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 
Abstract— Low Power Wide Area Networks (LPWANs) are 

experiencing high momentum as an inexpensive solution for 

enabling Internet of Things (IoT) applications. Recent Internet 

connectivity support developments are expected to further fuel 

the adoption of LPWAN. However, the latter present challenges 

to Internet protocols. Remarkably, many LPWAN scenarios 

exhibit a multimodal Round Trip Time (RTT) distribution, 

which deviates from common Internet RTT characteristics. This 

leads to a significant mismatch between Retransmission TimeOut 

(RTO), computed by the standard TCP or alternative 

experimental RTO algorithms, and RTT. In this paper, we 

present the Multimodal RTO algorithm, which is able to self-

adapt to the current RTT mode and produce suitable RTO 

values. Evaluation results show that the Multimodal RTO 

reduces the RTO versus RTT misalignment of the TCP RTO 

algorithm by an average factor of up to 5, and reduces latency in 

the presence of losses by up to 2 orders of magnitude, while 

operating safely. The Multimodal RTO is currently being 

considered by the IETF as a candidate mechanism for 

standardization. 

 
Index Terms—Retransmission Timer, RTO, LPWAN, IoT. 

I. INTRODUCTION 

N recent years, Low Power Wide Area Networks 

(LPWANs) have gained momentum as an inexpensive 

solution for enabling Internet of Things (IoT) applications. 

LPWAN technologies are based on star topology networks 

where IoT devices (e.g. battery-enabled sensors and actuators) 

are connected to a radio gateway via low-power, long-range 

wireless links, at the expense of reduced throughput [1-3]. 

As part of the expansion of LPWAN, IPv6 support is 

currently being developed for LPWAN [4, 5]. This capability 

will allow using IP-based protocols over LPWAN. Several 

such protocols use Retransmission TimeOut (RTO)-based 

packet retransmission for end-to-end reliability, and even the 

adaptation layer that enables IPv6 over LPWAN uses RTO-

triggered retransmission [6]. However, some LPWAN 

technologies present unprecedented Round Trip Time (RTT) 

characteristics that challenge the performance of a traditional 
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RTO algorithm such as the one used in the Transmission 

Control Protocol (TCP) [6, 7] or even of experimental, 

advanced RTO algorithms [8, 9]. 

In LPWANs, there exist two main phenomena that may 

exacerbate RTTs during some intervals. First, in some 

LPWAN technologies, as an IoT device energy saving 

technique,  downlink messages can only be sent by a radio 

gateway to an IoT device during a specific time window 

shortly after an uplink transmission by the same IoT device 

[10, 11]. If the gateway is unable to send the response to an 

uplink message within the corresponding window, the next 

opportunity for the gateway to send the response will be after 

the next uplink transmission. The time at which the latter may 

occur depends on the specific application (e.g. the time 

between sensor readings are sent), potentially leading to an 

RTT several orders of magnitude greater than the one in ideal 

conditions [12]. Secondly, in some world regions, LPWAN 

technologies such as LoRaWAN and Sigfox conform to 

spectrum access regulations by keeping the duty cycle (DC) 

lower than a given limit (such as 1% in some bands in Europe) 

[11, 13]. Accordingly, some IoT devices remain in idle state 

after a packet transmission during 99 times the transmission 

time of the last packet sent. If a new packet needs to be sent 

during the idle interval, it will need to wait in a buffer of the 

IoT device until the next transmission is allowed, thus 

increasing the RTT. 

Therefore, communication over LPWAN may happen under 

different sets of conditions, each one with different RTT 

characteristics, hereinafter referred to as RTT modes. In fact, 

many LPWAN scenarios exhibit multimodal RTT 

distributions, with a high RTT variance that stems from RTT 

mode changes. In order to provide high performance, an RTO 

algorithm for such RTT characteristics needs to be adaptive. 

However, the standard TCP RTO algorithm (hereafter, TCP 

RTO), which is the reference adaptive RTO mechanism used 

in the Internet, was not designed for multimodal RTT 

distributions. In fact, it underperforms in such scenarios, 

producing unnecessarily high RTO values after RTT mode 

transitions. 

In this paper, we present and evaluate the Multimodal RTO 

algorithm (hereafter, Multimodal RTO). This algorithm 

comprises a number of internal timers that use the TCP RTO 

algorithm, each one intended for use in each RTT mode.  

Based on LPWAN characteristics, we consider scenarios 

characterized by two RTT modes. As aforementioned, RTTs 

in LPWAN may be exacerbated due to compliance with duty 

cycle regulations or because gateways miss downlink 

transmission opportunities. However, in absence of such 

phenomena, RTTs are significantly lower. As a result, it is 
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possible to identify two main RTT modes, which we call High 

RTT mode and Low RTT mode, respectively. Note that, in 

some cases, at a microscopic scale, an RTT mode may 

comprise a number of RTT submodes. This may happen when 

an LPWAN device uses Automatic Repeat reQuest (ARQ) 

mechanisms at the link layer. In that case, link layer retries 

may lead to one specific submode for each specific number of 

retries. However, use of ARQ in LPWAN technologies is 

typically infrequent. For example, ARQ is not supported in 

Sigfox, whereas in LoRaWAN it is typically not 

recommended, since it would require using the downlink 

channel, which is a bottleneck, to send link layer 

acknowledgments [14]. 

The Multimodal RTO leverages a priori knowledge of RTT 

characteristics of an LPWAN, namely the number of RTT 

modes, and lowest and highest RTT values for each RTT 

mode. The Multimodal RTO adaptively adjusts its behavior 

according to the current RTT mode. By means of extensive 

simulations, we evaluate the TCP RTO, the Multimodal RTO, 

and other state-of-the-art RTO algorithms, in a range of 

LPWAN RTT scenarios. Results show that, in the scenarios 

considered, the Multimodal RTO outperforms the TCP RTO 

algorithm by reducing RTO and RTT mismatch by a factor up 

to 5, and by dramatically reducing packet delivery and 

confirmation latency in the presence of packet losses by up to 

2 orders of magnitude, while offering safe operation. To our 

best knowledge, this is the first research work tackling the 

problem of RTO performance in LPWAN. On the other hand, 

the Multimodal RTO is currently being considered at the IETF 

as a candidate for standardization. 

