
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— Low Power Wide Area Networks (LPWANs) are

experiencing high momentum as an inexpensive solution for

enabling Internet of Things (IoT) applications. Recent Internet

connectivity support developments are expected to further fuel

the adoption of LPWAN. However, the latter present challenges

to Internet protocols. Remarkably, many LPWAN scenarios

exhibit a multimodal Round Trip Time (RTT) distribution,

which deviates from common Internet RTT characteristics. This

leads to a significant mismatch between Retransmission TimeOut

(RTO), computed by the standard TCP or alternative

experimental RTO algorithms, and RTT. In this paper, we

present the Multimodal RTO algorithm, which is able to self-

adapt to the current RTT mode and produce suitable RTO

values. Evaluation results show that the Multimodal RTO

reduces the RTO versus RTT misalignment of the TCP RTO

algorithm by an average factor of up to 5, and reduces latency in

the presence of losses by up to 2 orders of magnitude, while

operating safely. The Multimodal RTO is currently being

considered by the IETF as a candidate mechanism for

standardization.

Index Terms—Retransmission Timer, RTO, LPWAN, IoT.

I. INTRODUCTION

N recent years, Low Power Wide Area Networks

(LPWANs) have gained momentum as an inexpensive

solution for enabling Internet of Things (IoT) applications.

LPWAN technologies are based on star topology networks

where IoT devices (e.g. battery-enabled sensors and actuators)

are connected to a radio gateway via low-power, long-range

wireless links, at the expense of reduced throughput [1-3].

As part of the expansion of LPWAN, IPv6 support is

currently being developed for LPWAN [4, 5]. This capability

will allow using IP-based protocols over LPWAN. Several

such protocols use Retransmission TimeOut (RTO)-based

packet retransmission for end-to-end reliability, and even the

adaptation layer that enables IPv6 over LPWAN uses RTO-

triggered retransmission [6]. However, some LPWAN

technologies present unprecedented Round Trip Time (RTT)

characteristics that challenge the performance of a traditional

This work has been funded in part by the Spanish Government

(Ministerio de Ciencia, Innovacion y Universidades) through the Jose

Castillejo grant CAS18/00170 and by European Regional Development

Fund (ERDF) and the Spanish Government through project TEC2016-79988-

P, AEI/FEDER, UE.

C. Gomez is with the Network Engineering Department, Universitat

Politècnica de Catalunya, Castelldefels 08860 Spain (e-mail:

carlesgo@entel.upc.edu). His contribution to this work has been carried out

during his research stay at the Computer Laboratory, University of

Cambridge, Cambridge CB3 0FD United Kingdom.

J. Crowcroft is with the Computer Laboratory, University of Cambridge,

Cambridge CB3 0FD United Kingdom (e-mail: jon.crowcroft@cl.cam.ac.uk).

RTO algorithm such as the one used in the Transmission

Control Protocol (TCP) [6, 7] or even of experimental,

advanced RTO algorithms [8, 9].

In LPWANs, there exist two main phenomena that may

exacerbate RTTs during some intervals. First, in some

LPWAN technologies, as an IoT device energy saving

technique, downlink messages can only be sent by a radio

gateway to an IoT device during a specific time window

shortly after an uplink transmission by the same IoT device

[10, 11]. If the gateway is unable to send the response to an

uplink message within the corresponding window, the next

opportunity for the gateway to send the response will be after

the next uplink transmission. The time at which the latter may

occur depends on the specific application (e.g. the time

between sensor readings are sent), potentially leading to an

RTT several orders of magnitude greater than the one in ideal

conditions [12]. Secondly, in some world regions, LPWAN

technologies such as LoRaWAN and Sigfox conform to

spectrum access regulations by keeping the duty cycle (DC)

lower than a given limit (such as 1% in some bands in Europe)

[11, 13]. Accordingly, some IoT devices remain in idle state

after a packet transmission during 99 times the transmission

time of the last packet sent. If a new packet needs to be sent

during the idle interval, it will need to wait in a buffer of the

IoT device until the next transmission is allowed, thus

increasing the RTT.

Therefore, communication over LPWAN may happen under

different sets of conditions, each one with different RTT

characteristics, hereinafter referred to as RTT modes. In fact,

many LPWAN scenarios exhibit multimodal RTT

distributions, with a high RTT variance that stems from RTT

mode changes. In order to provide high performance, an RTO

algorithm for such RTT characteristics needs to be adaptive.

However, the standard TCP RTO algorithm (hereafter, TCP

RTO), which is the reference adaptive RTO mechanism used

in the Internet, was not designed for multimodal RTT

distributions. In fact, it underperforms in such scenarios,

producing unnecessarily high RTO values after RTT mode

transitions.

In this paper, we present and evaluate the Multimodal RTO

algorithm (hereafter, Multimodal RTO). This algorithm

comprises a number of internal timers that use the TCP RTO

algorithm, each one intended for use in each RTT mode.

Based on LPWAN characteristics, we consider scenarios

characterized by two RTT modes. As aforementioned, RTTs

in LPWAN may be exacerbated due to compliance with duty

cycle regulations or because gateways miss downlink

transmission opportunities. However, in absence of such

phenomena, RTTs are significantly lower. As a result, it is

Multimodal Retransmission Timer for LPWAN

Carles Gomez, Jon Crowcroft

I

© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper has been accepted for publication in IEEE Internet of Things Journal. Please refer to the final paper version once published.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

possible to identify two main RTT modes, which we call High

RTT mode and Low RTT mode, respectively. Note that, in

some cases, at a microscopic scale, an RTT mode may

comprise a number of RTT submodes. This may happen when

an LPWAN device uses Automatic Repeat reQuest (ARQ)

mechanisms at the link layer. In that case, link layer retries

may lead to one specific submode for each specific number of

retries. However, use of ARQ in LPWAN technologies is

typically infrequent. For example, ARQ is not supported in

Sigfox, whereas in LoRaWAN it is typically not

recommended, since it would require using the downlink

channel, which is a bottleneck, to send link layer

acknowledgments [14].

The Multimodal RTO leverages a priori knowledge of RTT

characteristics of an LPWAN, namely the number of RTT

modes, and lowest and highest RTT values for each RTT

mode. The Multimodal RTO adaptively adjusts its behavior

according to the current RTT mode. By means of extensive

simulations, we evaluate the TCP RTO, the Multimodal RTO,

and other state-of-the-art RTO algorithms, in a range of

LPWAN RTT scenarios. Results show that, in the scenarios

considered, the Multimodal RTO outperforms the TCP RTO

algorithm by reducing RTO and RTT mismatch by a factor up

to 5, and by dramatically reducing packet delivery and

confirmation latency in the presence of packet losses by up to

2 orders of magnitude, while offering safe operation. To our

best knowledge, this is the first research work tackling the

problem of RTO performance in LPWAN. On the other hand,

the Multimodal RTO is currently being considered at the IETF

as a candidate for standardization.

The main contributions of this paper are the following:

 Introducing and modeling the problem of multimodal

RTTs in LPWAN.

 Presenting an RTO algorithm, called the Multimodal

RTO, which, to the best of our knowledge, is the first

RTO algorithm intended to address the multimodal

characteristics of LPWAN RTTs.

 Evaluating the performance of the Multimodal RTO and

comparing it with the performance of state-of-the-art

RTO algorithms.

The remainder of the paper is organized as follows. Section

II reviews related work in RTO algorithm design for TCP in

general, and for IoT scenarios. Section III analyzes the High

RTT mode in LPWAN. Section IV presents the Multimodal

RTO. Section V evaluates the Multimodal RTO and the TCP

RTO in a range of LPWAN RTT scenarios. Section VI

expands the evaluation by comparing performance of the

Multimodal RTO with that offered by relevant alternative

state-of-the-art RTO algorithms. Section VII analyzes and

discusses the complexity of the Multimodal RTO. Section VIII

concludes this work.

II. RELATED WORK

This section provides a literature overview in the area of

RTO algorithms for the Internet. First, we focus on the TCP

RTO, which can be considered the quintessential RTO

algorithm used on the Internet. We provide the motivation for

the design of the TCP RTO algorithm, along with a number of

proposals intended to improve its performance. Secondly, we

focus on RTO algorithms that have been specifically

developed for the IoT domain.

