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Multimodal sensor fusion 
in the latent representation space
Robert J. Piechocki *, Xiaoyang Wang  & Mohammud J. Bocus 

A new method for multimodal sensor fusion is introduced. The technique relies on a two-stage 
process. In the first stage, a multimodal generative model is constructed from unlabelled training 
data. In the second stage, the generative model serves as a reconstruction prior and the search 
manifold for the sensor fusion tasks. The method also handles cases where observations are accessed 
only via subsampling i.e. compressed sensing. We demonstrate the effectiveness and excellent 
performance on a range of multimodal fusion experiments such as multisensory classification, 
denoising, and recovery from subsampled observations.

Controlled hallucination1 is an evocative term referring to the Bayesian brain  hypothesis2. It posits that percep-
tion is not merely a function of sensory information processing capturing the world as is. Instead, the brain is 
a predictive machine - it attempts to infer the causes of sensory inputs. To achieve this, the brain builds and 
continually refines its world model. The world model serves as a prior and when combined with the sensory 
signals will produce the best guess for its causes. Hallucination (uncontrolled) occurs when the sensory inputs 
cannot be reconciled with, or contradict the prior world model. This might occur in our model, and when it 
does, it manifests itself at the fusion stage with the stochastic gradient descent procedure getting trapped in a 
local minimum. The method presented in this paper is somewhat inspired by the Bayesian brain hypothesis, but 
it also builds upon multimodal generative modelling and deep compressed sensing.

Multimodal data fusion attracts academic and industrial interests  alike3 and plays a vital role in several 
applications. Automated driving is arguably the most challenging industrial  domain4. Automated vehicles use 
a plethora of sensors: Lidar, mmWave radar, video and ultrasonic, and attempt to perform some form of sensor 
fusion for environmental perception and precise localization. A high-quality of final fusion estimate is a prerequi-
site for safe driving. Amongst other application areas, a notable mention deserves eHealth and Ambient Assisted 
Living (AAL). These new paradigms are contingent on gathering information from various sensors around the 
home to monitor and track the movement signatures of people. The aim is to build long-term behavioral sensing 
machine which also affords privacy. Such platforms rely on an array of environmental and wearable sensors, with 
sensor fusion being one of the key challenges.

In this contribution, we focus on a one-time snapshot problem (i.e. we are not building temporal structures). 
However, we try to explore the problem of multimodal sensor fusion from a new perspective, essentially, from a 
Bayesian viewpoint. The concept is depicted in Fig. 1, alongside two main groups of approaches to sensor fusion. 
Traditionally, sensor fusion for classification tasks has been performed at the decision level as in Fig. 1(a). Assum-
ing that conditional independence holds, a pointwise product of final pmf (probability mass function) across 
all modalities is taken. Feature fusion, as depicted in Fig. 1(b), has become very popular with the advent of deep 
neural  networks3, and can produce very good results. Figure 1(c) shows our technique during the fusion stage 
(Stage 2). Blue arrows indicate the direction of backpropagation gradient flow during fusion.

Contributions. 

• A novel method for multimodal sensor fusion is presented. The method attempts to find the best estimate 
(maximum a posteriori) for the causes of observed data. The estimate is then used to perform specific down-
stream fusion tasks.

• The method can fuse the modalities under lossy data conditions i.e. when the data is subsampled, lost and/
or noisy. Such phenomena occur in real-world situations such as the transmission of information wirelessly, 
or intentional subsampling to expedite the measurement (rapid MRI imaging and radar) etc.