The main contributions of this paper are the following: 

 Introducing and modeling the problem of multimodal 

RTTs in LPWAN. 

 Presenting an RTO algorithm, called the Multimodal 

RTO, which, to the best of our knowledge, is the first 

RTO algorithm intended to address the multimodal 

characteristics of LPWAN RTTs. 

 Evaluating the performance of the Multimodal RTO and 

comparing it with the performance of state-of-the-art 

RTO algorithms. 

The remainder of the paper is organized as follows. Section 

II reviews related work in RTO algorithm design for TCP in 

general, and for IoT scenarios. Section III analyzes the High 

RTT mode in LPWAN. Section IV presents the Multimodal 

RTO. Section V evaluates the Multimodal RTO and the TCP 

RTO in a range of LPWAN RTT scenarios. Section VI 

expands the evaluation by comparing performance of the 

Multimodal RTO with that offered by relevant alternative 

state-of-the-art RTO algorithms. Section VII analyzes and 

discusses the complexity of the Multimodal RTO. Section VIII 

concludes this work. 

II. RELATED WORK 

This section provides a literature overview in the area of 

RTO algorithms for the Internet. First, we focus on the TCP 

RTO, which can be considered the quintessential RTO 

algorithm used on the Internet. We provide the motivation for 

the design of the TCP RTO algorithm, along with a number of 

proposals intended to improve its performance. Secondly, we 

focus on RTO algorithms that have been specifically 

developed for the IoT domain. 

A. Standard TCP RTO algorithm  

The original specification of TCP, i.e. RFC 793, mandated 

use of a dynamically computed RTO [15]. While that 

specification did not require a particular RTO algorithm, it 

provided an example for such a dynamic RTO. The example 

was based on applying an Exponentially Weighted Moving 

Average (EWMA) to RTT samples in order to produce 

Smoothed RTT (SRTT) values. Then, the RTO was 

determined as a value proportional to the SRTT, with lower 

and upper bounds. However, Jacobson realized that lack of 

RTT variance estimation as an input to the RFC 793 RTO 

algorithm led to suboptimal performance [16]. He then 

proposed a modified RTO algorithm, with the aim of 

calculating RTO values based on both RTT mean and RTT 

variance estimates. Jacobson’s algorithm was subsequently 

recommended for use in TCP as per RFC 1122 [17], and 

eventually became the standard TCP RTO algorithm in RFC 

2988 [18]. As of the writing, Jacobson’s RTO algorithm 

remains as the standard TCP RTO algorithm, albeit with a 

minor modification introduced in RFC 6298, which reduces 

the default initial RTO value (from 3 s to 1 s) [7]. Jacobson’s 

algorithm, as specified in RFC 6298, operates as follows: 

1) Until an RTT sample is obtained, RTO is set to 1 s. 

2) When the first RTT sample is obtained, the Smoothed 

RTT (SRTT) is set to the value of that RTT sample (denoted 

R), RTT variation (RTTVAR) is set to R/2, and the RTO is 

calculated as  

                  𝑅𝑇𝑂 ൌ 𝑆𝑅𝑇𝑇 ൅ maxሺ𝐺,𝐾 ൉ 𝑅𝑇𝑇𝑉𝐴𝑅ሻ, (1) 

where G is the clock granularity and K is equal to 4. 

3) For any subsequent RTT sample, whose value is referred 

to as R’, RTTVAR and SRTT are updated as follows: 

                 RTTVAR ← (1- β)ꞏRTTVAR + βꞏ|SRTT-R’|         (2) 

            SRTT ← (1- α)ꞏSRTT + αꞏR’,                    (3) 

where α=0.125 and β=0.25. Then, RTO is updated as per 

(1). If the computed RTO is smaller than 1 s, it is rounded up 

to 1 s, in order to keep TCP conservative. 

An underlying assumption in Jacobson’s RTO is a unimodal 

RTT distribution [19]. However, many LPWAN scenarios 

offer significantly different characteristics, such as a 

multimodal RTT distribution with very high variance. 

B. Alternative RTO algorithms for TCP 

 An RTO algorithm represents a trade-off between latency 

and correctness, and thus no RTO algorithm will offer the best 

performance in all metrics and in all possible scenarios [20]. 

However, several works have identified TCP RTO calculation 

issues [21-25]. The impact of parameter settings, such as the 

initial RTO or the minimum RTO, on spurious timeouts has 

been investigated [22-24]. On the other hand, alternative RTO 

algorithms have been proposed as enhancements to the TCP 

RTO. Two prominent examples are Linux-RTO and Peak-

Hopper RTO [25, 8]. 
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Linux-RTO provides two additions to the TCP RTO. First, 

when a new RTT measurement is smaller than the SRTT, the 

RTO is not updated, which avoids an RTO increase when 

network conditions appear to yield lower RTTs. Secondly, 

Linux-RTO keeps a safety margin for RTO values when RTT 

samples offer constant values. 

Peak-Hopper RTO computes short-term and long-term RTO 

values. When there is an unexpected RTT growth, Peak-

Hopper RTO favors its short-term RTO value as the RTO 

algorithm output. Otherwise, the long-term RTO tends to 

prevail, in order to avoid spurious timeouts. A slow decay is 

applied to the long-term RTO.  

As of the writing, none of the alternative TCP RTO 

proposals has achieved the same level of maturity and 

adoption as the standard TCP RTO. 