A. Standard TCP RTO algorithm

The original specification of TCP, i.e. RFC 793, mandated

use of a dynamically computed RTO [15]. While that

specification did not require a particular RTO algorithm, it

provided an example for such a dynamic RTO. The example

was based on applying an Exponentially Weighted Moving

Average (EWMA) to RTT samples in order to produce

Smoothed RTT (SRTT) values. Then, the RTO was

determined as a value proportional to the SRTT, with lower

and upper bounds. However, Jacobson realized that lack of

RTT variance estimation as an input to the RFC 793 RTO

algorithm led to suboptimal performance [16]. He then

proposed a modified RTO algorithm, with the aim of

calculating RTO values based on both RTT mean and RTT

variance estimates. Jacobson’s algorithm was subsequently

recommended for use in TCP as per RFC 1122 [17], and

eventually became the standard TCP RTO algorithm in RFC

2988 [18]. As of the writing, Jacobson’s RTO algorithm

remains as the standard TCP RTO algorithm, albeit with a

minor modification introduced in RFC 6298, which reduces

the default initial RTO value (from 3 s to 1 s) [7]. Jacobson’s

algorithm, as specified in RFC 6298, operates as follows:

1) Until an RTT sample is obtained, RTO is set to 1 s.

2) When the first RTT sample is obtained, the Smoothed

RTT (SRTT) is set to the value of that RTT sample (denoted

R), RTT variation (RTTVAR) is set to R/2, and the RTO is

calculated as

 𝑅𝑇𝑂 ൌ 𝑆𝑅𝑇𝑇 ൅ maxሺ𝐺,𝐾 ൉ 𝑅𝑇𝑇𝑉𝐴𝑅ሻ, (1)

where G is the clock granularity and K is equal to 4.

3) For any subsequent RTT sample, whose value is referred

to as R’, RTTVAR and SRTT are updated as follows:

 RTTVAR ← (1- β)ꞏRTTVAR + βꞏ|SRTT-R’| (2)

 SRTT ← (1- α)ꞏSRTT + αꞏR’, (3)

where α=0.125 and β=0.25. Then, RTO is updated as per

(1). If the computed RTO is smaller than 1 s, it is rounded up

to 1 s, in order to keep TCP conservative.

An underlying assumption in Jacobson’s RTO is a unimodal

RTT distribution [19]. However, many LPWAN scenarios

offer significantly different characteristics, such as a

multimodal RTT distribution with very high variance.

B. Alternative RTO algorithms for TCP

 An RTO algorithm represents a trade-off between latency

and correctness, and thus no RTO algorithm will offer the best

performance in all metrics and in all possible scenarios [20].

However, several works have identified TCP RTO calculation

issues [21-25]. The impact of parameter settings, such as the

initial RTO or the minimum RTO, on spurious timeouts has

been investigated [22-24]. On the other hand, alternative RTO

algorithms have been proposed as enhancements to the TCP

RTO. Two prominent examples are Linux-RTO and Peak-

Hopper RTO [25, 8].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Linux-RTO provides two additions to the TCP RTO. First,

when a new RTT measurement is smaller than the SRTT, the

RTO is not updated, which avoids an RTO increase when

network conditions appear to yield lower RTTs. Secondly,

Linux-RTO keeps a safety margin for RTO values when RTT

samples offer constant values.

Peak-Hopper RTO computes short-term and long-term RTO

values. When there is an unexpected RTT growth, Peak-

Hopper RTO favors its short-term RTO value as the RTO

algorithm output. Otherwise, the long-term RTO tends to

prevail, in order to avoid spurious timeouts. A slow decay is

applied to the long-term RTO.

As of the writing, none of the alternative TCP RTO

proposals has achieved the same level of maturity and

adoption as the standard TCP RTO.

C. IoT-specific RTO algorithms

RTO algorithm design for IoT environments has also

attracted the attention of many researchers [9, 26, 27]. Work in

this area has focused mainly on providing a suitable RTO

algorithm for the Constrained Application Protocol (CoAP), a

lightweight application-layer protocol designed and

standardized by the IETF for constrained node networks [28].

CoAP was originally conceived to run over UDP, while

supporting optional reliability (based on confirmations and

RTO-based retries) at the application layer. The CoAP base

specification establishes that the RTO is randomly chosen, by

default, between 2 s and 3 s, regardless of network conditions.

In order to improve CoAP performance, a proposal called

CoCoA defines an adaptive RTO algorithm that uses RTT

samples as input [9]. CoCoA can be considered the seminal

adaptive RTO algorithm for CoAP.

CoCoA uses two internal TCP RTOs, one for strong RTTs

(i.e. RTT samples that are obtained in absence of sender

retries), and another one for weak RTTs (i.e. RTTs where the

sender has performed retransmissions). The latter is intended

to allow operation of CoCoA even in potentially lossy

environments. The most recently updated internal RTO

contributes to the overall estimator by using an EWMA

algorithm, with default weights of 0.5 and 0.25 for the strong

and the weak RTO estimators, respectively. In addition,

CoCoA dithers the computed RTO value in order to avoid

synchronization effects of neighboring devices such as sensors

providing periodic updates. Other RTO algorithms have also

been proposed for CoAP, such as pCoCoA [27] or FASOR

[28]. However, they have been evaluated in a limited set of

scenarios, in terms of network topologies and technologies.

Despite the existing body of RTO algorithm design in the

literature, to the best of our knowledge, no previous RTO

algorithm has been developed for multimodal RTTs.

III. HIGH RTT MODE IN LPWAN: ANALYSIS

As introduced in Section I, RTTs in LPWAN may be

exacerbated under a set of conditions, leading to a High RTT

mode. This section analytically characterizes the High RTT

mode in the two main scenarios where it arises: i) the busy

gateway scenario, and ii) the DC-constrained scenario. For

both scenarios, we derive the probability that an RTT belongs

to the High RTT mode, denoted PHigh, as well as the expected

High RTT mode value, RTTHigh.

A. Busy gateway scenario

In the busy gateway scenario, there exist time intervals

during which the IoT device sends an uplink message, but the

gateway misses the IoT device reception window for sending

the corresponding downlink response. This happens when the

gateway is busy performing other tasks, such as transmitting

previously buffered downlink messages. As a result, the

gateway typically sends the response to the uplink message

after the next uplink message transmission.

Let us assume that the arrival of downlink messages at the

gateway radio transmitter follows a Poisson model, with rate

down. Downlink messages comprise responses to uplink

messages sent by IoT devices as well as unsolicited downlink

messages. Let us assume a constant message transmission

time, x, and an infinite gateway downlink buffer size. Under

the mentioned assumptions, the gateway downlink transmitter

can be modeled as an M/D/1 queuing system [29].

In the presented conditions, the IoT device reception

window will be missed (i.e. an RTT will belong to the High

RTT mode) if there exists at least one previous message in the

gateway downlink transmitter system when the response to the

corresponding uplink message arrives at the system. Then,

PHigh can be computed as follows: 𝑃ு௜௚௛ ൌ 𝜆ௗ௢௪௡ ⋅ 𝑥 (4)

In that case, the gateway is typically able to send the

response to the (k-th) uplink message after the next ((k+1)-th)

uplink message transmission. Since the uplink message

interval is expected to be large in LPWAN (e.g. in the order of

hundreds of seconds), and significantly greater than Low RTT

mode values (e.g. in the order of seconds), the expected High

RTT mode value, RTTHigh, will be approximately equal to the

expected uplink message interval.

B. DC-constrained scenario

In the DC-constrained scenario, an IoT device remains in

idle state after sending a packet, in order to comply with a DC

limit. For example, ETSI regulations establish a 1% DC

constraint for the 868.0 – 868.6 MHz band in Europe [30],

which is relevant for channels used by LoRaWAN and Sigfox.

At the IoT device, any new message will need to wait in a

buffer until all previous messages have been sent and their

subsequent idle times have ended, therefore producing RTT

values that belong to the High RTT mode.