• It can leverage between modalities. A strong modality can be used to aid the recovery of another modality 
that is lossy or less informative (weak modality). This is referred to as asymmetric Compressed Sensing.
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Related work
In this section, we review the state-of-the-art in three areas directly relevant to our contributions: multimodal 
generative modeling, sensor fusion, and compressed sensing. One of the main aims of Multimodal Variational 
Autoencoders (MVAEs) is to learn a shared representation across different data types in a fully self-supervised 
manner, thus avoiding the need to label a huge amount of data, which is time-consuming and  expensive5. It 
is indeed a challenge to infer the low-dimensional joint representation from multiple modalities, which can 
ultimately be used in downstream tasks such as self-supervised clustering or classification. This is because the 
modalities may vastly differ in characteristics, including dimensionality, data distribution, and  sparsity6. Recently, 
several methods have been proposed to combine multimodal data using generative models such as Variational 
Autoencoders (VAEs)5,7–11. These methods aim to learn a joint distribution in the latent space via inference 
networks and try to reconstruct modality-specific data, even when one modality is missing. In these works, a 
modality can refer to natural images, text, captions, labels or visual and non-visual attributes of a person. JMVAE 
(Joint Multimodal Variational Autoencoder)9 makes use of a joint inference network to learn the interaction 
between two modalities and they address the issue of missing modality by training an individual (unimodal) 
inference network for each modality as well as a bimodal inference network to learn the joint posterior, based 
on the product-of-experts (PoE). They consequently minimize the distance between unimodal and multimodal 
latent distribution. On the other hand,  MVAE7, which is also based on PoE, considers only a partial combination 
of observed modalities, thereby reducing the number of parameters and improving the computational efficiency. 
 Reference8 uses the Mixture-of-Experts (MoE) approach to learn the shared representation across multiple 
modalities. The latter two models essentially differ in their choices of joint posterior approximation functions. 
MoPoE (Mixture-of-Products-of-Experts)-VAE5 aims to combine the advantages of both approaches, MoE and 
PoE, without incurring significant trade-offs. DMVAE (Disentangled Multimodal VAE)10 uses a disentangled 
VAE approach to split up the private and shared (using PoE) latent spaces of multiple modalities, where the latent 
factor may be of both continuous and discrete nature. CADA (Cross- and Distribution Aligned)-VAE11 uses 
a cross-modal embedding framework to learn a latent representation from image features and classes (labels) 
using aligned VAEs optimized with cross- and distribution- alignment objectives.

In terms of multimodal/sensor fusion for human activity sensing using Radio-Frequency (RF), inertial and/
or vision sensors, most works have considered either decision-level fusion or feature-level fusion. For instance, 
the work  in12 performs multimodal fusion at the decision level to combine the benefits of WiFi and vision-based 
sensors using a hybrid Deep Neural Network (DNN) model to achieve good activity recognition accuracy for 3 
activities. The model essentially consists of a WiFi sensing module (dedicated Convolutional Neural Network 
(CNN) architecture) and a vision sensing module (based on the Convolutional 3D model) for processing WiFi 
and video frames for unimodal inference, followed by a multimodal fusion module. Multimodal fusion is per-
formed at the decision level (after both WiFi and vision modules have made a classification) because this frame-
work is stated to be more flexible and robust to unimodal failure compared to feature level fusion.  Reference13 
presents a method for activity recognition, which leverages four sensor modalities, namely, skeleton sequences, 
inertial and motion capture measurements and WiFi fingerprints. The fusion of signals is formulated as a matrix 
concatenation. The individual signals of different sensor modalities are transformed and represented as an image. 
The resulting images are then fed to a two-dimensional CNN (EfficientNet B2) for classification. The authors  of14 
proposed a multimodal HAR system that leverages WiFi and wearable sensor modalities to jointly infer human 
activities. They collect Channel Sate Information (CSI) data from a standard WiFi Network Interface Card 
(NIC), alongside the user’s local body movements via a wearable Inertial Measurement Unit (IMU) consisting 
of an accelerometer, gyroscope, and magnetometer sensors. They compute the time-variant Mean Doppler Shift 
(MDS) from the processed CSI data and magnitude from the inertial data for each sensor of the IMU. Then, 
various time and frequency domain features are separately extracted from the magnitude data and the MDS. The 
authors apply a feature-level fusion method which sequentially concatenates feature vectors that belong to the 
same activity sample. Finally supervised machine learning techniques are used to classify four activities, such as 
walking, falling, sitting, and picking up an object from the floor. The work  in15 proposed a feature-level sensor 
fusion approach for HAR and validated on a WiFi platform. The authors  of16 proposed a decision-level sensor 
fusion network for HAR using LiDAR and visual sensors.

(a) (b) (c)

Figure 1.  Multimodal Sensor Fusion: (a) Decision fusion, (b) Feature fusion, (c) Our technique: fusion in the 
latent representation Z with optional compressed sensing measurements; Red arrows show the generative model 
from the latent space and the data subsampling; Blue arrows show the fusion process, guided by the prior model. 
F features, p(z) prior model, G generators, X complete data, Y subsampled data. For clarity M = 2 modalities are 
shown, the concept generalises to any M.
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Compared to the aforementioned  works12–16 which consider supervised models with feature-level fusion or 
decision-level fusion, our technique, in contrast, performs multimodal sensor fusion in the latent representation 
space leveraging a self-supervised generative model. Our method is different from current multimodal generative 
models such as those proposed  in5,7–9 in the sense that it can handle cases where observations are accessed only 
via subsampling (i.e. compressed sensing with significant loss of data and no data imputation). And crucially 
our technique attempts to directly compute the MAP (maximum a posteriori) estimate.