C. IoT-specific RTO algorithms 

RTO algorithm design for IoT environments has also 

attracted the attention of many researchers [9, 26, 27]. Work in 

this area has focused mainly on providing a suitable RTO 

algorithm for the Constrained Application Protocol (CoAP), a 

lightweight application-layer protocol designed and 

standardized by the IETF for constrained node networks [28]. 

CoAP was originally conceived to run over UDP, while 

supporting optional reliability (based on confirmations and 

RTO-based retries) at the application layer. The CoAP base 

specification establishes that the RTO is randomly chosen, by 

default, between 2 s and 3 s, regardless of network conditions. 

In order to improve CoAP performance, a proposal called 

CoCoA defines an adaptive RTO algorithm that uses RTT 

samples as input [9]. CoCoA can be considered the seminal 

adaptive RTO algorithm for CoAP.  

CoCoA uses two internal TCP RTOs, one for strong RTTs 

(i.e. RTT samples that are obtained in absence of sender 

retries), and another one for weak RTTs (i.e. RTTs where the 

sender has performed retransmissions). The latter is intended 

to allow operation of CoCoA even in potentially lossy 

environments. The most recently updated internal RTO 

contributes to the overall estimator by using an EWMA 

algorithm, with default weights of 0.5 and 0.25 for the strong 

and the weak RTO estimators, respectively. In addition, 

CoCoA dithers the computed RTO value in order to avoid 

synchronization effects of neighboring devices such as sensors 

providing periodic updates. Other RTO algorithms have also 

been proposed for CoAP, such as pCoCoA [27] or FASOR 

[28]. However, they have been evaluated in a limited set of 

scenarios, in terms of network topologies and technologies. 

Despite the existing body of RTO algorithm design in the 

literature, to the best of our knowledge, no previous RTO 

algorithm has been developed for multimodal RTTs.  

III. HIGH RTT MODE IN LPWAN: ANALYSIS 

As introduced in Section I, RTTs in LPWAN may be 

exacerbated under a set of conditions, leading to a High RTT 

mode. This section analytically characterizes the High RTT 

mode in the two main scenarios where it arises: i) the busy 

gateway scenario, and ii) the DC-constrained scenario. For 

both scenarios, we derive the probability that an RTT belongs 

to the High RTT mode, denoted PHigh, as well as the expected 

High RTT mode value, RTTHigh. 

A. Busy gateway scenario 

In the busy gateway scenario, there exist time intervals 

during which the IoT device sends an uplink message, but the 

gateway misses the IoT device reception window for sending 

the corresponding downlink response. This happens when the 

gateway is busy performing other tasks, such as transmitting 

previously buffered downlink messages. As a result, the 

gateway typically sends the response to the uplink message 

after the next uplink message transmission. 

Let us assume that the arrival of downlink messages at the 

gateway radio transmitter follows a Poisson model, with rate 

down. Downlink messages comprise responses to uplink 

messages sent by IoT devices as well as unsolicited downlink 

messages. Let us assume a constant message transmission 

time, x, and an infinite gateway downlink buffer size. Under 

the mentioned assumptions, the gateway downlink transmitter 

can be modeled as an M/D/1 queuing system [29]. 

In the presented conditions, the IoT device reception 

window will be missed (i.e. an RTT will belong to the High 

RTT mode) if there exists at least one previous message in the 

gateway downlink transmitter system when the response to the 

corresponding uplink message arrives at the system. Then, 

PHigh can be computed as follows: 𝑃ு௜௚௛ ൌ   𝜆ௗ௢௪௡ ⋅ 𝑥                                                                     (4) 

In that case, the gateway is typically able to send the 

response to the (k-th) uplink message after the next ((k+1)-th) 

uplink message transmission. Since the uplink message 

interval is expected to be large in LPWAN (e.g. in the order of 

hundreds of seconds), and significantly greater than Low RTT 

mode values (e.g. in the order of seconds), the expected High 

RTT mode value, RTTHigh, will be approximately equal to the 

expected uplink message interval. 

B. DC-constrained scenario 

In the DC-constrained scenario, an IoT device remains in 

idle state after sending a packet, in order to comply with a DC 

limit. For example, ETSI regulations establish a 1% DC 

constraint for the 868.0 – 868.6 MHz band in Europe [30], 

which is relevant for channels used by LoRaWAN and Sigfox. 

At the IoT device, any new message will need to wait in a 

buffer until all previous messages have been sent and their 

subsequent idle times have ended, therefore producing RTT 

values that belong to the High RTT mode. 

We characterize message generation at the IoT device as a 

Poisson model, with rate up. This may correspond to an 

application where an IoT device sends a message reporting a 

detected event, which may happen at any time, and 

independently from other events. Let us also assume a 

constant message transmission time, which is followed by a 

subsequent idle interval of constant duration (e.g. 99 times the 

last message transmission time), to comply with regulatory 

DC constraints. Let us define a service time, denoted , as the 

sum of uplink message transmission time and the subsequent 

idle interval. Note that  has a deterministic value. Finally, let 

us assume a large device buffer size that can be modeled as an 

infinite queue (as in fact LPWAN messages may be very 

short, e.g. of just a few tens of bytes [3]).  
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Under the considered conditions, uplink message 

transmission in the DC-constrained scenario may be modeled 

as an M/D/1 queuing system. Accordingly, in such scenario, 

the probability of a message leading to a high RTT value, 

PHigh, can be obtained as follows: 𝑃ு௜௚௛ ൌ   𝜆௨௣ ⋅ 𝜏                                                                      (5) 

The expected High RTT mode value, RTTHigh, can be 

computed as the expected waiting time in the queue (wq) plus 

the Low RTT mode value, RTTLow: 𝑅𝑇𝑇ு௜௚௛ ൌ 𝑤௤ ൅ 𝑅𝑇𝑇௅௢௪                                               (6) 