We characterize message generation at the IoT device as a

Poisson model, with rate up. This may correspond to an

application where an IoT device sends a message reporting a

detected event, which may happen at any time, and

independently from other events. Let us also assume a

constant message transmission time, which is followed by a

subsequent idle interval of constant duration (e.g. 99 times the

last message transmission time), to comply with regulatory

DC constraints. Let us define a service time, denoted , as the

sum of uplink message transmission time and the subsequent

idle interval. Note that  has a deterministic value. Finally, let

us assume a large device buffer size that can be modeled as an

infinite queue (as in fact LPWAN messages may be very

short, e.g. of just a few tens of bytes [3]).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Under the considered conditions, uplink message

transmission in the DC-constrained scenario may be modeled

as an M/D/1 queuing system. Accordingly, in such scenario,

the probability of a message leading to a high RTT value,

PHigh, can be obtained as follows: 𝑃ு௜௚௛ ൌ 𝜆௨௣ ⋅ 𝜏 (5)

The expected High RTT mode value, RTTHigh, can be

computed as the expected waiting time in the queue (wq) plus

the Low RTT mode value, RTTLow: 𝑅𝑇𝑇ு௜௚௛ ൌ 𝑤௤ ൅ 𝑅𝑇𝑇௅௢௪ (6)

 Since wq corresponds to waiting time in an M/D/1 queuing

system, RTTHigh can be expressed as shown next: 𝑅𝑇𝑇ு௜௚௛ ൌ ఒೠ೛൉ఛమଶ൉ሺଵିఒೠ೛൉ఛሻ൅ 𝑅𝑇𝑇௅௢௪ (7)

Assuming a typical DC constraint of 1%, and for

PHigh > 10-1, which corresponds to uplink channel utilization

greater than 10-3, the queuing waiting time becomes dominant,

and thus RTTHigh can be approximated as shown next: 𝑅𝑇𝑇ு௜௚௛ ൎ ఒೠ೛൉ఛమଶ൉ሺଵିఒೠ೛൉ఛሻ . (8)

IV. MULTIMODAL RTO ALGORITHM

Motivated by the RTT characteristics of LPWAN, the

Multimodal RTO is designed for scenarios with a multimodal

RTT distribution, where RTT values can be categorized into

one of at least two different RTT modes characterized by

significantly different, mostly non-overlapping ranges of RTT

values.

The Multimodal RTO comprises a number of separate

internal retransmission timers, one for each RTT mode (Fig. 1,

Algorithm 1). A separate TCP RTO algorithm is used for each

internal retransmission timer. Note that, since the TCP RTO

algorithm was designed for a unimodal RTT distribution, it is

a good fit for the RTT characteristics of a particular RTT

mode. Alternative RTO algorithms might be considered for

the internal RTOs. However, they might not lead to

significantly different performance in a multimodal RTT

context, and would miss the advantage of using a well-known

algorithm in terms of adoption, code reuse, etc. Based on

measured RTT samples, the Multimodal RTO determines the

current RTT mode, and selects the RTO values produced by

the internal timer that corresponds to that RTT mode as the

Multimodal RTO output.

As characterized in the previous section, RTT values can

typically be categorized into two RTT modes in many

LPWAN scenarios, namely a High RTT mode, and a Low
RTT mode. Therefore, in this paper the Multimodal RTO uses

two internal RTO timers.

The initial RTT mode assumed by the Multimodal RTO is

the Low RTT mode. While in the Low RTT mode, if NHigh

consecutive RTT samples are equal to or greater than

RTTThresh_High, the Multimodal RTO switches to High RTT

mode operation. Analogously, if NLow consecutive RTT

samples are lower than RTTThresh_Low while in the High RTT

mode, the algorithm switches to Low RTT mode operation.

An internal timer is frozen when the current RTT mode is

not the one that the timer is intended for. Once a new RTT

mode is detected, the corresponding internal timer reprises its

Fig. 1. Internal structure of the Multimodal RTO algorithm, which comprises

two separate TCP retransmission timers intended for use in each RTT mode.

When a new RTT mode is detected, the Multimodal RTO switches to using

the corresponding internal timer (e.g. by switching from positions 1) to 2)

when changing from Low RTT mode to the High RTT mode operation).

Low RTT mode timer

High RTT mode timer

RTT values RTO values

Multimodal RTO algorithm

1) 1)

2) 2)

Algorithm 1

Input: RTT vector of size N1

Output: RTO vector of size N

Initialization:

srtt_h ← 102

rttvar_h ← 15

current_mode ← LOW

rtt ← 1

rtt1 ← 1

rtt2 ← 1

1: srtt_l ← RTT[0]

2: rttvar_l ← RTT[0]/2

3: RTO[0] ←srtt_l + max(G, Kꞏrttvar_l)

4: for i=1 to i = N-1 then

5: rtt2 ← rtt1

6: rtt1 ← rtt

7: rtt ← RTT[i]

8: if rtt < RTTthr then

9: if rtt1 < RTTthr then

10: if rtt2 < RTTthr then

11: current_mode ← LOW

12: end if

13: end if

14: else

16: if rtt1 ≥ RTTthr then

17: if rtt2 ≥ RTTthr then

18: current_mode ← HIGH

19: end if

20: else

21: if rtt2 < RTTthr then

22: srtt_l ← RTT[i]

23: rttvar_l ← RTT[i]/2

24: end if

25: end if

26: end if

27: if current_mode = LOW then

28: srtt_l ← (1-)ꞏsrtt_l + ꞏrtt

29: rttvar_l ← (1- )ꞏrttvar_l +  ꞏ|srtt_l-rtt|

30: RTO[i] ←srtt_l + max(G, Kꞏrttvar_l)

31: else

32: srtt_h ← (1-)ꞏsrtt_h + ꞏrtt

33: rttvar_h ← (1- )ꞏrttvar_h +  ꞏ|srtt_h-rtt|

34: RTO[i] ← srtt_h + max(G, Kꞏrttvar_h)

35: end if

36: end for
1N denotes the number of RTT samples.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

activity, using the last stored RTT mean and RTT variance

estimates for this RTT mode. Therefore, in the Multimodal

RTO, the relevant RTT variable estimates for a given RTT

mode do not pollute the RTO calculation for another RTT

mode. This behavior effectively avoids the persistently high

RTO values produced by a single TCP RTO algorithm

handling all RTTs, due to the high RTT variance produced by

RTT mode changes.

We propose a setting of 3 for both NHigh and NLow, as a

trade-off between reactivity to RTT mode changes and reliable

RTT mode detection. Too large NHigh or NLow settings will

delay internal timer change. On the other hand, too small NHigh

or NLow settings may lead to spurious RTT mode detection.

Both problems produce RTO values significantly greater than

current RTT ones due to the resulting large RTT variance for

the current internal timer in use. Optimal NHigh and NLow

settings depend on the RTT features of each scenario.

As an additional measure to avoid underperformance due to

sporadic high RTT samples while in Low RTT mode

operation, if an RTT sample is greater than RTTThresh_High, and

the next NLow consecutive RTT samples are smaller than

RTTThresh_Low, the Low RTT mode timer is reset.

V. EVALUATION: MULTIMODAL RTO VS TCP RTO

This section evaluates by simulation the performance of a

single TCP RTO and the Multimodal RTO in a range of RTT

scenarios. The section comprises five subsections. First, we

describe the RTT models used in the evaluation. Secondly, we

illustrate the behavior of the considered RTO algorithms in

example scenarios. In the last three subsections, we compare

the performance of the two RTO algorithms by focusing on

three parameters: the average difference between the RTO

values produced by the two RTO algorithms, the average

RTO-to-RTT ratio for each RTO algorithm in each RTT

mode, and the expected latency decrease achieved by the

Multimodal RTO in the presence of packet losses.

A. RTT Models

In our evaluation, RTT values in the Low RTT mode are

equal to 1 s, plus a uniformly random jitter of up to 0.1 s. Such

Low RTT mode values are realistic in LoRaWAN networks

[6]. For the High RTT mode, we consider the RTT patterns

that arise in the busy gateway and DC-constrained scenarios.

In the busy gateway scenario, we assume a time between

two consecutive uplink messages of 100 s. In these conditions,

RTT values in the High RTT mode are modeled as 100 s, plus

a random jitter of up to 10 s. Note that devices using LPWAN

technologies will typically run applications that generate a

relatively low rate of uplink messages. A time between two

consecutive uplink messages of 100 s aims at capturing such

application behavior, whereas the considered random jitter

accounts for possible RTT variance. TLow and THigh denote the

average duration of intervals in the Low and High RTT

modes, respectively. Let Ω denote THigh/TLow ratio. We assume

exponentially distributed RTT mode interval durations,

expressed in number of RTT samples.