The presented method is related to and builds upon Deep Compressed Sensing (DCS)  techniques17,18. DCS, 
in turn, is inspired by Compressed Sensing (CS)19,20. In CS, we attempt to solve what appears to be an underde-
termined linear system, yet the solution is possible with the additional prior sparsity constraint on the signal: 
min L0 . Since L0 is non-convex, L1 is used instead to provide a convex relaxation, which also promotes sparsity 
and allows for computationally efficient solvers. DCS, in essence, replaces the L0 prior with a low dimensional 
manifold, which is learnable from the data using generative models. Concurrently to DCS, Deep Image  Prior21 
was proposed. It used un-trained CNNs to solve a range of inverse problems in computer vision (image inpaint-
ing, super-resolution, denoising).

Methods
Assume the data generative process so that latent and common cause Z gives rise to Xm , which in turn produces 
observed Ym , i.e. Z → Xm → Ym forms a Markov chain. Here, Xm is the full data pertaining to mth modality, 
m ∈ {1, . . . ,M} . Crucially, the modalities collect data simultaneously “observing” the same scene. As an example, 
in this work, we consider the different views (obtained via multiple receivers) from the opportunistic CSI WiFi 
radar as different modalities. The variable Z encodes the semantic content of the scene and is typically of central 
interest. Furthermore, Xm is not accessed directly, but is observed via a subsampled Ym . This is a compressed 
sensing setup: Ym = χm(Xm) : χm is a deterministic and known (typically many-to-one) function. The only con-
dition we impose on χm is to be Lipschitz continuous. With the above, the conditional independence between 
modalities holds (conditioned on Z). Therefore, the joint density factors as:

The main task in this context is to produce the best guess for latent Z, and possibly, to recover the full signal(s) 
Xm , given subsampled data Y1:M . We approach the problem in two stages. First we build a joint model which 
approximates Eq. (1), and will be instantiated as a Multimodal Variatational Autoencoer (M-VAE). More specifi-
cally, the M-VAE will provide an approximation to pφ1:M ,ψ1:M (z, x1:M) , parameterized by deep neural networks 
{φ1, . . . ,φM} , {ψ1, . . . ,ψM} , referred to as encoders and decoders, respectively. The trained M-VAE will then be 
appended with pχm(ym|xm) for each modality m: {χ1, . . . ,χM} referred to as samplers. In the second stage, we 
use the trained M-VAE and χ1:M to facilitate the fusion and reconstruction tasks. Specifically, our sensor fusion 
problem amounts to finding the maximum a posteriori (MAP) ẑMAP estimate of the latent cause for a given ( ith ) 
data point Y1:M = y

(i)
1:M:

where,

The above MAP estimation problem is hard, and we will resort to approximations detailed in the sections below.

Multimodal VAE. The first task is to build a model of Eq. (1). As aforementioned, this will be accomplished 
in two steps. Firstly, during the training stage we assume access to full data X1:M , therefore training an approxi-
mation to pφ1:M ,ψ1:M (z, x1:M) is a feasible task. The marginal data log-likelihood for the multimodal case is:

where DKL is the Kullback-Leibler (KL) divergence. The first summand in Eq. (4), i.e. the sum over modalities 
follows directly from the conditional independence. And since KL is non-negative, Eq. (4) represents the lower 
bound (also known as Evidence Lower Bound - ELBO) on the log probability of the data (and its negative is 
used as the loss for the M-VAE). There exist a body of work on M-VAEs, the interested reader is referred  to5,7–9 
for details and derivation. The key challenge in training M-VAEs is the construction of variational posterior 
q(z|x1:M) . We dedicate a section in the Supplementary Information document to the discussion on choices and 
implications for the approximation of variational posterior. Briefly, we consider two main cases: a missing data 
case - i.e. where particular modality data might be missing ( Xm = x

(i)
m = ∅ ); and the full data case. The latter is 

straightforward and is tackled by enforcing a particular structure of the encoders. For the former case variational 
Product-of-Experts (PoE) is used:

(1)p
(

z, x1:M , y1:M
)

= p(z)

M
∏

m=1

p(ym|xm)p(xm|z).