 Since wq corresponds to waiting time in an M/D/1 queuing 

system, RTTHigh can be expressed as shown next: 𝑅𝑇𝑇ு௜௚௛ ൌ ఒೠ೛൉ఛమଶ൉ሺଵିఒೠ೛൉ఛሻ൅ 𝑅𝑇𝑇௅௢௪                                        (7) 

Assuming a typical DC constraint of 1%, and for              

PHigh > 10-1, which corresponds to uplink channel utilization 

greater than 10-3, the queuing waiting time becomes dominant, 

and thus RTTHigh can be approximated as shown next: 𝑅𝑇𝑇ு௜௚௛ ൎ ఒೠ೛൉ఛమଶ൉ሺଵିఒೠ೛൉ఛሻ .                                                   (8) 

IV. MULTIMODAL RTO ALGORITHM 

Motivated by the RTT characteristics of LPWAN, the 

Multimodal RTO is designed for scenarios with a multimodal 

RTT distribution, where RTT values can be categorized into 

one of at least two different RTT modes characterized by 

significantly different, mostly non-overlapping ranges of RTT 

values. 

The Multimodal RTO comprises a number of separate 

internal retransmission timers, one for each RTT mode (Fig. 1, 

Algorithm 1). A separate TCP RTO algorithm is used for each 

internal retransmission timer. Note that, since the TCP RTO 

algorithm was designed for a unimodal RTT distribution, it is 

a good fit for the RTT characteristics of a particular RTT 

mode. Alternative RTO algorithms might be considered for 

the internal RTOs. However, they might not lead to 

significantly different performance in a multimodal RTT 

context, and would miss the advantage of using a well-known 

algorithm in terms of adoption, code reuse, etc. Based on 

measured RTT samples, the Multimodal RTO determines the 

current RTT mode, and selects the RTO values produced by 

the internal timer that corresponds to that RTT mode as the 

Multimodal RTO output.  

As characterized in the previous section, RTT values can 

typically be categorized into two RTT modes in many 

LPWAN scenarios, namely a High RTT mode, and a Low 
RTT mode. Therefore, in this paper the Multimodal RTO uses 

two internal RTO timers.   

The initial RTT mode assumed by the Multimodal RTO is 

the Low RTT mode. While in the Low RTT mode, if NHigh 

consecutive RTT samples are equal to or greater than 

RTTThresh_High, the Multimodal RTO switches to High RTT 

mode operation. Analogously, if NLow consecutive RTT 

samples are lower than RTTThresh_Low while in the High RTT 

mode, the algorithm switches to Low RTT mode operation.  

An internal timer is frozen when the current RTT mode is 

not the one that the timer is intended for. Once a new RTT 

mode is detected, the corresponding internal timer reprises its 

Fig. 1. Internal structure of the Multimodal RTO algorithm, which comprises

two separate TCP retransmission timers intended for use in each RTT mode.

When a new RTT mode is detected, the Multimodal RTO switches to using

the corresponding internal timer (e.g. by switching from positions 1) to 2)

when changing from Low RTT mode to the High RTT mode operation). 

Low RTT mode timer

High RTT mode timer

RTT values RTO values

Multimodal RTO algorithm

1) 1)

2) 2)

Algorithm 1 

Input:     RTT vector of size N1 

Output:  RTO vector of size N 

Initialization:  

srtt_h ← 102  

rttvar_h ← 15  

current_mode ← LOW 

rtt   ← 1 

rtt1 ← 1 

rtt2 ← 1 

1: srtt_l ← RTT[0]  

2: rttvar_l ← RTT[0]/2 

3: RTO[0] ←srtt_l + max(G, Kꞏrttvar_l) 

4: for i=1 to i = N-1 then  

5:  rtt2 ← rtt1 

6:  rtt1 ← rtt 

7:  rtt   ← RTT[i] 

8:  if rtt < RTTthr then 

9:   if rtt1 < RTTthr then 

10:    if rtt2 < RTTthr then 

11:      current_mode ← LOW 

12:    end if 

13:       end if 

14: else                   

16:  if rtt1 ≥ RTTthr then 

17:   if rtt2 ≥ RTTthr then 

18:    current_mode ← HIGH 

19:   end if 

20:       else 

21:           if rtt2 < RTTthr then 

22:               srtt_l ← RTT[i] 

23:               rttvar_l ← RTT[i]/2 

24:   end if 

25:  end if 

26:   end if 

27:   if current_mode = LOW then   

28:  srtt_l ← (1-)ꞏsrtt_l + ꞏrtt  

29:  rttvar_l ← (1- )ꞏrttvar_l +  ꞏ|srtt_l-rtt|   

30:  RTO[i] ←srtt_l + max(G, Kꞏrttvar_l) 

31: else 

32:  srtt_h ← (1-)ꞏsrtt_h + ꞏrtt  

33:  rttvar_h ← (1- )ꞏrttvar_h +  ꞏ|srtt_h-rtt|   

34:  RTO[i] ← srtt_h + max(G, Kꞏrttvar_h) 

35: end if 

36: end for 
1N denotes the number of RTT samples.  
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activity, using the last stored RTT mean and RTT variance 

estimates for this RTT mode. Therefore, in the Multimodal 

RTO, the relevant RTT variable estimates for a given RTT 

mode do not pollute the RTO calculation for another RTT 

mode. This behavior effectively avoids the persistently high 

RTO values produced by a single TCP RTO algorithm 

handling all RTTs, due to the high RTT variance produced by 

RTT mode changes. 

We propose a setting of 3 for both NHigh and NLow, as a 

trade-off between reactivity to RTT mode changes and reliable 

RTT mode detection. Too large NHigh or NLow settings will 

delay internal timer change. On the other hand, too small NHigh 

or NLow settings may lead to spurious RTT mode detection. 