In the DC-constrained scenario, we assume a DC limit of

1%. We also assume a packet transmission time of 1 s, which

is realistic for LPWAN technologies such as LoRaWAN (e.g.

data rates called DR0 and DR1) and Sigfox (in Europe). In

order to evaluate the RTO algorithms in adverse conditions

(i.e. without limiting the RTT values), we assume a buffer of

infinite size. In the study, the time between consecutively

generated packets is exponentially distributed, with an average

value of 1/λ s.

Note that the Multimodal RTO relies on a priori knowledge

of the RTT distribution of the intended scenario. The main

aspects and parameters to be determined are the number of

RTT modes, suitable RTT mode thresholds, and suitable

initial values for the internal timer variables. All these aspects

can be determined a priori for both types of RTT patterns

introduced in this subsection, as follows. First, RTT statistics

need to be determined. This can be carried out by theoretical

means, based on knowledge of the physical layer and link

layer settings in use. Empirical RTT measurements can also be

performed, either to refine the theoretical RTT

characterization or if physical or link layer settings are

unknown. The RTT characterization allows identifying the

number of RTT modes. For a given RTT mode, initial values

for the corresponding SRTT and RTTVAR variables will be

suitable as long as they lead to a calculated RTO value that

does not incur a spurious timeout, but is not too large either in

order to avoid unnecessarily long wait time if retransmission is

needed. A threshold between two adjacent RTT modes needs

to be greater than the RTT values of the lower RTT mode, and

smaller than the RTT values of the higher RTT mode.

In the evaluation, based on a priori knowledge of the

scenario RTT characteristics, since RTT values smaller than

2 s are considered to belong to the Low RTT mode, and RTT

values equal to or greater than 2 s correspond to the High RTT

mode, both RTTThresh_Low and RTTThresh_High are set to 2 s. The

goal is to avoid an internal Multimodal RTO timer use RTT

samples not belonging to its intended mode. The SRTT and

RTTVAR initial values for the Multimodal RTO in the High

RTT mode are 102 s, and 15 s, respectively.

B. RTO Algorithms: Behavior Overview

We now provide an overview of how the TCP RTO and the

Multimodal RTO outputs evolve over time for various

example RTT sample sequences, in the busy gateway and DC-

constrained scenarios (see Figs. 2 and 3, respectively).

Fig. 2.a) shows a sequence of RTTs that contains a High

RTT mode interval with a duration of 100 RTT samples. Both

considered RTO algorithms produce well adapted RTO values

during the initial Low RTT samples. Once the RTT mode

changes at the 100th RTT sample, high RTT variance leads to

increased RTO values for both algorithms. However, the TCP

RTO reaches roughly 3 times the current RTT in the High

RTT mode, and it takes roughly 30 RTT samples for the TCP

RTO to converge in the High RTT mode. In contrast, the

Multimodal RTO detects the RTT mode change after the third

consecutive RTT sample greater than RTTThresh_High, and

switches to High RTT mode operation. Subsequently, the

RTO values produced by the Multimodal RTO converge

quickly, after roughly 10 RTT samples in the first High RTT

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

mode interval (only 3 RTT samples are required for

subsequent RTT mode changes). Once the High RTT mode

interval ends, both RTO algorithms initially produce increased

RTO values due to the resulting RTT variance, similarly to

their reaction to the first RTT mode change. In this transition,

since the new RTT mode values are low, it takes even longer

for the TCP RTO to converge. Instead, as soon as the

Multimodal RTO detects the new RTT mode, it switches back

quickly to Low RTT mode operation.

The overall performance improvement achieved by the

Multimodal RTO depends on the durations of the different

RTT mode intervals. Fig. 2.b) depicts an example that keeps

Ω=1 as in the previous example (during the first 80 RTT

samples), but for a reduced TLow of 20 samples. For these

settings, each RTT mode interval duration is shorter than the

TCP RTO convergence time. However, the Multimodal RTO

converges quickly when the RTT mode changes. Therefore,

the relative improvement of the Multimodal RTO in this

scenario is greater than in the previous one.

We now focus on the RTO algorithms’ behavior in the DC-

constrained scenario. In Fig. 3.a), 1/λ takes the shortest

practical value for the considered conditions (i.e. 1/λ=100 s).

For most of the analyzed interval, both RTO algorithms offer

the same performance, since most RTTs are greater than

RTOThresh_High and RTOThresh_Low (i.e. 2 s), as a result of the high

λ value considered. Fig. 3.b) illustrates an example for

1/λ=1000 s, where high RTT mode intervals are short (e.g. of

just one RTT sample). The TCP RTO converges slowly to low

RTT values after the RTT spikes, whereas the Multimodal

RTO is able to quickly detect the change to Low RTT mode

values, producing RTO values close to the former.

The ability to determine the RTT mode allows the

Multimodal RTO to produce RTO values that are lower than

the TCP RTO ones during transient intervals after RTT mode

changes. On the other hand, the Multimodal RTO also

provides safe operation, since its internal timers actually use

the TCP RTO algorithm, thus the Multimodal RTO tends to

produce RTO values that are greater than RTT values.

C. TCP RTO and Multimodal RTO output difference

We now study the average difference between the RTO

values produced by the TCP RTO and the Multimodal RTO,

denoted ΔRTO, in the busy gateway and in the DC-

constrained scenarios. Each individual result shown in the

remainder of this section is obtained from 106 simulated

RTTs.

In the busy gateway scenario, we evaluate ΔRTO as a

function of TLow and Ω. Fig. 4 illustrates the corresponding

results. The positive ΔRTO obtained in all cases indicates that

the Multimodal RTO is able to follow the RTT more closely

than the TCP RTO. For TLow=10 samples or greater, ΔRTO

tends to decrease with TLow, since transient intervals after RTT

mode changes become short compared with RTT mode

interval durations.

All curves in Fig. 4 show a maximum ΔRTO. For low or

high Ω values (e.g. 0.1 or 10, respectively), there is a

dominant long RTT mode interval duration (in Low or High

RTT modes, respectively) where both RTO algorithms

converge to similar values, therefore ΔRTO is low. As TLow

increases, the maximum ΔRTO is found for a smaller Ω,

because the High RTT mode interval duration needs to be

smaller for transient intervals (where the difference between

the two RTO algorithms is greatest) to remain dominant.

For low TLow values (Fig. 4.b)), the inverted U shape of the

curves becomes narrower as TLow decreases. This happens

because for low or high Ω (e.g. Ω=0.1 or Ω=10, respectively),

the Multimodal RTO tends to behave like the TCP RTO, since

the probability of Low or High RTT mode interval durations

a)

b)

Fig. 2. Behavior of the TCP RTO and the Multimodal RTO in the busy

gateway scenario: a) TLow =100 samples, Ω=1; b) TLow =20 samples, Ω=1

(during the first 80 samples).

0

50

100

150

200

250

300

350

0 50 100 150 200 250

T
im

e
 (s
)

RTT sample number

TCP RTO
Multimodal RTO
RTT

0

50

100

150

200

250

300

350

0 50 100 150 200 250

T
im

e
 (s
)

RTT sample number

TCP RTO
Multimodal RTO
RTT

a)

b)

Fig. 3. Behavior of the TCP RTO and the Multimodal RTO in the DC-

constrained scenario. a) 1/λ=100 s; b) 1/λ=1000 s.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300

T
im

e
 (s
)

RTT sample number

TCP RTO
Multimodal RTO
RTT

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

T
im

e
 (s
)

RTT sample number

TCP RTO

Multimodal RTO

RTT

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

being at least NLow or NHigh (i.e. 3) consecutive RTT samples

decreases.

We now evaluate ΔRTO in the DC-constrained scenario. As

shown in Fig. 5, ΔRTO exhibits a maximum for 1/λ = 200 s.

As 1/λ increases, the duration of Low RTT mode intervals

increases too, which allows the TCP RTO more time for

converging during such intervals. For 1/λ= 100 s, both RTO

algorithms offer similar performance, as e.g. previously shown

in Fig. 3.a).

