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Abstract—In this paper, an automatic method for registeringmultimodal
retinal images is presented. The method consists of three steps: the vessel

centerline detection and extraction of bifurcation points only in the refer-
ence image, the automatic correspondence of bifurcation points in the two
images using a novel implementation of the self organizing maps and the

extraction of the parameters of the affine transform using the previously
obtained correspondences. The proposed registration algorithm was tested

on 24 multimodal retinal pairs and the obtained results show an advanta-
geous performance in terms of accuracy with respect to the manual regis-

tration.

Index Terms—Multimodal image registration, ophthalmology, retina,
self organizing maps.

I. INTRODUCTION

Ophthalmologists commonly compare a Red-Free (RF) retinal

image, which is a reference image taken without intravenous injection

of a dye, while illuminating the retina with a green light, with the

corresponding Fluoroscein Angiogram (FA) or the Indocyanine Green

angiography (ICG) images, acquired at different times. The com-

parison of RF with FA or ICG retinal images is required in order to

identify dynamic aspects of the circulation and evaluate a wide variety

of retinal vascular disorders. The relative study of retinal images

enhances the information on the reference RF images by superim-

posing useful information contained in FA or ICG retinal images and

it is considered an important step towards a carefully directed laser

treatment; a process that is commonly used in the clinical practice. The

comparison of multimodal retinal images is a very difficult task due

to the misalignment of the images caused by the geometry during the

acquisition at different times and the possible progression of various

diseases. Thus, the registration of retinal images is the key process to

accurately combine information from different imaging modalities.

Automatic registration techniques have been developed to over-

come failures due to application of human-interactive registration. An

automatic registration algorithm of RF and FA images was presented

in [1]. The algorithm was based on vessels detection, extraction of

bifurcation points and the utilization of a Bayesian Hough transform

for the matching. Point correspondence of segmented vessels was also

used as a first step in a comparative study towards the establishment

of an automatic retinal registration scheme [2]. Three transformation
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models (affine, bilinear, and projective) as well as three optimiza-

tion methods (downhill simplex, simulated annealing, and genetic

algorithms) were evaluated in terms of accuracy and efficiency by

registering RF with corresponding FA or ICG retinal images. The

experimental results showed the superiority of genetic algorithms, as a

global optimization process, in conjunction with the affine or bilinear

transformation model. Similarly, in a recent evaluation study, three

transformation types (similarity, affine and second-order polynomial)

have been tested to correctly match bifurcation points selected as

control points along with fourteen pixel-level fusion techniques [3].

The quantitative results on retinal images from different modalities,

different resolutions and different times showed an advantageous

performance of the affine transformation for the majority of the data,

in terms of transformation selection and the laplacian method, in

terms of fusion of the registered data. Image similarity measures, such

as the mutual information, and simulating annealing with pyramid

sampling, as search method, have been also used to provide robust

registration under large transformations between the images and

significant changes in light intensity [4].

The aim of this paper is to provide a general framework for regis-

tering multimodal retinal images (RF with corresponding FA or ICG

images) by means of the theory of the self organizing maps (SOMs)

network. The proposed method extends beyond what is published be-

fore in two main aspects: First, bifurcation points are extracted only on

the reference image, and second, a novel implementation of the SOM

network is utilized in order to determine the corresponding points on

the FA or ICG image.

II. SUBJECTS AND PROCEDURES FOR ACQUISITION OF RETINA IMAGES

Retinal images were acquired using the IMAGEnet 1024 system,

which is a fully functional digital imaging system for acquisition, anal-

ysis, storage, and retrieval of retinal images. Digital RF, FA, and ICG

images of size 1024� 1024 pixels and pixel size of about 10 �m were

directly obtained using a charge-coupled device (CCD) camera that was

mounted on the Topcon TRC-50IX, providing 50� angle of coverage,

39–mm working distance, and special filters for FA and ICG. The FA

images were acquired in a time interval of 1–2 min after the adminis-

tration of the dye (sodium fluorescein). This time interval corresponds

to the mid phase of the angiogram (also known as the recirculation

phase) and was chosen in order to avoid the laminar effect. During this

phase, the veins and arteries remain roughly equal in brightness and

thus having the same appearance in the FA image. The intensity of fluo-

rescence diminishes slowly during this phase asmuch of the fluorescein

is removed from the bloodstream on the first pass through the kidneys.