Both problems produce RTO values significantly greater than 

current RTT ones due to the resulting large RTT variance for 

the current internal timer in use. Optimal NHigh and NLow 

settings depend on the RTT features of each scenario. 

As an additional measure to avoid underperformance due to 

sporadic high RTT samples while in Low RTT mode 

operation, if an RTT sample is greater than RTTThresh_High, and 

the next NLow consecutive RTT samples are smaller than 

RTTThresh_Low, the Low RTT mode timer is reset. 

V. EVALUATION: MULTIMODAL RTO VS TCP RTO 

This section evaluates by simulation the performance of a 

single TCP RTO and the Multimodal RTO in a range of RTT 

scenarios. The section comprises five subsections. First, we 

describe the RTT models used in the evaluation. Secondly, we 

illustrate the behavior of the considered RTO algorithms in 

example scenarios. In the last three subsections, we compare 

the performance of the two RTO algorithms by focusing on 

three parameters: the average difference between the RTO 

values produced by the two RTO algorithms, the average 

RTO-to-RTT ratio for each RTO algorithm in each RTT 

mode, and the expected latency decrease achieved by the 

Multimodal RTO in the presence of packet losses. 

A. RTT Models 

In our evaluation, RTT values in the Low RTT mode are 

equal to 1 s, plus a uniformly random jitter of up to 0.1 s. Such 

Low RTT mode values are realistic in LoRaWAN networks 

[6]. For the High RTT mode, we consider the RTT patterns 

that arise in the busy gateway and DC-constrained scenarios. 

In the busy gateway scenario, we assume a time between 

two consecutive uplink messages of 100 s. In these conditions, 

RTT values in the High RTT mode are modeled as 100 s, plus 

a random jitter of up to 10 s. Note that devices using LPWAN 

technologies will typically run applications that generate a 

relatively low rate of uplink messages. A time between two 

consecutive uplink messages of 100 s aims at capturing such 

application behavior, whereas the considered random jitter 

accounts for possible RTT variance. TLow and THigh denote the 

average duration of intervals in the Low and High RTT 

modes, respectively. Let Ω denote THigh/TLow ratio. We assume 

exponentially distributed RTT mode interval durations, 

expressed in number of RTT samples. 

In the DC-constrained scenario, we assume a DC limit of 

1%. We also assume a packet transmission time of 1 s, which 

is realistic for LPWAN technologies such as LoRaWAN (e.g. 

data rates called DR0 and DR1) and Sigfox (in Europe). In 

order to evaluate the RTO algorithms in adverse conditions 

(i.e. without limiting the RTT values), we assume a buffer of 

infinite size. In the study, the time between consecutively 

generated packets is exponentially distributed, with an average 

value of 1/λ s. 

Note that the Multimodal RTO relies on a priori knowledge 

of the RTT distribution of the intended scenario. The main 

aspects and parameters to be determined are the number of 

RTT modes, suitable RTT mode thresholds, and suitable 

initial values for the internal timer variables. All these aspects 

can be determined a priori for both types of RTT patterns 

introduced in this subsection, as follows. First, RTT statistics 

need to be determined. This can be carried out by theoretical 

means, based on knowledge of the physical layer and link 

layer settings in use. Empirical RTT measurements can also be 

performed, either to refine the theoretical RTT 

characterization or if physical or link layer settings are 

unknown. The RTT characterization allows identifying the 

number of RTT modes. For a given RTT mode, initial values 

for the corresponding SRTT and RTTVAR variables will be 

suitable as long as they lead to a calculated RTO value that 

does not incur a spurious timeout, but is not too large either in 

order to avoid unnecessarily long wait time if retransmission is 

needed. A threshold between two adjacent RTT modes needs 

to be greater than the RTT values of the lower RTT mode, and 

smaller than the RTT values of the higher RTT mode.  

In the evaluation, based on a priori knowledge of the 

scenario RTT characteristics, since RTT values smaller than   

2 s are considered to belong to the Low RTT mode, and RTT 

values equal to or greater than 2 s correspond to the High RTT 

mode, both RTTThresh_Low and RTTThresh_High are set to 2 s. The 

goal is to avoid an internal Multimodal RTO timer use RTT 

samples not belonging to its intended mode. The SRTT and 

RTTVAR initial values for the Multimodal RTO in the High 

RTT mode are 102 s, and 15 s, respectively.  

B. RTO Algorithms: Behavior Overview  

We now provide an overview of how the TCP RTO and the 

Multimodal RTO outputs evolve over time for various 

example RTT sample sequences, in the busy gateway and DC-

constrained scenarios (see Figs. 2 and 3, respectively).  

Fig. 2.a) shows a sequence of RTTs that contains a High 

RTT mode interval with a duration of 100 RTT samples. Both 

considered RTO algorithms produce well adapted RTO values 

during the initial Low RTT samples. Once the RTT mode 

changes at the 100th RTT sample, high RTT variance leads to 

increased RTO values for both algorithms. However, the TCP 

RTO reaches roughly 3 times the current RTT in the High 

RTT mode, and it takes roughly 30 RTT samples for the TCP 

RTO to converge in the High RTT mode. In contrast, the 

Multimodal RTO detects the RTT mode change after the third 

consecutive RTT sample greater than RTTThresh_High, and 

switches to High RTT mode operation. Subsequently, the 

RTO values produced by the Multimodal RTO converge 

quickly, after roughly 10 RTT samples in the first High RTT 
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mode interval (only 3 RTT samples are required for 

subsequent RTT mode changes). Once the High RTT mode 

interval ends, both RTO algorithms initially produce increased 

RTO values due to the resulting RTT variance, similarly to 

their reaction to the first RTT mode change. In this transition, 

since the new RTT mode values are low, it takes even longer 

for the TCP RTO to converge. Instead, as soon as the 

Multimodal RTO detects the new RTT mode, it switches back 

quickly to Low RTT mode operation. 

