pumping a PCF
with pulses from a Yb:KYW laser was spectrally filtered and compressed under a
microscope objective by an MIIPS-assisted pulse shaper. By pulse compression, the SHG
signal of green (930-990 nm) and red (1100-1160 nm) pulses was enhanced by 4.4- and
2.8-fold, respectively. In a cell imaging experiment, selective TPF imaging of fluorophores
and improved fluorescence signals by factors over 3 were demonstrated. In a porcine skin
imaging experiment, label-free multimodal nonlinear optical imaging, including TPF, SHG
and THG, and improved signal level were shown. Shaping the SC provides selective and
efficient TPF imaging over a long-wavelength broadband (450-580 nm) with a single beam
and an easily tunable setup. This approach can also be applied for efficient SHG and THG
imaging.
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Fig. 1.

Schematic of the experimental setup. BBO: beta barium borate crystal; BF: bandpass filter;
C: concave mirror; DC: dichroic mirror; G: diffraction grating; KYW: potassium yttrium
tungstate; L: lens; ND: neutral density filter; OBJ: objective; P: linear polarizer; PCF:
photonic crystal fiber; PM: parabolic mirror; PMT: photomultiplier tube; SLM: spatial light
modulator; Yb: ytterbium.
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Schematic of pulse shaping strategy. The spectrum of the fiber SC (black line), the
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Page 12

wavelengths blocked by amplitude shaping (shaded areas), and the measured spectral phase
(dashed colored lines) are shown for (a) green (930-990 nm) and (b) red (1100-1160 nm)
pulses. A spectral phase opposite to the one measured was introduced by the pulse shaper to

compress each color or pulses.
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SHG spectra of green compressed (solid green), green uncompressed (dashed green), red
compressed (solid red), and red uncompressed (dashed red) pulses. By pulse compression,
the SHG signal was enhanced by 4.4- and 2.8-fold for green and red pulses, respectively.
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Fig. 4.

TPF images of GFP-transfected fibroblasts costained with Mitotracker Red CMXRos
acquired in different detection channels (rows) by illuminating with different compressed
pulses (columns). In the GFP channel, the fluorescence intensity of green compressed pulses
is high while that from red compressed pulses is low. In the red channel, the opposite is
observed. The images demonstrate selective excitation of GFP and Mitotracker Red
CMXRos by green and red compressed pulses, respectively.
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Compressed Uncompressed

Fig. 5.

TPF images of GFP-transfected fibroblasts costained with Mitotracker Red CMXRos
acquired with (a) compressed and (b) uncompressed pulses. The image in () is a merged
image from the green compressed pulses in the GFP channel and red compressed pulses in
the red channel. Image (b) is from uncompressed control pulses. By pulse compression, the
fluorescence intensity is enhanced by 3.6- and 3.2-fold for green and red signals,
respectively.
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Fig. 6.

Label-free multimodal nonlinear optical imaging of porcine skin acquired with (a)
compressed and (b) uncompressed pulses. TPF, SHG, and THG are represented in red,
green, and blue pseudocolor. By pulse compression, TPF, SHG, and THG signals were
enhanced by 1.9-, 2.4-, and 8.5-fold, respectively.
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