Furthermore, control images were taken before injection of fluorescein

to detect the possible presence of pseudofluorescence and/or autoflu-

orescence [5]. Only cases without the presence of pseudofluorescence

and/or autofluorescence were included in the study. The ICG images

were acquired about 15 min after dye administration (indocyanine).

During this time interval, retinal vessels are still visible and are not ob-

scured by the choroid circulation.

For each case, a series of images was acquired within the aforemen-

tioned time intervals and an expert selected the images to be included

in the present study. Prior to any intravenous injection, a RF image was

acquired using a green filter, which causes the retinal blood vessels to

appear dark.
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The selected retinal images were driven from the CCD camera to a

personal computer (Pentium 4 1.8 GHz with 512 MB RAM), where

the developed automatic registration algorithm is currently running. A

total of 24 cases were used in the present study; 18 cases with RF-FA

images (Pair-1 to Pair-18) and 6 cases with RF-ICG images (Pair-19

to Pair-24). The cases included healthy and nonhealthy retinas (early

stages of diabetic retinopathy, ischemic neuropathy, early stages of age-

related macular degeneration).

III. THE PROPOSED REGISTRATION ALGORITHM

The proposed registration algorithm comprises the following steps:

• vessel centerline detection and extraction of bifurcation points in

the reference image (RF image);

• automatic correspondence using a modification of the SOMs;

• extraction of the parameters of the affine transform using the pre-

viously obtained correspondences.

A. Vessel Centerline Detection and Bifurcation Point Extraction

Several methods for vessel detection and bifurcation extraction have

been proposed in the literature. In [1], the extraction of the vascular

tree is based on the sign of the crosscurvature and supremums of open-

ings by means of linear structuring elements. The obtained vessels are

thinned to one pixel width and the bifurcation points are detected using

a supremum of openings with revolving structuring elements with a T

shape. Bifurcation points that are found to be close are grouped and

may become a trifurcation. In [3], the vessel centerlines are extracted

by means of binarization of the retinal image using a Gaussian-con-

stant false-alarm rate threshold and pixels in the obtained binary image

with three or four neighbors are labeled as bifurcation points. In [6], the

utilization of a matched filter response in conjunction with piecewise

threshold probing is adopted in order to locate blood vessels in retinal

images. In [7], a recursive vasculature tracing algorithm is used to map

out the blood vessel structure and detect bifurcations in retinal image.

In our implementation, the vessel centerlines are detected by means

of differential geometry, as follows. For a gray level retinal image

I(x; y), the centerlines of vessels that are brighter (darker) than the

surrounding background consist of the ridge (gorge) points of the

surface S = f(x; y; I(x; y))g. The detection of the ridge (gorge)

points can be accomplished using the following methodology: First,

the second derivatives Ixx(x0; y0), Ixy(x0; y0), and Iyy(x0; y0) of the
image with respect to x and y at each pixel position (x0; y0) are esti-

mated by convolving the image with the appropriate two-dimensional

(2-D) Gaussian kernels [8]. Then, the eigenvalues and eigenvectors of

the Hessian matrix

H(x0; y0) =
Ixx(x0; y0) Ixy(x0; y0)