The overall performance improvement achieved by the 

Multimodal RTO depends on the durations of the different 

RTT mode intervals. Fig. 2.b) depicts an example that keeps 

Ω=1 as in the previous example (during the first 80 RTT 

samples), but for a reduced TLow of 20 samples. For these 

settings, each RTT mode interval duration is shorter than the 

TCP RTO convergence time. However, the Multimodal RTO 

converges quickly when the RTT mode changes. Therefore, 

the relative improvement of the Multimodal RTO in this 

scenario is greater than in the previous one.  

We now focus on the RTO algorithms’ behavior in the DC-

constrained scenario. In Fig. 3.a), 1/λ takes the shortest 

practical value for the considered conditions (i.e. 1/λ=100 s). 

For most of the analyzed interval, both RTO algorithms offer 

the same performance, since most RTTs are greater than 

RTOThresh_High and RTOThresh_Low (i.e. 2 s), as a result of the high 

λ value considered. Fig. 3.b) illustrates an example for 

1/λ=1000 s, where high RTT mode intervals are short (e.g. of 

just one RTT sample). The TCP RTO converges slowly to low 

RTT values after the RTT spikes, whereas the Multimodal 

RTO is able to quickly detect the change to Low RTT mode 

values, producing RTO values close to the former. 

The ability to determine the RTT mode allows the 

Multimodal RTO to produce RTO values that are lower than 

the TCP RTO ones during transient intervals after RTT mode 

changes. On the other hand, the Multimodal RTO also 

provides safe operation, since its internal timers actually use 

the TCP RTO algorithm, thus the Multimodal RTO tends to 

produce RTO values that are greater than RTT values. 

C. TCP RTO and Multimodal RTO output difference 

We now study the average difference between the RTO 

values produced by the TCP RTO and the Multimodal RTO, 

denoted ΔRTO, in the busy gateway and in the DC-

constrained scenarios. Each individual result shown in the 

remainder of this section is obtained from 106 simulated 

RTTs. 

In the busy gateway scenario, we evaluate ΔRTO as a 

function of TLow and Ω. Fig. 4 illustrates the corresponding 

results. The positive ΔRTO obtained in all cases indicates that 

the Multimodal RTO is able to follow the RTT more closely 

than the TCP RTO. For TLow=10 samples or greater, ΔRTO 

tends to decrease with TLow, since transient intervals after RTT 

mode changes become short compared with RTT mode 

interval durations. 

All curves in Fig. 4 show a maximum ΔRTO. For low or 

high Ω values (e.g. 0.1 or 10, respectively), there is a 

dominant long RTT mode interval duration (in Low or High 

RTT modes, respectively) where both RTO algorithms 

converge to similar values, therefore ΔRTO is low. As TLow 

increases, the maximum ΔRTO is found for a smaller Ω, 

because the High RTT mode interval duration needs to be 

smaller for transient intervals (where the difference between 

the two RTO algorithms is greatest) to remain dominant.  

For low TLow values (Fig. 4.b)), the inverted U shape of the 

curves becomes narrower as TLow decreases. This happens 

because for low or high Ω (e.g. Ω=0.1 or Ω=10, respectively), 

the Multimodal RTO tends to behave like the TCP RTO, since 

the probability of Low or High RTT mode interval durations 

a)   

b) 

 

Fig. 2.  Behavior of the TCP RTO and the Multimodal RTO in the busy

gateway scenario: a) TLow =100 samples, Ω=1; b) TLow =20 samples, Ω=1

(during the first 80 samples). 
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Fig. 3.  Behavior of the TCP RTO and the Multimodal RTO in the DC-

constrained scenario. a) 1/λ=100 s; b) 1/λ=1000 s. 
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being at least NLow or NHigh (i.e. 3) consecutive RTT samples 

decreases. 

We now evaluate ΔRTO in the DC-constrained scenario. As 

shown in Fig. 5, ΔRTO exhibits a maximum for 1/λ = 200 s. 

As 1/λ increases, the duration of Low RTT mode intervals 

increases too, which allows the TCP RTO more time for 

converging during such intervals. For 1/λ= 100 s, both RTO 

algorithms offer similar performance, as e.g. previously shown 

in Fig. 3.a). 

D. Per-mode RTO and RTT comparison 

As it can be seen in Figs. 2 and 3, the relative performance 

of the TCP RTO and the Multimodal RTO varies significantly 

depending on the current RTT mode. The RTO and RTT 

mismatch of the RTO algorithms is significantly greater in the 

Low RTT mode. In this subsection, we evaluate the average 

RTO-to-RTT ratio (hereinafter, RTO/RTT) for the two studied 

RTO algorithms, separately for each RTT mode, for different 

TLow and Ω values, in the busy gateway and DC-constrained 

scenarios (see Figs. 6 and 7, respectively). 

As shown in Fig. 6.a), for TLow=10 samples, during Low 

RTT mode intervals, RTO/RTT for the TCP RTO exceeds 100 

for Ω ≥ 1, whereas the RTO/RTT is approximately 25 for the 

Multimodal RTO. Since duration of the Low RTT mode is 

short, the TCP RTO does not have enough time to converge. 

However, the Multimodal RTO converges quickly. For low Ω 

values, Low RTT mode intervals are long, and the impact of 

transient intervals becomes reduced.  

For TLow=10 samples, but during High RTT mode intervals 

(Fig. 6.b)), RTO/RTT values are much lower. The TCP and 

Multimodal RTO algorithms exhibit local average RTO/RTT 

maxima of ~2.2 and ~1.7, respectively. For low Ω, the 

duration of the High RTT mode intervals is often short, which 

truncates the RTO values increase after a Low to High RTT 

mode transition, for both RTO algorithms. As Ω increases, 

probability of the mentioned truncation decreases, leading to 

an RTO/RTT increase. However, as Ω continues to grow, both 

RTO algorithms exhibit an asymptotic RTO/RTT decrease. 

