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Motivation and goal

o Images often come with additional textual info.
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Goal of this work

o Visual object category recognition,

o Leveraging user tags available on flickr:
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Overview of the talk

(A) Data sets and features

(B) Learning scenarios using images with tags

(1) Supervised multimodal classification
(2) Multimodal semi-supervised scenario

(3) Weakly supervised learning
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Data sets of images with tags

o PASCAL VOC 07, ~10000 images, 804 Flickr tags, 20 classes.

|

Flickr tags: india aviation, airplane, airport
Class labels: cow aeroplane

o MIR Flickr, 25000 images, 457 Flickr tags, 38 classes.

Flickr tags: desert, nature, landscape, sky rose, pink
Class labels: clouds, plant life, sky, tree flower, plant life
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Flickr tags as textual features

o Restrict to the most frequent tags.

PASCAL VOC'07 tags
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Sorted tag index

o Binary vector of tag presence/absence.

o Linear kernel counts the number of shared tags.
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Combination of several visual features

o RBF kernel on average distance between 15 image
representations:

o Bag-of-features histograms:
o Harris interest points and dense grid,
o SIFT [Lowe, 2004] and Hue [van de Weijer & Schmid, 2006],
o K-means quantization.

o Color histograms:
o RGB, HSV and Lab colorspaces,
o 16 bins per channel.

o GIST [Oliva & Torralba, 2001],

o 2 spatial layouts

o Global,
o 3 horizontal regions [Lazebnik et al., 2006],
o Only global for GIST.
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Learning scenarios using images with tags

(@ Supervised multimodal classification
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Supervised multimodal classification

o Flickr tags = additional features for classification.
o Tags also available at test time,

o MKL to combine visual and textual kernels.
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Results of multimodal classification on

PASCAL VOC 2007
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o Tags (0.43) < Image (0.53) < Image+tags (0.67)
o Winner of PASCAL VOC'07: 0.59.

o Similar observation for MIR Flickr.
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Learning scenarios using images with tags

(@ Multimodal semi-supervised scenario
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Multimodal semi-supervised scenario

o Large pool of additional unlabeled images with tags.
o Tags NOT available at test time: visual categorization.
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Three-step learning process

In a nutshell, predict labels for the unlabeled images:

@ Train an MKL classifier on labeled images and tags.

@ Score unlabeled data.

@ Train an image-only classifier. 2 options:
@ SVM:

o Use unlabeled data with label from sign of MKL score,
o Using only the sign, we dismiss the confidence of classification.

@ LSR:

o Least-squares regression of MKL scores using the visual kernel,
o Regularized using KPCA projection.
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Experimental comparison

Baselines:
@ Supervised, image-only: SVM,
@ Semi-supervised, image-only: SVM+SVM,

@ Semi-supervised, multimodal: Co-training, with SVM on
images and SVM on tags. [Blum & Mitchell, 98]

Our three-step learning approach (semi-supervised, multimodal):

@ MKL learned on labeled images with tags,
followed by visual-only SVM trained on labeled and unlabeled
images: MKL+SVM,

@ MKL, followed by LSR: MKL+LSR.
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Results of semi-supervised learning

o svMm B SVM+SVM B Co-training
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o SVM4SVM worse than baseline.

40 100 200
Number of labeled training examples

o With little supervision, MKL+LSR is significantly better.

o With more supervision, differences shrink.
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Learning scenarios using images with tags

(3 Weakly supervised learning
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Weakly supervised scenario

o For learning: no manual annotation, but Flickr tags,
o Other tags used as additional features.

o For evaluation: ground-truth labels.
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Weakly supervised setting

o Tags are noisy annotations:

o Tag presence is relatively clean (82.0% precision)
o Tag absence is relatively uninformative (17.8% recall)

o Our approach, modified:

@ Learn a multimodal MKL with tag annotations,

@ Rank training images and remove the images that yield highest
MKL scores but do not have the tag,

@ Fit LSR.

o Baseline: visual-only SVM learned on images with tag
annotations.
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Results on 18 classes of MIR Flickr
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o mAP on 18 MIR Flickr classes.
o On average, MKL+LSR outperforms SVM baseline:

o SVM baseline better for 4 classes (up to +5.6%),
o MKL+LSR better for 14 classes (up to +9.8%).
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Conclusion

o We considered using Flickr tags for 3 scenarios:

@ Supervised classification,
@ Semi-supervised learning of visual classifiers,
@ Weakly supervised learning of visual classifiers.

o We proposed a three-step learning process:

@ Training of a multimodal classifier on labeled data,
@ Classification of the unlabeled data,
@ Regression of the multimodal classifier.

o Our multimodal approach using Flickr tags improves over:

o Visual-only SVM on all three scenarios,
o Co-training for semi-supervised learning.
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