Ixy(x0; y0) Iyy(x0; y0)
(1)

are calculated using the Jacobi method [9]. Let u = (ux; uy), u
2

x +
u2y = 1, be the eigenvector corresponding to the eigenvalue of max-

imum negative (positive) value. Then, the point (x0; y0) is a ridge

(gorge) point if the first directional derivative across the direction of

u at (x0; y0) vanishes, namely

hrI(x0; y0);ui = 0 (2)

where h i denotes the inner product. In practice, it is rather unlikely for

(2) to hold exactly. One approach would be to require the absolute value

of the first directional derivative across the direction of u at (x0; y0)
to be less than a predefined threshold (for example 10�5). However,

the accuracy of the results depends heavily on the value of the selected

threshold. Therefore, the following procedure, which provides the po-

sition of a ridge (gorge) point with subpixel accuracy, is applied [8]:

First, of all, it is assumed that the pixel at position (x0; y0) is a ridge

(gorge) point iff there are real numbers �x and �y such that

hrI(x0 +�x; y0 +�y);ui = 0 (3)

and

(�x;�y) 2 [�0:5; 0:5]� [�0:5; 0:5]: (4)

The meaning of this assumption is that we explore a neighborhood

around the current pixel in order to detect a ridge (gorge) point.

The Taylor series of the function I(x; y) around the point (x0; y0)
is given by

I(x; y) � I(x0; y0)

+ [(x� x0)Ix(x0; y0) + (y � y0)Iy(x0; y0)]

+
1

2
(x� x0)

2
Ixx(x0; y0)

+ 2(x� x0)(y � y0)Ixy(x0; y0)

+ (y � y0)
2
Iyy(x0; y0) (5)

where Ix, Iy are the first derivatives of I with respect to x and y and

higher order terms of the Taylor series have been omitted. Let us as-

sume that

(�x;�y) = (tux; tuy)(t 2 <): (6)

From (3) and (5), the following relation is obtained:

t = �
uxIx(x0; y0) + uyIy(x0; y0)

u2xIxx(x0; y0) + 2uxuyIxy(x0; y0) + u2yIyy(x0; y0)
: (7)

If the combination of the (6) and (7) satisfies (4), then the pixel at posi-

tion (x0; y0) is declared as a ridge (gorge) point; the exact position of

the ridge (gorge) point is at (x0+tux; y0+tuy). The magnitude of the

corresponding eigenvalue quantifies the strength of the ridge (gorge)

point (like the way the gradient magnitude quantifies the strength of an

edge).

In order to detect the prominent vessel centerlines, a ridge (gorge)

linking algorithm is applied: each ridge (gorge) pixel with ridge (gorge)

strength above a threshold, TH , is considered as a seed point of a vessel

centerline. Then, a ridge (gorge) point is assigned to the centerline gen-

erated by the current seed point iff its ridge (gorge) strength is above a

threshold TL (TL < TH) and there is a path of pixels that belong to

the centerline that connects this point to the seed point. The resulting

vessel centerlines are thinned to one pixel width. The values of the two

thresholds are image dependent. However, in general TH lies in the

range [0.3, 0.5] and TL lies in the range [0, 0.3] (the values are normal-

ized with respect to the maximum ridge (gorge) strength).

The bifurcations of the vessels are extracted using the procedure pro-

posed in [3]. Fig. 1(a) shows the bifurcation points superimposed on a

RF image. It can be seen that the bifurcation points are correctly lo-

cated on the junctions of the image vessels. The vessel centerlines are

shown in Fig. 1(b). The corresponding FA image, before registration, is

also displayed [Fig. 1(c)]. Finally, the superposition of the vessel cen-

terlines of the FA image on the RF image is shown in Fig. 1(d).