(2)ẑMAP = argmax
z

p
(

z|Y1:M = y
(i)
1:M

)

,

(3)p
(

z|Y1:M = y
(i)
1:M

)

∝ p(z)

M
∏

m=1

∫

Xm

p(Ym = y(i)m |xm)p(xm|z) dxm.

(4)log p(x1:M) = DKL(q(z|x1:M ||p(z|x1:M))

(5)+





�

Xm

Ez∼q(z|x1:M ) log p(xm|z)− Ez∼q(z|x1:M ) log
q(z|x1:M)

p(z)
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Should the data be missing for any particular modality, qφm(z|xm) = 1 is assumed. Derivation of Eq. (6) can be 
found in the Supplementary Information document.

Fusion on the M-VAE prior. Recall the sensor fusion problem as stated in Eq. (2). The p(z) is forced to be 
isotropic Gaussian by M-VAE, and the remaining densities are assumed to be Gaussian. Furthermore, we assume 
that p(xm|z) = δ(xm − ψm(z)) . Therefore Eq. (2) becomes:

Hence, the objective to minimize becomes:

Recall that the output of the first stage is p(z) and the decoders 
∏

m pψn(x|z) are parameterized by {ψ1:M} , {�0:M} 
are constants. The MAP estimation procedure consists of backpropagating through the sampler χm and decoder 
ψm using Stochastic Gradient Descent (SGD). In this step {ψ1:M} are non-learnable, i.e. jointly with χm are some 
non-linear known (but differentiable) functions.

The iterative fusion procedure is initialized by taking a sample from the prior z0 ∼ p(z) , {η0:M} are learning rates. 
One or several SGD steps are taken for each modality in turn. The procedure terminates with convergence - see 
Algorithm 1. In general, the optimization problem as set out in Eq. (8) is non-convex. Therefore, there are no 
guarantees of convergence to the optimal point ( ̂zMAP ). We deploy several strategies to minimize the risk of 
getting stuck in a local minimum. We consider multiple initialization points (a number of points sampled from 
the prior with Stage 2 replicated for all points). In some cases it might be possible to sample from: 
z0 ∼ p(z)

∏

p
(

z
∣

∣

∣
X = x̌

(j)
m

)

 . Depending on modality, this might be possible with data imputation ( ̌xm are imputed 
data). The final stage will depend on a particular task (multisensory classification/reconstruction), but in all cases 
it will take ẑMAP as an input. In our experiments, we observe that the success of Stage 2 is crucially dependent 
on the quality of M-VAE.

Experiments
In this work, we investigate the performance of the proposed method on two datasets for multimodal sensor 
fusion and recovery tasks: i) a synthetic “toy protein” dataset and ii) a passive WiFi radar dataset intended for 
Human Activity Recognition (HAR).

Synthetic toy protein dataset. A synthetic dataset containing two-dimensional (2D) protein-like data 
samples with two modalities is generated. The latent distribution p(z), z ∈ R

4 is a Gaussian mixture model 
with 10 components, simulating 10 different “classes” for samples. For each modality, the data generative model 
p(xm|z), xm ∈ R

N is a one-layer multilayer perceptron (MLP) with random weights. Here m = 1, 2 represents 
two modalities. 10,000 pairs of samples are generated using the generative model, with the protein size N = 32 . 
Figure 2(a) shows an instance of the 2D protein data with N = 64.

(6)q�(z|x1:M) = p(z)

M
∏

m=1

qφm(z|xm).

(7)ẑMAP = argmax
z

p
(

z|Y1:M = y
(i)
1:M

)

∝ exp (−�z�2)

M
∏

m=1

exp (−
1

2σ 2
m

�y(i)m − χm(ψm(z))�
2).

(8)L (z) = �0�z�
2 +

M
∑

m=1

�m�y
(i)
m − χm(ψm(z))�

2.