D. Per-mode RTO and RTT comparison

As it can be seen in Figs. 2 and 3, the relative performance

of the TCP RTO and the Multimodal RTO varies significantly

depending on the current RTT mode. The RTO and RTT

mismatch of the RTO algorithms is significantly greater in the

Low RTT mode. In this subsection, we evaluate the average

RTO-to-RTT ratio (hereinafter, RTO/RTT) for the two studied

RTO algorithms, separately for each RTT mode, for different

TLow and Ω values, in the busy gateway and DC-constrained

scenarios (see Figs. 6 and 7, respectively).

As shown in Fig. 6.a), for TLow=10 samples, during Low

RTT mode intervals, RTO/RTT for the TCP RTO exceeds 100

for Ω ≥ 1, whereas the RTO/RTT is approximately 25 for the

Multimodal RTO. Since duration of the Low RTT mode is

short, the TCP RTO does not have enough time to converge.

However, the Multimodal RTO converges quickly. For low Ω

values, Low RTT mode intervals are long, and the impact of

transient intervals becomes reduced.

For TLow=10 samples, but during High RTT mode intervals

(Fig. 6.b)), RTO/RTT values are much lower. The TCP and

Multimodal RTO algorithms exhibit local average RTO/RTT

maxima of ~2.2 and ~1.7, respectively. For low Ω, the

duration of the High RTT mode intervals is often short, which

truncates the RTO values increase after a Low to High RTT

mode transition, for both RTO algorithms. As Ω increases,

probability of the mentioned truncation decreases, leading to

an RTO/RTT increase. However, as Ω continues to grow, both

RTO algorithms exhibit an asymptotic RTO/RTT decrease.

Figs. 6.a) and 6.b) also provide the results for TLow=100

samples, for the Low and the High RTT modes, respectively.

The greater duration of each RTT mode interval for

Fig. 5. ΔRTO in the DC-constrained scenario.

0

10

20

30

40

50

60

70

80

100 200 300 400 500 600 700 800 900 1000

ΔR
T
O

 (s
)

1/λ (s)

a)

b)

Fig. 4. ΔRTO in the busy gateway scenario, as a function of Ω: a) TLow

values of 10, 50 and 100 RTT samples; b) TLow of 1 and 5 RTT samples.

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10

ΔR
TO

 (s
)

Ω

TLow = 10 samples

TLow = 50 samples

TLow =100 samples

0

20

40

60

80

100

120

0.1 1 10

ΔR
TO

 (s
)

Ω

TLow = 5 samples

TLow = 1 sample

a)

b)

Fig. 6. Average RTO/RTT for the two considered RTO algorithms in the busy

gateway scenario: a) Low RTT mode; b) High RTT mode.

0

20

40

60

80

100

120

140

160

180

0.1 1 10

R
T
O
/R
T
T

Ω

TCP RTO, TLow=10 samples

Multimodal RTO, TLow=10 samples

TCP RTO, TLow=100 samples

Multimodal RTO, TLow=100 samples

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.1 1 10

R
T
O
/R
T
T

Ω

TCP RTO, TLow=10 samples

Multimodal RTO, TLow=10 samples

TCP RTO, TLow=100 samples

Multimodal RTO, TLow=100 samples

>

TL

co

alg

va

ob

RT

du

de

RT

Th

RT

di

in

E.

alg

de

‘la

pa

pa

fo

to

TC

In

M

lo

a

lat

RT

fo

tri

RT

of

ar

als

to

im

ga

ac

re

Fi

m

R
T
O
/R
T
T

REPLACE TH

Low=100 sampl

onverge, leadin

Fig. 7 illus

gorithms in th

ariance in this

btained in the

TO/RTT decr

uration increa

ecreases. In t

TO/RTT for 1

he greatest di

TO and the M

fference also

tervals decrea

 Latency Dec

In the prese

gorithms con

elivery and

atency’). If a

acket is not d

acket is resent

or the packet is

 keep the sam

CP, which is

nternet, and

Multimodal RT

wer than those

latency decr

tency decreas

TT scenarios c

or different va

ip, denoted P.

TO of 60 s [7]

f the studied R

re much greate

so assume tha

 determine t

mprovement. F

ateway and DC

As shown in

chieve signific

sults shown in

ig. 7. Average RT

mode and the High

1

10

100

1000

100 200

R
T
O
/R
T
T

HIS LINE WI

les allows mor

ng to lower RT

strates RTO/

he DC-constra

scenario lead

busy gateway

reases with 1/λ
ases and the

the High RT

1/λ=200 s, sim

ifference betw

Multimodal RT

decreases wi

ases as well.

crease

ence of packe

ntribute laten

confirmation

round trip is

delivered or it

upon RTO ex

s duplicated. N

me conservativ

the benchma

ensures safe

TO generates

e of the TCP R

rease. In this

e in the prese

considered in

alues of the p

. Note that, w

], we assume t

RTO algorithm

er than the typ

at the number

the upper bo

Figs. 8 and 9

C-constrained

n Figs. 8 and

cant latency d

n Figs. 8 and

TO/RTT in the D

h RTT mode.

300 400

ITH YOUR PA

re time for the

TO/RTT in all

/RTT for th

ained scenario

ds to greater R

y scenario. In t

λ, since Low

e impact of

TT mode, the

milarly to the o

ween the RTO

TO is given f

ith 1/λ, since

et losses, bot

ncy to succe

n (hereinafter

unsuccessful

ts confirmatio

xpiration, and

Note that this b

ve approach f

ark for conges

network op

RTO values

RTO, the Mul

s subsection,

ence of packet

the previous t

probability of

while in TCP t

that there is no

ms, since time

pical ones on t

of retries is n

ound of the

9 depict the re

scenarios, res

d 9, the Mul

decrease value

9 are similar

DC-constrained sc

500 600 700

1/λ (s)

TCP RTO,
Multimo

TCP RTO,
Multimo

APER IDENT

e RTO algorith

l cases.

he analyzed

o. The greater

RTO/RTT than

the Low RTT

RTT mode in

transient int

ere is a max

one shown in F

O/RTT of the

for 1/λ=300 s

impact of tra

th considered

essful data p

r, referred

(i.e. either th

on is lost), th

the next RTO

behavior is int

for the sender

stion control

peration. Sinc

that are in av

ltimodal RTO

we evaluate

t losses, in the

two subsection

unsuccessful

there is a max

o RTO limit f

e scales in LP

the Internet [6

not limited, in

Multimodal

esults, for the

spectively.

ltimodal RTO

es. For near-z

to those depic

enario, for the Lo

0 800 900

, Low RTT mode

dal RTO, Low RTT mode

, High RTT mode

dal RTO, High RTT mode

TIFICATION N

hms to

RTO

r RTT

n those

mode,

nterval

tervals

ximum

Fig. 5.

e TCP

. Such

ansient

d RTO

packet

to as

he data

he data

O value

tended

r as in

in the

ce the

verage

yields

e such

e same

ns, and

round

ximum

for any

PWAN

6]. We

n order

RTO

e busy

O may

zero P,

cted in

Figs

loss

for

laten

con

Gre

VI.

In

and

perf

alte

Hop

Reg

for

eval

the

com

ow RTT

1000

Fig.

with

TLow=

Fig

wit

(
)

NUMBER (D

s 4 and 5. In t

ses, average la

TLow values

ncy decrease

strained scena

eater values of

EVALUATION

n the previous

d the TCP

formance of

rnative, state-

pper RTO, a

garding the Co

the rest of R

luation we ass

weak estimato

mputed RTO [9

8. Latency decr

h the TCP RTO i

=100 samples.

g. 9. Latency dec

th the TCP RTO i

0

10

20

30

40

50

60

70

80

90

100

100 200

La
te
n
cy

 d
e
cr
e
a
se

 (s
)

DOUBLE-CLIC

the busy gatew

atency decreas

of 10 and 1

of up to 2 or

ario, packet la

f P amplify pac

N: MULTIMOD

ALGOR

s section, we

RTO. In th

the Multimo

of-the-art RTO

and the CoC

oCoA RTO, i

RTO algorith

sume a CoCoA

or or dithering

9]).

ease achieved by

n the busy gatew

crease achieved b

in the DC-constra

0 300 400

CK HERE TO

way scenario,

ses by up to ~

100, respectiv

rders of magn

atency decreas

cket latency d

DAL RTO VS A

RITHMS

evaluated the

his section, w

odal RTO a

O algorithms,

CoA RTO (

in order to av

hms in the co

A RTO version

g (since both te

y the Multimodal

way scenario, for

by the Multimoda

ained scenario.