B. Automatic Point Correspondence Using SOMs

The SOM is a neural network algorithm, which uses a competitive

learning technique to train itself in an unsupervised manner. Kohonen

first established the relevant theory and explored possible applications

[10]. The Kohonen model comprises of a layer of neurons m, ordered

usually in a one-dimensional or 2-D grid. The training of the network is

performed in an iterative way. At each iteration k, a data point x 2 <n
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Fig. 1. (a) Extracted bifurcation points (small dots) on a RF image. (b) Vessel centerlines of the RF image. (c) The corresponding FA image (before registration).
(d) Superposition of the vessel centerlines of the FA image on the RF image.

is presented to the network; the neuron j with weight vectorwj 2 <
n

is declared as the winning neuron, according to the following rule:

j = argmin
i

(kx �wik) (8)

The winning neuron j and its neighboring neurons i have their

weight vectors modified according to the following rule:

wi(n+ 1) = wi(n) + hij(n) [x(n) �wi(n)] (9)

where hij(n) = h(kri � rjk; n) is a kernel defined on the neural

network space as a function of the distance kri � rjk between the

winning neuron j and its neighboring neurons i, as well as the iteration

number n. This kernel has the shape of the “Mexican hat” function,

which in its discrete form has maximum value at inter-neuron distance

in the case of i = j whereas its value drops in a Gaussian manner as the

distance increases. The width of this function decreases monotonically

with iteration number. In this way convergence to the global optimum is

attempted during the early phases of the self-training process, whereas

gradually the convergence becomes more local as the size of the kernel

decreases.

Prior the description of the proposed method, some notations must

be introduced. Let �A(I) denote the restriction of an image I to the

region A � <2 and Tw(A) � <2 is the rigid transformation, with

parameters w = (dx; dy; �), of the region A, where dx, dy and � are

the horizontal displacement, the vertical displacement and the angle of

rotation, respectively. Furthermore, MoM(I1; I2) denotes a measure

of match between two images I1 and I2.

If IR, IF are the reference image and the image to be registered,

respectively, then the implementation of the SOM network for regis-

tering the two images is as follows: The topology of the network is con-

structed by placing a neuron on each bifurcation point, Pi = (xi; yi)
(i = 1; 2; . . . ; N , N is the number of bifurcations), of the reference

image. Each neuron is associated with a square areaAi = [xi�R; xi+
R]� [yi �R; yi+R], of (2R+1)2 pixels, centered at the position of

the neuron. Additionally, a weight vector wi = (dxi; dyi; �i), which
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holds the parameters of a local rigid transformation, is assigned to each

neuron.

The SOM network is trained as follows.

1) For each neuron, the components of the weight vector are

initialized to zero values, wi(0) = (0; 0; 0), the quantities

MoMi(0) � MoM(�A (IR); �T (A )(IF )) are calculated, the

variable MoMbest is set to a very large (in magnitude) negative

value and the iteration variable, n, is set to 1.

2) While n is less than nmax:

— If the average value of theMoMi(n� 1),MoMave(n� 1),
is better than MoMbest, then MoMbest = MoMave(n� 1)
and the current weights are stored as wi.

— An input signal, s(n) = (dx(n); dy(n); �(n)), is generated
randomly.

— For every neuron, the quantity MoMi(n) �
MoM(�A (IR); �T (A )(IF )) is calculated.

— The winning neuron, kn, in the current iteration, is defined

as

kn = argmax
i

fMoMi(n)g (10)

under the condition

MoMk (n) > MoMave(n� 1): (11)

— The weights of the neurons are updated according to the fol-

lowing equation:

wi(n) = wi(n� 1) + h(kn; n; i) [s(n)�wi(n� 1)] (12)

where h(kn; n; i) (i = 1; 2; . . . ; N) is given by the fol-

lowing equation:

h(kn; n; i) =
Lq(n); kPk �Pik < �q(n)d0
0; otherwise

q(n) =
n

p+ 1
: (13)

L, a, d0 2 < and p 2 < are parameters to be defined later,

k k denotes the Euclidean norm and b c is the floor function.

— The iteration variable is increased by one.

3) When the training is finished, the parameters of the affine trans-

formation between the two retinal images are calculated using a least

squares method between the point sets fPig and fTw (Pi)g.
Several issues regarding the proposed method should be discussed.

