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Motivation and goal

Images often come with additional textual info.

Videos with scripts and subtitles, ...

Matthieu Guillaumin, INRIA Grenoble 2/21



Goal of this work

Visual object category recognition,

Leveraging user tags available on :

Tags

wow

San Fransisco

Golden Gate Bridge

SBP2005

top-f50

fog

SF Chronicle 96 hours
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Overview of the talk

(A) Data sets and features

(B) Learning scenarios using images with tags

(1) Supervised multimodal classification

(2) Multimodal semi-supervised scenario

(3) Weakly supervised learning
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Data sets of images with tags

PASCAL VOC 07, ≈10000 images, 804 Flickr tags, 20 classes.

Flickr tags: india aviation, airplane, airport
Class labels: cow aeroplane

MIR Flickr, 25000 images, 457 Flickr tags, 38 classes.

Flickr tags: desert, nature, landscape, sky rose, pink
Class labels: clouds, plant life, sky, tree flower, plant life
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Flickr tags as textual features

Restrict to the most frequent tags.
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PASCAL VOC’07 tags

Binary vector of tag presence/absence.

Linear kernel counts the number of shared tags.
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Combination of several visual features

RBF kernel on average distance between 15 image
representations:

Bag-of-features histograms:

Harris interest points and dense grid,
SIFT [Lowe, 2004] and Hue [van de Weijer & Schmid, 2006],
K-means quantization.

Color histograms:

RGB, HSV and Lab colorspaces,
16 bins per channel.

GIST [Oliva & Torralba, 2001],
2 spatial layouts

Global,
3 horizontal regions [Lazebnik et al., 2006],
Only global for GIST.
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Learning scenarios using images with tags

1 Supervised multimodal classification

2 Multimodal semi-supervised scenario

3 Weakly supervised learning
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Supervised multimodal classification

Flickr tags = additional features for classification.

Tags also available at test time,

MKL to combine visual and textual kernels.

DOG (+1) not DOG (−1) DOG?

greyhound
running
athlete
sport

horse
vermont

cars
racing

dog
rottweiler
pets

computer
dual
monitor

→
yacht

canine pet locomotive
black
puppy

cute
dog
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Results of multimodal classification on
PASCAL VOC 2007
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tags image image+tags

Tags (0.43) < Image (0.53) < Image+tags (0.67)

Winner of PASCAL VOC’07: 0.59.

Similar observation for MIR Flickr.
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Learning scenarios using images with tags

1 Supervised multimodal classification

2 Multimodal semi-supervised scenario

3 Weakly supervised learning
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Multimodal semi-supervised scenario

Large pool of additional unlabeled images with tags.

Tags NOT available at test time: visual categorization.

DOG (+1) Unlabeled DOG?

greyhound
running
athlete
sport

vermont
horse

dog
rottweiler
pets

canine
pet

→

not DOG (−1)
puppy
dog

computer
dual
monitor

railroads
train

locomotive
car
auto
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Three-step learning process

In a nutshell, predict labels for the unlabeled images:

1 Train an MKL classifier on labeled images and tags.

2 Score unlabeled data.

3 Train an image-only classifier. 2 options:
1 SVM:

Use unlabeled data with label from sign of MKL score,
Using only the sign, we dismiss the confidence of classification.

2 LSR:

Least-squares regression of MKL scores using the visual kernel,
Regularized using KPCA projection.
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Experimental comparison

Baselines:

1 Supervised, image-only: SVM,

2 Semi-supervised, image-only: SVM+SVM,

3 Semi-supervised, multimodal: Co-training, with SVM on
images and SVM on tags. [Blum & Mitchell, 98]

Our three-step learning approach (semi-supervised, multimodal):

1 MKL learned on labeled images with tags,
followed by visual-only SVM trained on labeled and unlabeled
images: MKL+SVM,

2 MKL, followed by LSR: MKL+LSR.
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Results of semi-supervised learning
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SVM+SVM worse than baseline.

With little supervision, MKL+LSR is significantly better.

With more supervision, differences shrink.
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Learning scenarios using images with tags

1 Supervised multimodal classification

2 Multimodal semi-supervised scenario

3 Weakly supervised learning
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Weakly supervised scenario

For learning: no manual annotation, but Flickr tags,

Other tags used as additional features.

For evaluation: ground-truth labels.

DOG?

greyhound
running
athlete
sport

vermont
horse

dog
rottweiler
pets

canine
pet

→

locomotive

puppy

dog

computer
dual
monitor

railroads
train
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Weakly supervised setting

Tags are noisy annotations:

Tag presence is relatively clean (82.0% precision)
Tag absence is relatively uninformative (17.8% recall)

Our approach, modified:
1 Learn a multimodal MKL with tag annotations,
2 Rank training images and remove the images that yield highest

MKL scores but do not have the tag,
3 Fit LSR.

Baseline: visual-only SVM learned on images with tag
annotations.
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Results on 18 classes of MIR Flickr
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mAP on 18 MIR Flickr classes.

On average, MKL+LSR outperforms SVM baseline:

SVM baseline better for 4 classes (up to +5.6%),
MKL+LSR better for 14 classes (up to +9.8%).
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Conclusion

We considered using Flickr tags for 3 scenarios:
1 Supervised classification,
2 Semi-supervised learning of visual classifiers,
3 Weakly supervised learning of visual classifiers.

We proposed a three-step learning process:
1 Training of a multimodal classifier on labeled data,
2 Classification of the unlabeled data,
3 Regression of the multimodal classifier.

Our multimodal approach using Flickr tags improves over:

Visual-only SVM on all three scenarios,
Co-training for semi-supervised learning.
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