Figs. 6.a) and 6.b) also provide the results for TLow=100 

samples, for the Low and the High RTT modes, respectively. 

The greater duration of each RTT mode interval for             

 
Fig. 5.  ΔRTO in the DC-constrained scenario. 
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Fig. 4.  ΔRTO in the busy gateway scenario, as a function of Ω: a) TLow

values of 10, 50 and 100 RTT samples; b) TLow of 1 and 5 RTT samples. 
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Fig. 6.  Average RTO/RTT for the two considered RTO algorithms in the busy 

gateway scenario: a) Low RTT mode; b) High RTT mode. 
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The section comprises two subsections. The first one 

overviews the behavior of both Peak-Hopper and CoCoA 

RTO algorithms, compared with that of the Multimodal RTO. 

Since the CoCoA RTO behaves similarly to the TCP RTO, the 

second subsection evaluates the Multimodal RTO, in terms of 

latency decrease, when compared with the Peak-Hopper RTO. 

A. Behavior overview 

Fig. 10.a) illustrates the RTO values produced by the Peak-

Hopper RTO, the CoCoA RTO, and the Multimodal RTO in 

the busy gateway scenario, for a sequence of RTTs that 

contains a High RTT mode interval with a duration of 100 

RTT samples. TCP RTO values are also included for 

comparison.  

As it can be seen in Fig. 10.a), the CoCoA RTO behaves 

very similarly to the TCP RTO. In fact, the CoCoA strong 

estimator uses a TCP RTO, before an EWMA operation is 

applied. The EWMA scheme acts as a low-pass filter that 

slightly reduces the peak RTO value, delays the RTO 

adaptation to RTT mode changes by around    8 samples, and 

subsequently produces RTO values that are slightly greater 

than those of the TCP RTO. 

In the busy gateway scenario, the Peak-Hopper RTO 

outperforms both the TCP and the CoCoA RTOs. While the 

Peak-Hopper RTO is able to react to the sudden RTT increase 

at the start of the High RTT mode interval, its RTO output 

remains lower than that of the TCP RTO and the CoCoA 

RTO. The latter are affected by a large RTT variance due to 

the RTT mode change. After the RTT mode change, the Peak-

Hopper RTO decays its RTO value, and for ~20 RTT samples 

it produces RTO values much closer to the RTTs than those 

produced by the TCP and the CoCoA RTOs. Nevertheless, the 

Multimodal RTO outperforms the Peak-Hopper RTO. 

When the High RTT mode interval ends, the Peak-Hopper 

RTO yields an even better performance (compared to that of 

the TCP and the CoCoA RTOs) than at the High RTT mode 

interval start. This occurs because as RTT decreases, the Peak-

Hopper RTO decays its RTO output, whereas the TCP and the 

CoCoA RTOs produce large RTO values due to the high RTT 

variance due to the RTT mode change. At the third RTT 

sample after the RTT mode change, the Multimodal RTO 

detects the RTT mode change and switches to using its Low 

RTT mode internal timer. Subsequently, the Multimodal RTO 

produces RTO values well aligned with the current RTT 

mode. However, the Peak-Hopper RTO produces greater RTO 

values for at least 50 RTT samples. 

The CoCoA RTO inherits many features of the TCP RTO, 

including its design for a unimodal RTT distribution. Thus, 

both algorithms significantly underperform the Multimodal 

RTO in the context of LPWAN scenarios. While the Peak-

Hopper RTO outperforms both the TCP and the CoCoA RTOs 

in the busy gateway scenario, its design for a unimodal RTT 

distribution still prevents it from offering good performance in 

a multimodal RTT scenario. 

Fig. 10.b) shows the RTO outputs for the Peak-Hopper, 

CoCoA, the TCP and the Multimodal RTOs, for an example 

sequence of RTTs in the DC-constrained scenario, for 

1/s. As is visible in Fig. 10.b), the Peak-Hopper RTO 

offers the worst performance among the considered RTO 

algorithms. In the DC-constrained scenario, RTTs abruptly 

increase by at least one order of magnitude, and then return to 

lower values. The Peak-Hopper RTO reacts quickly to a 

sudden RTT increase by producing an RTO value that is 

greater than the current RTT, since its short RTT history 

becomes dominant. Once the RTT returns to low values, the 

long-term RTO of the Peak-Hopper algorithm prevails, which 

is however strongly influenced by the large RTO produced 

after the last RTT spike. The long-term RTO slowly decays 

over time, until the next high RTT sample, where the Peak-

Hopper RTO value increases again.  

In the DC-constrained scenario, the TCP RTO becomes less 

misaligned with the RTT sequence than the Peak-Hopper 

RTO, since the former does not neglect the longer past history 

of RTT samples, and short High RTT mode durations (of e.g. 

1 RTT sample) do not suffice to produce higher RTO values 

than Peak-Hopper RTO ones. When the RTT sequence returns 

to low values after RTT spikes, the TCP RTO produces lower 

RTO values as well, avoiding the RTO exacerbated increase 

exhibited in the busy gateway scenario after a High to Low 

RTT mode change.  

In the same scenario, the CoCoA RTO behaves similarly to 

the TCP RTO algorithm, with the CoCoA RTO leading to 

smoother RTO peaks, due to the low-pass filter effect of its 

EWMA component. In contrast with the rest of RTO 

algorithms considered, the Multimodal RTO is able to quickly 

adapt to the current RTT mode. 