First of all, in order to cope with the multimodality of the available

images, the selected measure of match was the gradient difference,

namely [11]

MoM(I1; I2) =
x;y

1

1 + [I1x(x; y)� I2x(x; y)]
2

+
x;y

1

1 + [I1y(x; y)� I2y(x; y)]
2 (14)

where the subscript x(y) denotes the x(y) component of the gradient

of the image. The rationale for selecting the aforementioned measure

of match was that gradient measures have the advantage of filtering out

low spatial frequency differences between the images, such as those

caused by soft tissue. They also concentrate the contributions to the

similarity measure on edge information, which intuitively appears sen-

sible. The proposed measure of match employs the 1=(1+ x2) kernel,
which makes the measure robust to thin line structures. Furthermore, a

comparison of similarity measures (including cross correlation, mutual

Fig. 2. Normalized histogram of the values obtained by means of the random
number generator described in (15) for different values of the parameter TM .

information, gradient correlation, entropy of the difference image, gra-

dient difference and pattern intensity) showed that the gradient differ-

ence and pattern intensity were able to register accurately and robustly

even when soft-tissue structures and interventional instruments were

present as differences between medical images [11].

The following generator of random numbers is used for producing

the input signals to the network:

sj(n) =wk ;j + sgn(vj � 0:5)TM(n)

� 1 +
1

TM(n)

j2v �1j

� 1

� (Uj � Lj) (j = 1; 2; 3)

TM(n) =
1; n = 0

exp �2 (q(n)) ; n > 0 (15)

where s1(n) = dx(n), s2(n) = dy(n), s3(n) = �(n), vj is a uni-

formly distributed random variable in [0, 1], and Uj (Lj) denotes the
maximum (minimum) allowed value for the corresponding component

of the input signal. Although Uj and Lj are inputs to the registration

process, for all pairs of images used in the current study, constant values

were used (�150 pixels for the displacement and �10� for the angle

of rotation).

It must be noted that (15) is a slightly modified version of the gen-

erator used in the very fast simulated annealing method [12] and pro-

vides random signals which in general lie in the range [wk ;j � (Uj �
Lj); wk ;j + (Uj � Lj)]. When a generated signal in not in the al-

lowed range [Lj ; Uj ], then it is discarded and a new signal is produced

until sj(n) 2 [Lj ;Uj ]. The parameter TM(n) controls how far from

the weights of the current winning neuron the input signal can reach.

As the iteration variable evolves, the magnitude of TM(n) falls expo-
nentially and the generated input signals are more localized around the

weights of the current winning neuron (see Fig. 2). This is a desired

property, since as the number of iterations grows, the weights of the

current winning neuron get closer to the parameters of the solution of

the registration problem.

The parameter d0 provides the initial radius of a circular region

around the winning neuron. Only neurons inside this region are up-

dated. Usually, d0 is set to the maximum distance between bifurcation

points. As can be seen from (13), this distance is reduced with geo-

metric rate determined by the parameter � (0 < � � 1). A typical

value for the parameter � is 0.995. The parameter L acts like a gain

constant for the magnitude of the update that is applied to the weights

of the neurons. This parameter also decreases geometrically as the iter-

ation variable evolves. The range of valuesL is between 0.99 and 1.0; a

typical value is 0.995. The parameter p is an integer that determines the
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TABLE I
ROOT MEAN SQUARE ERROR (RMSE) FOR ALL IMAGE PAIRS FOR

DIFFERENT RESOLUTIONS

rate of change of the parameters L and �. Practically, this parameter

determines the number of iterations that are executed before an adjust-

ment of the values for the parameters L, a, and TM(n) takes place. A
typical value for this parameter is 200. The number of iterations is set

to 10 000 and the size of the square area associated with each neuron

is 19 (R = 9).
It should be pointed out that a sufficient number of bifurcation points

should be extracted in order to achieve an accurate registration re-

sult. Furthermore, the bifurcation points should be distributed over the

whole image (if possible). The degree of sparseness of the bifurcation

points can be determined by checking if the standard deviation of the

x � y coordinates is above a predefined threshold. Experiments have

shown that six bifurcation points, with standard deviation of the x� y

coordinates that exceeds 100, are sufficient in order to obtain accurate

registration results.