500 600 700

1/λ (s)

O EDIT) <

in the presenc

~136 s and ~4

vely, with a

nitude. In the

ses by up to ~

decrease.

ALTERNATIVE R

Multimodal R

we compare

and two rele

namely: the P

(see Section

void an advan

omparison, in

n that does no

end to increas

RTO when comp

TLow=10 samples

al RTO when com

0 800 900 1

P=0.3

P=0.2

P=0.1

P=0

8

ce of

47 s,

peak

DC-

95 s.

RTO

RTO

the

evant

Peak-

II).

ntage

n the

ot use

e the

pared

s and

mpared

1000

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

The section comprises two subsections. The first one

overviews the behavior of both Peak-Hopper and CoCoA

RTO algorithms, compared with that of the Multimodal RTO.

Since the CoCoA RTO behaves similarly to the TCP RTO, the

second subsection evaluates the Multimodal RTO, in terms of

latency decrease, when compared with the Peak-Hopper RTO.

A. Behavior overview

Fig. 10.a) illustrates the RTO values produced by the Peak-

Hopper RTO, the CoCoA RTO, and the Multimodal RTO in

the busy gateway scenario, for a sequence of RTTs that

contains a High RTT mode interval with a duration of 100

RTT samples. TCP RTO values are also included for

comparison.

As it can be seen in Fig. 10.a), the CoCoA RTO behaves

very similarly to the TCP RTO. In fact, the CoCoA strong

estimator uses a TCP RTO, before an EWMA operation is

applied. The EWMA scheme acts as a low-pass filter that

slightly reduces the peak RTO value, delays the RTO

adaptation to RTT mode changes by around 8 samples, and

subsequently produces RTO values that are slightly greater

than those of the TCP RTO.

In the busy gateway scenario, the Peak-Hopper RTO

outperforms both the TCP and the CoCoA RTOs. While the

Peak-Hopper RTO is able to react to the sudden RTT increase

at the start of the High RTT mode interval, its RTO output

remains lower than that of the TCP RTO and the CoCoA

RTO. The latter are affected by a large RTT variance due to

the RTT mode change. After the RTT mode change, the Peak-

Hopper RTO decays its RTO value, and for ~20 RTT samples

it produces RTO values much closer to the RTTs than those

produced by the TCP and the CoCoA RTOs. Nevertheless, the

Multimodal RTO outperforms the Peak-Hopper RTO.

When the High RTT mode interval ends, the Peak-Hopper

RTO yields an even better performance (compared to that of

the TCP and the CoCoA RTOs) than at the High RTT mode

interval start. This occurs because as RTT decreases, the Peak-

Hopper RTO decays its RTO output, whereas the TCP and the

CoCoA RTOs produce large RTO values due to the high RTT

variance due to the RTT mode change. At the third RTT

sample after the RTT mode change, the Multimodal RTO

detects the RTT mode change and switches to using its Low

RTT mode internal timer. Subsequently, the Multimodal RTO

produces RTO values well aligned with the current RTT

mode. However, the Peak-Hopper RTO produces greater RTO

values for at least 50 RTT samples.

The CoCoA RTO inherits many features of the TCP RTO,

including its design for a unimodal RTT distribution. Thus,

both algorithms significantly underperform the Multimodal

RTO in the context of LPWAN scenarios. While the Peak-

Hopper RTO outperforms both the TCP and the CoCoA RTOs

in the busy gateway scenario, its design for a unimodal RTT

distribution still prevents it from offering good performance in

a multimodal RTT scenario.

Fig. 10.b) shows the RTO outputs for the Peak-Hopper,

CoCoA, the TCP and the Multimodal RTOs, for an example

sequence of RTTs in the DC-constrained scenario, for

1/s. As is visible in Fig. 10.b), the Peak-Hopper RTO

offers the worst performance among the considered RTO

algorithms. In the DC-constrained scenario, RTTs abruptly

increase by at least one order of magnitude, and then return to

lower values. The Peak-Hopper RTO reacts quickly to a

sudden RTT increase by producing an RTO value that is

greater than the current RTT, since its short RTT history

becomes dominant. Once the RTT returns to low values, the

long-term RTO of the Peak-Hopper algorithm prevails, which

is however strongly influenced by the large RTO produced

after the last RTT spike. The long-term RTO slowly decays

over time, until the next high RTT sample, where the Peak-

Hopper RTO value increases again.

In the DC-constrained scenario, the TCP RTO becomes less

misaligned with the RTT sequence than the Peak-Hopper

RTO, since the former does not neglect the longer past history

of RTT samples, and short High RTT mode durations (of e.g.

1 RTT sample) do not suffice to produce higher RTO values

than Peak-Hopper RTO ones. When the RTT sequence returns

to low values after RTT spikes, the TCP RTO produces lower

RTO values as well, avoiding the RTO exacerbated increase

exhibited in the busy gateway scenario after a High to Low

RTT mode change.

In the same scenario, the CoCoA RTO behaves similarly to

the TCP RTO algorithm, with the CoCoA RTO leading to

smoother RTO peaks, due to the low-pass filter effect of its

EWMA component. In contrast with the rest of RTO

algorithms considered, the Multimodal RTO is able to quickly

adapt to the current RTT mode.

B. Latency decrease

We now study the latency decrease achieved by the

Multimodal RTO in the presence of packet losses, compared

with the Peak-Hopper RTO, for different values of P. As in

subsection V.E, we assume unlimited RTO values and number

of retries. Figs. 13 and 14 depict the results for the busy

gateway and DC-constrained scenarios, respectively, as a

a)

b)

Fig. 10. Behavior of the Peak-Hopper RTO, the CoCoA RTO, the TCP RTO

and the Multimodal RTO: a) busy gateway scenario, for TLow =100 samples

and Ω=1; b) DC-constrained scenario, for 1/λ=1000 s.

0

50

100

150

200

250

300

0 50 100 150

T
im

e
 (s
)

RTT sample number

TCP RTO
Multimodal RTO
RTT

CoCoA RTO
Peak‐Hopper RTO

0

50

100

150

200

250

0 50 100 150

T
im

e
 (s
)

RTT sample number

TCP RTO
Multimodal RTO
RTT

CoCoA RTO
Peak‐Hopper RTO

>

fu

10

Fi

clo

am

th

RT

Pe

be

im

in

co

co

th

va

wh

fo

Hi

tra

Pe

is

va

Fi

the

TL

F

th

REPLACE TH

unction of TLow

06 simulated R

As indicated

ig. 11, the Mu

oser to RTTs

mount of imp

an when the

TO (Fig. 8).

eak-Hopper R

ehavior of the

mprovement t

tervals after

ompared with R

Similarly to F

orrespond to t

e maximum

alues, in comp

hen TLow incre

or a smaller Ω

igh RTT mod

ansient interv

eak-Hopper an

In the DC-co

greater than

alues of 1/

g. 11. Latency d

e Peak-Hopper R

Low=100 samples.

Fig. 12. Latency d

he Peak-Hopper R

0

100

200

300

400

500

600

700

800

100 20

La
te
n
cy

 d
e
cr
ea
se

 (s
)

HIS LINE WI

w and Ω. Each

RTTs.

d by the posi

ultimodal RTO

s than the Pe

provement is l

Multimodal R

The reason is

RTO values

 TCP RTO in

ends to decr

RTT mode

RTT mode int

Fig. 8, latency

the general sh

values of the

parison with

eases, the max

in Fig. 11. Bo

de interval d

vals to remain

nd the Multim

onstrained sce

the one show

As explained

decrease achieved

RTO, in the busy g

decrease achieved

RTO, in the DC-c

00 300 400

ITH YOUR PA

individual res

itive latency

O produces R

eak-Hopper R

lower (e.g. 45

RTO is comp

s the lower m

with RTTs,

n the busy gat

rease with TL

changes bec

terval duration

y decrease cu

hape of an inv

e curves corre

the ones show

ximum latenc

oth phenomen

duration needs

n relevant wh

modal RTOs.

enario (Fig. 12

wn in Fig. 9

d in the previ

d by the Multimod

gateway scenario,

d by the Multimo

constrained scenar

500 600 70

1/λ (s)

APER IDENT

sult is obtained

decrease valu

RTO values th

RTO. Howeve

5% lower for

pared with the

misalignment

compared t

teway scenario

TLow, since tra

come less re

ns.

urves in Fig. 1

verted U. How

espond to low

wn in Fig. 8.

cy decrease is

na occur becau

s to be small

hen comparin

2), latency de

9 for all cons

ious subsectio

dal RTO, compar

 for TLow=10 samp

odal RTO, compar

rio.