B. Latency decrease 

We now study the latency decrease achieved by the 

Multimodal RTO in the presence of packet losses, compared 

with the Peak-Hopper RTO, for different values of P. As in 

subsection V.E, we assume unlimited RTO values and number 

of retries. Figs. 13 and 14 depict the results for the busy 

gateway and DC-constrained scenarios, respectively, as a 

a) 

b)  

Fig. 10.  Behavior of the Peak-Hopper RTO, the CoCoA RTO, the TCP RTO

and the Multimodal RTO: a) busy gateway scenario, for TLow =100 samples

and Ω=1; b) DC-constrained scenario, for 1/λ=1000 s. 
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each one of the two internal RTOs, SRTT and RTTVAR need 

to be maintained as well. Therefore, for the Multimodal RTO 

with default settings, spatial complexity is 3n + 2ꞏ2n, that is, 

7n. Thus, spatial complexity of the Multimodal RTO grows 

linearly with the number of internal RTO modes, and also 

includes the memory needed to store the last 3 RTT samples. 

B. Selecting the number of internal RTO timers of the 

Multimodal RTO 

As illustrated in the previous subsection, both spatial and 

time complexity of the Multimodal RTO increase with the 

number of internal RTO timers used. 

In terms of accurate RTO computation, the number of 

internal RTO timers of the Multimodal RTO is optimally 

selected when it equals the number of RTT modes in the 

scenario. As explained in Section I, many common LPWAN 

scenarios are characterized by exactly two RTT modes, thus 

using two internal RTO timers for the Multimodal RTO is the 

best choice in such scenarios. 

Many LPWAN devices exhibit limited hardware (e.g. 

memory, CPU, etc.) capabilities, thus computational power of 

such devices is constrained, and minimizing complexity is an 

important goal. If there are more than two RTT modes in a 

scenario, a reasonable trade-off between accurate RTO 

computation and minimizing complexity is defining two 

internal RTO timers for the Multimodal RTO, with one of 

them intended to cope with the High RTT mode (produced by 

duty cycle or busy gateway effects), and the other intended for 

the Low RTT mode (which may include submodes produced 

by link layer retries). In such case, while using only two 

internal RTO timers may not allow achieving the highest 

performance, it will still improve performance compared with 

a unimodal RTO. 

VIII. CONCLUSION 

In this paper, we presented the Multimodal RTO algorithm, 

which has been designed in order to address the issues posed 

by multimodal RTT distributions found in LPWAN scenarios. 

Evaluation results show how, at the expense of a relatively 

low amount of additional complexity, the Multimodal RTO 

outperforms use of a single, standard TCP RTO algorithm, as 

well as state-of-the-art RTO algorithms such as the Peak-

Hopper RTO and the CoCoA RTO. 

The TCP RTO fails to handle the large RTT variance that 

stems from RTT mode changes. The performance 

improvement that can be achieved by the Multimodal RTO 

over the TCP RTO increases for a moderate RTT mode 

change frequency and for relatively similar RTT mode interval 

durations of the different RTT modes. The CoCoA RTO 

performs similarly to the TCP RTO, and exhibits comparable 

misbehavior.  

The Peak-Hopper RTO offers lower misalignment than 

TCP RTO or CoCoA RTO with RTTs in the busy gateway 

scenario. However, it fails to adapt quickly to an RTT mode 

change. Furthermore, in the DC-constrained scenario, the 

Peak-Hopper RTO underperforms even the TCP RTO. 

 The Multimodal RTO algorithm is applicable for current 

and future retransmission timer-based protocols and 

applications to be used in LPWAN. 

IX. APPENDIX 

This appendix provides the details of the Peak-Hopper RTO 

and the CoCoA RTO algorithms [8, 9], and the settings 

assumed for these algorithms in this paper.  

A. Peak-Hopper RTO 

The Peak-Hopper RTO comprises a set of 5 steps.  The first 

step determines the value of , a variable defined as follows: 

             = (R-Rprevious)/ Rprevious                      (Step i) 

 where Rprevious denotes the previous RTT sample. In this 

paper, we assume an initial value for Rprevious of 1 s. 

 The second step computes a decay factor, D:  

      D = 1-1/(FꞏS)                                           (Step ii) 

where S is set to 1, since we assume sporadic message 

transmission, and F is set to 16 as proposed by the Peak-

Hopper RTO authors [8]. Thus, in this paper D is 15/16. 

The third step computes a booster factor, B: 

  B ← min(max(2ꞏ, DꞏB), Bmax)                        (Step iii)  

where Bmax is an upper limit to B, which is set to 1 in this 

paper since we assume that timestamps are not used [9]. We 

set the initial value of B to 1. 

The fourth step determines Rmax, defined as follows: 

    Rmax = max(R, Rprevious)                                       (Step iv) 

Finally, the RTO is computed as: 

      RTO ← max(DꞏRTO, (1+B)ꞏRmax, RTOmin)          (Step v) 

where the RTO is chosen as the maximum among the three 

following terms: the first term decays the previous RTO, the 

second one corresponds to short RTT history, and RTOmin is 

equal to Rmax+2ꞏG. Considering the large RTT values in 

LPWAN, we assume Rmax ≫ 2ꞏG, thus RTOmin ൎ Rmax. 

B. CoCoA RTO 

The CoCoA RTO defines two internal RTOs: the strong 

RTO and the weak RTO, each one based on the TCP RTO. 

When a strong or a weak RTT is measured, the corresponding 

RTO evolves accordingly. The most recently updated internal 

RTO, RTOinternal, contributes to the overall estimator, RTOoutput, 

as shown next: 

      RTOoutput ← a ꞏRTOinternal + (1-a) ꞏRTOoutput             

where RTOinternal corresponds to the strong or the weak 

RTO. Default weights for a are 0.5 and 0.25 for the strong and 

for the weak RTO estimators, respectively. In this paper, we 

set a=0 for the weak estimator, to reduce CoCoA RTO 

underperformance in multimodal RTT scenarios. 
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