Finally, since the transformed region T
s(n)(Ai) does not have in-

teger coordinates, bilinear interpolation is used in order to calculate

MoMi(n).

IV. RESULTS

Several methods have been proposed in the literature for the as-

sessment of the performance of retinal image registration algorithms.

The simplest approach is by means of visual inspection of a fused

image. The fused image is either a checkboard of reference and trans-

formed images or a superposition of the transformed extracted vessels

on the reference image [1]. In [3], the superposition percentage was

Fig. 3. (a) Superposition of the vessel centerlines of the transformed FA image
on the RF image. (b) Zoomed area of the image shown in (a).

used to quantify the performance of the registration algorithm. First,

the transformed extracted vessels were superimposed on the reference

vessel network. The superposition percentagewas calculated as the per-

centage of the transformed pixels that fell into a 3� 3 window centered

on a reference vessel network pixel. In [4], Ritter et al. performed an

exhaustive search in the neighborhood of the results obtained through

their method. The parameters of the exhaustive served as the ground

truth. Then, for each transformation parameter, the root-mean-square

error (RMSE), over all the available image pairs, was considered as an

indicator of the accuracy of the registration.

The accuracy of the proposed registration method was quantitatively

assessed for every retinal pair. Specifically, pairs of corresponding

points were defined manually in both images by an experienced

ophthalmologist and the parameters of the corresponding affine

transformation were calculated by means of the least squares method.

The error in point placement was assessed as the RMSE between the

affine-transformed points and the points from the reference image.

For each pair of images, the aforementioned procedure was repeated

three times. The pairs of points from the trial that gave the minimum

error were used for validating the proposed registration scheme. The

average error in point placement was found to be within one pixel.

The validation of the proposed registration schemewas performed as

follows: The points defined in the FA or ICG image were transformed

using the transformation that was obtained by the proposed method

and the RMSE between the transformed points and the points from

the reference image was calculated. In order to ensure the consistency,

the results were averaged over five independent executions of the algo-

rithm for all retinal pairs. In order to study the behavior of the proposed

method for different resolutions, the original images, with size 1024�

1024 pixels, were downsampled to size 512 � 512 pixels using an av-

eraging process. The results are listed in Table I. As can be seen, the

RMSE was below 4 and 2 pixels (approximately 40 �m) for the 1024
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Fig. 4. (a) RF image. (b) Corresponding ICG image before registration. (c) Superposition of the vessel centerlines of the ICG image on the RF image before
registration. (d) Superposition of the vessel centerlines of the ICG image on the RF image after registration.

� 1024 and 512� 512 images, respectively. In clinical practice, espe-

cially for laser treatment, a registration error below 50 �m is accept-

able. As a rule, laser burns are created around 500 �m in diameter in

the periphery and smaller in the macular region, for example 200 �m

[13]. The smallest sizes 50 to 100 �m may be used for treating sub-

retinal vessels near the fovea [13]. Furthermore, it can be noticed that

the performance of the algorithm in terms of accuracy was superior for

registering RF-FA images than RF-ICG images, due to the fact that the

retinal visibility in the ICG images is inherently inferior compared to

RF and FA images.

The performance of the proposed registration algorithm for the RF

and FA images of Fig. 1 is visually demonstrated in Fig. 3. In particular,

Fig. 3(a) shows the superposition of the vessel centerlines of the trans-

formed FA image on the RF image. From this figure as well as from

a zoomed area [Fig. 3(b)], it can be seen that a successful registration

result has been achieved. Fig. 4(a) and (b) shows a pair of RF and ICG

image before registration. Fig. 4(c) and (d) shows the superposition of

the vessel centerlines of the ICG image on the RF image before and

after registration, respectively.