00 800 900

P=0.3

P=0.2

P=0.1

P=0

TIFICATION N

d from

ues in

hat are

er, the

r P=0)

e TCP

of the

to the

o. The

ansient

elevant

11 also

wever,

wer Ω

 Also,

found

use the

ler for

ng the

ecrease

sidered

on, the

Pea

con

for

prod

1/
imp

T

RTO

prov

anal

the

and

A.

W

prod

inpu

amo

its

sam

1)

T

valu

SRT

need

one

valu

add

s de

add

for t

In

curr

the

assu

sam

mod

com

prev

mod

and

perf

com

the

com

stan

Mul

time

Thu

dete

2)

T

of th

Ass

spat

F

2 pr

red with

ples and

red with

1000

NUMBER (D

ak-Hopper RT

strained scena

several con

duced by th

increases, hig

provement dec

VII.

This section fo

O. First, a com

vided; as a ben

lyzed. Second

number of in

d the related tra

Complexity an

We first evalu

duce an RTO

ut. Secondly,

ount of memo

output value.

me settings use

Time complex

The TCP RTO

ues in order t

TT, two mult

ded. For RTT

 substraction

ues are avail

dition are need

enote the time

dition and a su

the TCP RTO

n the Multim

rent RTT mod

value for eith

umed to be eq

mple value nee

de change is

mputing the R

vious 2 RTT s

de may need t

d NHigh are equ

forming a com

mplexity of de

internal RTO

mputing the ou

ndard TCP al

ltimodal algor

e complexity f

us, the Multi

ermining the c

Spatial compl

To produce an

hree variables

suming that ea

tial complexity

For the Mul

revious RTT

DOUBLE-CLIC

TO underperfo

ario. In additi

nsecutive RTT

he Peak-Hopp

gh RTT values

creases.

COMPLEXITY

ocuses on the

mplexity anal

nchmark, com

dly, a discussi

nternal RTO t

ade-offs, is giv

nalysis

ate time comp

output value

we analyze

ory required by

For the Mu

ed in previous

xity

O requires ob

to compute th

tiplication an

TVAR, two m

are required

lable, one fu

ed in order to

e required for

ubstraction, res

O is thus 5m +

modal RTO, th

de, and thus th

her RTTThresh_L

qual) be deno

eds to be comp

 detected, th

RTO output.

sample values

to be checked

ual to 3). Let

mparison opera

termining the

to be used is

utput RTO va

lgorithm, sin

rithm uses the

for the Multim

modal RTO

current RTT m

lexity

n RTO value,

s: current RTT

ach variable re

y of the TCP R

ltimodal RTO

samples need

CK HERE TO

orms the TCP

ion, when RT

T samples,

per RTO is

s are less freq

Y CONSIDERAT

 complexity o

lysis of the M

mplexity of the

ion on the cri

timers of the

ven.

plexity, i.e., th

on the basis o

spatial compl

y an RTO alg

ltimodal RTO

sections.

btaining SRT

he RTO valu

nd one additio

multiplications,

d. Once SRT

urther multip

compute the R

performing a

spectively. Th

3a + s.

he first step i

he internal RT

Low and RTTThr

oted RTTThresh.

pared with RT

hen the algor

Otherwise, w

s correspond t

d (note that we

c denote the

ation. In the w

current RTT

determined, ti

alue is the sa

ce each inter

e TCP RTO. T

modal RTO is

adds the tim

mode.

the TCP RTO

T sample, SRT

equires a mem

RTO is 3n.

O, the curre

d to be stored

O EDIT) <

 RTO in the

TT increase oc

the RTO ou

exacerbated.

quent, thus lat

TIONS

of the Multim

Multimodal RT

e TCP RTO is

iteria for selec

Multimodal R

he time neede

of an RTT sam

lexity, that is

gorithm to pro

O, we assume

TT and RTTV

ue. For compu

on operations

, one addition

TT and RTTV

plication and

RTO. Let m, a

multiplication

he time comple

is determining

TO to be used

resh_High (which

The current

TTThresh. If no

rithm proceed

whether up to

to a different

e assume that

time required

worst case, the

mode is 3c. O

ime complexi

ame as that of

rnal RTO of

Therefore, the

3c + 5m + 3a

me complexity

O stores the va

TT and RTTV

ory space of n

ent sample,

d. In addition

10

DC-

ccurs

utput

. As

tency

modal

TO is

s also

cting

RTO,

ed to

mple

, the

duce

e the

VAR

uting

s are

n and

VAR

one

a and

n, an

exity

g the

d. Let

h are

RTT

RTT

ds to

o the

RTT

NLow

d for

time

Once

ty of

f the

f the

total

a + s.

y of

alues

VAR.

n, the

and

n, for

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

each one of the two internal RTOs, SRTT and RTTVAR need

to be maintained as well. Therefore, for the Multimodal RTO

with default settings, spatial complexity is 3n + 2ꞏ2n, that is,

7n. Thus, spatial complexity of the Multimodal RTO grows

linearly with the number of internal RTO modes, and also

includes the memory needed to store the last 3 RTT samples.

B. Selecting the number of internal RTO timers of the

Multimodal RTO

As illustrated in the previous subsection, both spatial and

time complexity of the Multimodal RTO increase with the

number of internal RTO timers used.

In terms of accurate RTO computation, the number of

internal RTO timers of the Multimodal RTO is optimally

selected when it equals the number of RTT modes in the

scenario. As explained in Section I, many common LPWAN

scenarios are characterized by exactly two RTT modes, thus

using two internal RTO timers for the Multimodal RTO is the

best choice in such scenarios.

Many LPWAN devices exhibit limited hardware (e.g.

memory, CPU, etc.) capabilities, thus computational power of

such devices is constrained, and minimizing complexity is an

important goal. If there are more than two RTT modes in a

scenario, a reasonable trade-off between accurate RTO

computation and minimizing complexity is defining two

internal RTO timers for the Multimodal RTO, with one of

them intended to cope with the High RTT mode (produced by

duty cycle or busy gateway effects), and the other intended for

the Low RTT mode (which may include submodes produced

by link layer retries). In such case, while using only two

internal RTO timers may not allow achieving the highest

performance, it will still improve performance compared with

a unimodal RTO.

VIII. CONCLUSION

In this paper, we presented the Multimodal RTO algorithm,

which has been designed in order to address the issues posed

by multimodal RTT distributions found in LPWAN scenarios.

Evaluation results show how, at the expense of a relatively

low amount of additional complexity, the Multimodal RTO

outperforms use of a single, standard TCP RTO algorithm, as

well as state-of-the-art RTO algorithms such as the Peak-

Hopper RTO and the CoCoA RTO.

The TCP RTO fails to handle the large RTT variance that

stems from RTT mode changes. The performance

improvement that can be achieved by the Multimodal RTO

over the TCP RTO increases for a moderate RTT mode

change frequency and for relatively similar RTT mode interval

durations of the different RTT modes. The CoCoA RTO

performs similarly to the TCP RTO, and exhibits comparable

misbehavior.

The Peak-Hopper RTO offers lower misalignment than

TCP RTO or CoCoA RTO with RTTs in the busy gateway

scenario. However, it fails to adapt quickly to an RTT mode

change. Furthermore, in the DC-constrained scenario, the

Peak-Hopper RTO underperforms even the TCP RTO.

 The Multimodal RTO algorithm is applicable for current

and future retransmission timer-based protocols and

applications to be used in LPWAN.

IX. APPENDIX

This appendix provides the details of the Peak-Hopper RTO

and the CoCoA RTO algorithms [8, 9], and the settings

assumed for these algorithms in this paper.

A. Peak-Hopper RTO

The Peak-Hopper RTO comprises a set of 5 steps. The first

step determines the value of , a variable defined as follows:

  = (R-Rprevious)/ Rprevious (Step i)

 where Rprevious denotes the previous RTT sample. In this

paper, we assume an initial value for Rprevious of 1 s.

 The second step computes a decay factor, D:

 D = 1-1/(FꞏS) (Step ii)

where S is set to 1, since we assume sporadic message

transmission, and F is set to 16 as proposed by the Peak-

Hopper RTO authors [8]. Thus, in this paper D is 15/16.

The third step computes a booster factor, B:

 B ← min(max(2ꞏ, DꞏB), Bmax) (Step iii)

where Bmax is an upper limit to B, which is set to 1 in this

paper since we assume that timestamps are not used [9]. We

set the initial value of B to 1.

The fourth step determines Rmax, defined as follows:

 Rmax = max(R, Rprevious) (Step iv)

Finally, the RTO is computed as:

 RTO ← max(DꞏRTO, (1+B)ꞏRmax, RTOmin) (Step v)

where the RTO is chosen as the maximum among the three

following terms: the first term decays the previous RTO, the

second one corresponds to short RTT history, and RTOmin is

equal to Rmax+2ꞏG. Considering the large RTT values in

LPWAN, we assume Rmax ≫ 2ꞏG, thus RTOmin ൎ Rmax.

B. CoCoA RTO

The CoCoA RTO defines two internal RTOs: the strong

RTO and the weak RTO, each one based on the TCP RTO.

When a strong or a weak RTT is measured, the corresponding

RTO evolves accordingly. The most recently updated internal

RTO, RTOinternal, contributes to the overall estimator, RTOoutput,

as shown next:

 RTOoutput ← a ꞏRTOinternal + (1-a) ꞏRTOoutput

where RTOinternal corresponds to the strong or the weak

RTO. Default weights for a are 0.5 and 0.25 for the strong and

for the weak RTO estimators, respectively. In this paper, we

set a=0 for the weak estimator, to reduce CoCoA RTO

underperformance in multimodal RTT scenarios.

REFERENCES

[1] U. Raza et al., “Low Power Wide Area Networks: An Overview”, IEEE

Communications Surveys & Tutorials, vol. 19, no. 2, pp. 855-873, Second

Quarter 2017.

[2] C. Gomez et al., "From 6LoWPAN to 6Lo: Expanding the Universe of

IPv6-Supported Technologies for the Internet of Things", IEEE

Communications Magazine, vol. 55, no. 12, pp. 148-155, Dec. 2017.

[3] S. Farrel, “Low-Power Wide Area Network (LPWAN) Overview”, RFC

8376, May 2018.

[4] A. Minaburo et al., “LPWAN Static Context Header Compression

(SCHC) and Fragmentation for IPv6 and UDP”, draft-ietf-lpwan-ipv6-

static-context-hc-24, Dec. 2019 (work in progress). Available at

https://tools.ietf.org/html/draft-ietf-lpwan-ipv6-static-context-hc-24

(Accessed on 2020-01-04).

[5] C. Gomez et al., “IPv6 over LPWANs: Connecting Low Power Wide Area

Networks to the Internet (of Things)”, IEEE Wireless Communications (to

be published).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

[6] C. Gomez and J. Crowcroft, “RTO Considerations in LPWAN”, draft-

gomez-lpwan-rto-considerations-01, Jul. 2019 (work in progress).

Available at https://tools.ietf.org/html/draft-gomez-lpwan-rto-

considerations-01 (Accessed on 2020-01-04).

[7] V. Paxson et al., “Computing TCP's Retransmission Timer”, RFC 6298,

Jun. 2011.

[8] H. Ekstrom and R. Ludwig, “The Peak-Hopper: A New End-to-End

Retransmission Timer for Reliable Unicast Transport”, Proc. IEEE

INFOCOM 2004, vol. 4, Mar. 2004, pp. 2502–2513.

[9] A. Betzler et al., "CoAP Congestion Control for the Internet of Things",

IEEE Communications Magazine, vol. 54, no. 7, pp. 154-160, July 2016.

[10] L. Casals et al., "Modeling the Energy Performance of LoRaWAN",

Sensors, vol. 17, no. 10, Oct. 2017, Art. no. 2364.

[11] C. Gomez et al., "A Sigfox Energy Consumption Model", Sensors, vol.

19, no. 3, Feb. 2019, Art. no. 681.

[12] A. Minaburo and L. Toutain, “CoAP Time Scale Option”, draft-toutain-

core-time-scale-00, Oct. 2017 (work in progress). Available at

https://tools.ietf.org/html/draft-toutain-core-time-scale-00 (Accessed on

2020-01-04).

[13] J. Haxhibeqiri et al., “A Survey of LoRaWAN for IoT: From Technology

to Application”, Sensors, vol. 18, no. 11, Nov. 2018, Art. no. 3995.

[14] A. Pop et al., “Does Bidirectional Traffic Do More Harm Than Good in

LoRaWAN Based LPWA Networks?”, IEEE Global Communications

Conference (GLOBECOM), Singapore, 2017, pp.1-7.

[15] J. Postel, “Transmission Control Protocol", RFC 793, Sep. 1981.

[16] V. Jacobson, “Congestion Avoidance and Control”, ACM SIGCOMM

Computer Communication Review, vol. 18, no. 4, pp. 157-173, 1995.

[17] R. Braden, “Requirements for Internet Hosts–Communication Layers”,

RFC 1122, Oct. 1989.

[18] V. Paxson, M. Allman, J. Chu, and M. Sargent, “Computing TCP’s

Retransmission Timer", RFC 2988, Nov. 2000.

[19] A. Acharya and J. Saltz, “A Study of Internet Round-Trip Delay”,

University of Maryland, Tech. Rep. CS-TR-3736, 1996.

[20] M. Allman, “Retransmission Timeout Requirements”, draft-ietf-tcpm-rto-

consider-09, Dec. 2019 (work in progress). Available at:

https://tools.ietf.org/html/draft-ietf-tcpm-rto-consider-09 (Accessed on

2020-01-04).

[21] M. Rajiullah et al., “An Evaluation of Tail Loss Recovery Mechanisms

for TCP”, ACM SIGCOMM Computer Communication Review, vol. 45,

no. 1, pp. 5-11, Jan. 2015.

[22] M. Allman and V. Paxson, “On Estimating End-to-end Network Path

Properties”, ACM SIGCOMM Computer Communication Review, vol.

29, no. 4, pp. 263-274, Aug. 1999.

[23] I. Psaras and V. Tsaoussidis, “On the Properties of an Adaptive TCP

Minimum RTO”, Computer Communications, vol. 32, no. 5, pp. 888-895,

Mar. 2009.

[24] N. Seddigh and M. Devetsikiotis, “Studies of TCP's retransmission

Timeout Mechanism”, IEEE ICC, vol. 6, Helsinki, Finland, 2001,

pp. 1834-1840.

[25] P. Sarolahti and A. Kuznetsov, “Congestion Control in Linux TCP,” Proc.

FREENIX Track: 2002 USENIX Annual Tech. Conf., Berkeley, CA,

2002, pp. 49–62.

[26] S. Bolettieri et al., “pCoCoA: A Precise Congestion Control Algorithm for

CoAP”, Ad Hoc Networks, vol. 80, pp. 116-129, Nov. 2018.

[27] I. Jarvinen et al., “FASOR Retransmission Timeout and Congestion

Control Mechanism for CoAP”, IEEE Global Communications Conference

(GLOBECOM), Abu Dhabi, UAE, 2018, pp. 1-7.

[28] Z. Shelby et al., “The Constrained Application Protocol (CoAP)”, RFC

7252, Jun. 2014.

[29] L. Kleinrock, “Queueing Systems. Volume I: Theory”, New York, NY,

USA, Wiley Interscience, 1975, pp. 174-191.

[30] M. Lauridsen et al., “Interference Measurements in the European 868

MHz ISM Band with Focus on LoRa and SigFox”, 2017 IEEE Wireless

Communications and Networking Conference (WCNC), San Francisco,

CA, USA, 2017, pp. 1-6.