V. DISCUSSION

The following remarks can be drawn for the proposed registration

scheme: It is evident that the objective function that is optimized is the

average value of the partial measure of matches. A refinement of the

solution is obtained at each iteration. In particular, an initial value for

the parameter d0 that is large enough is selected (usually larger or equal

to the maximum distance between the available bifurcations) such that

the weight vectors of all neurons are updated. In this way, the SOM

network provides a rough approximation of the solution of the registra-

tion problem. As the iterations evolve, the size of the radius around the

winning neuron decreases, the SOM network is self-adjusted to capture

any local deformations (if present). This is accomplished in conjunc-

tion with a decrease of the value of the parameter TM(n) in (15) which
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controls how far from the winning neuron the input signal can reach. In

order to find the global optimum of the objective function, the decrease

of the size of the radius of the circular region around the position of

the winning neuron should be done gradually. We have found out ex-

perimentally that a choice of p in the range 150 to 250 and � in the

range 0.99 to 1.0 gives satisfactory results. Regarding the value of the

parameter L, experiments have shown that it should be near unity and

in particular in the range 0.995 to 1.0. It should be emphasized that the

algorithm is not critically influenced by the specific chosen values of

the aforementioned parameters.

The condition given by (11) is necessary to protect the SOMnetwork

from generating a signal that is much more different than the weighting

vectors of the neurons in the current iteration. The condition is not too

strict in the sense that it is not prohibitive of the production of a winner

with a measure of match lower than that in the previous iteration. Con-

sequently, it is achieved the escape from local optima of the objective

function, since solutions that do not lead to better values of the objective

function are accepted too. This approach is similar to the Metropolis

process that takes place in simulated annealing [12].

Another aspect of the proposed registration scheme that should be

addressed is the utilization of the gradient difference as a measure of

match. The selected measure of match provided accurate results for

almost all image pairs that were used in the current study. However,

it should be stressed that the gradient difference may fail for images

characterized by apparent hyperfluorescence. Hyperfluorescence is

caused usually by a breakdown or lack of tight vascular junctions in

abnormal blood vessels. Any leakage of fluorescein from a retinal

vessel or within the retinal tissues indicates an abnormality. For

example, capillary microaneurysms, retinal telangiectasias, arterial

macroanuerysm, papilledema, and some vascularized tumors exhibit

leakage.

Finally, it should be noted that the focus of the paper was to show the

feasibility of the SOM theory for registeringmultimodal retinal images.

The proposed implementation of the SOM model could be considered

as a method for finding the optimum value of an objective function.

Under this framework, the proposed registration scheme provides sev-

eral “degrees of freedom” regarding its parameters. For example, an-

other measure of match (such as the mutual information) could be used,

the bifurcation points could be extracted by means of other methods,

another transformation (such as bilinear or elastic) could be adopted

after the training of the SOM network.

VI. CONCLUSION

In this paper, a new registration algorithm for registering multimodal

retinal images was presented. Two basic novel implementations were

introduced. First, the application of the vessel centerline detection and

bifurcations extraction process only on the reference image. This step

simplifies the registrationmethodology since candidate points are iden-

tified only on the reference image. Second, the novel implementation

of the SOM network to define automatic correspondence of the bifur-

cation points between the reference and the image to be transformed.

The proposed algorithm was tested for 24 pairs of multimodal images

providing an accuracy of approximately 40 �m for all retinal pairs.
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Correction to “Pulmonary Airways: 3-D Reconstruction

From Multislice CT and Clinical Investigation”

Catalin I. Fetita*, Françoise Prêteux, Catherine Beigelman-Aubry,

and Philippe Grenier

In [1], (10) should have read as follows:

8x 2 supp(f) � <
n
; RC

i
f;O(x; Y )

= max f(x);min�2#(x) RC
i
f;O(�; Y ) (10)
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