(9)z ← z − η0∇z(�z�
2)−

M
∑

m=1

ηm∇z(�y
(i)
m − χm(ψm(z))�

2).
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Passive WiFi radar dataset. We use the  OPERAnet22 dataset which was collected with the aim to evaluate 
Human Activity Recognition (HAR) and localization techniques with measurements obtained from synchro-
nized Radio-Frequency (RF) devices and vision-based sensors. The RF sensors captured the changes in the 
wireless signals while six daily activities were being performed by six participants, namely, sitting down on a 
chair (“sit”), standing from the chair (“stand”), laying down on the floor (“laydown”), standing from the floor 
(“standff ”), upper body rotation (“bodyrotate”), and walking (“walk”). It should be noted that the six activities 
were performed in two different office rooms and in each room the participants performed the activities at 
different locations. The distribution of the six activities performed by the six participants in the two rooms is 
reported  in22. We convert the raw time-series CSI data from the WiFi sensors into the image-like format, namely, 
spectrograms using signal processing techniques. More details are available in Sect. S2 of the Supplementary 
Information document. The interested reader is kindly referred to our previous  works23–25 for more details on the 
signal processing pipelines for WiFi CSI. In this paper, we focus mainly on the design of a model that can fuse 
data from multiple modalities/sensors in the latent representation space effectively for several downstream tasks 
such as multisensory classification, denoising, and recovery from subsampled observations and missing pixels. 
2,906 spectrogram samples (each of 4s duration window) were generated for the 6 human activities and 80% of 
these were used as training data while the remaining 20% as testing data (random train-test split).

Results and discussion
Classification results of WiFi CSI spectrograms for HAR. In this section, we evaluate the HAR sen-
sor fusion classification performance under a few-shot learning scenario, with 1, 5 and 10 labelled examples per 
class. These correspond to 0.05%, 0.26% and 0.51% of labelled training samples, respectively. We randomly select 
80% of the samples in the dataset as the training set and the remaining 20% is used for validation. The average F1
-macro scores for the HAR performance are shown in Table 1 for different models. To allow for a fair compari-
son, the same random seed was used in all experiments with only two modalities (processed spectrograms data 
obtained from two different receivers).

Prior to training our model (see Supplementary Fig. S1, the spectrograms were reshaped to typical image 
dimensions of size (1× 224× 224) . Our model was trained for 1,000 epochs using the training data with a fixed 
KL scaling factor of β = 0.02 . The encoders comprised of the ResNet-18 backbone with the last fully-connected 
layer dimension having a value of 512. For the decoders, corresponding CNN deconvolutional layers were used 
to reconstruct the spectrograms from each modality with the same input dimension. The latent dimension, batch 
size, and learning rate are set at 64, 64, and 0.001, respectively. Our model was implemented in PyTorch. We 

Figure 2.  (a) Generated toy proteins examples ( N = 64 ) and (b) reconstruction from compressed sensing 
observations. With 2 out of 64 measurements (3.125%), near perfect reconstruction is possible even though the 
modalities are individually subsampled.

Table 1.  Few-shot learning sensor fusion classification results ( F1 macro) for Human Activity Recognition. 
Best results are shown in bold.

Model 1 example 5 examples 10 examples

2-channel CNN 0.427272 0.570888 0.618501

1-channel CNN (Modality 1) 0.349084 0.451328 0.504462

1-channel CNN (Modality 2) 0.446554 0.600084 0.605678

Probability fusion (product rule) 0.440414 0.584726 0.641922

Dual-branch CNN 0.508243 0.568795 0.575914

SFLR (ours) 0.652699 0.718180 0.737507
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used a single NVIDIA GeForce RTX 2080 Ti (11 GB) GPU for training our model. The latter consists of 29.6M 
trainable parameters. The time taken for training our model on such a setup was approximately 1.94 hours. In 
the second stage, the generative model serves as a reconstruction prior and the search manifold for the sensor 
fusion tasks. Essentially, in this stage, we obtain the maximum a posteriori estimate of ẑMAP through the process 
described in Algorithm 1. The final estimate of the class is produced by K-NN in the latent representation space, 
with labelled examples sampled from the training set.

To benchmark our technique we investigate the performance of other state-of-the-art sensor fusion tech-
niques. The feature-fusion is represented by CNN models (1-channel CNN, 2-channel CNN, dual-branch CNN). 
All are trained in a conventional supervised fashion from scratch using the ResNet-18 backbone and a linear 
classification head is appended on top of it consisting of a hidden linear layer of 128 units and a linear output 
layer of 6 nodes (for classifying 6 human activities). The dual-input CNN refers to the case where the embed-
dings from the two modalities’ CNNs are concatenated, and a classification head is then added (as illustrated in 
Fig. 1b). The “Probability Fusion” (decision fusion) model refers to a score-level fusion method where the clas-
sification probabilities ( P1 and P2 ) from each modality are computed independently (using an output SoftMax 
layer) and then combined using the product rule (this is optimal given conditional independence). These models 
are fine-tuned with labelled samples over 200 epochs, with a batch size of 64 and the Adam optimizer was used 
with learning rate of 0.0001, weight decay of 0.001 and β1 = 0.95 , β2 = 0.999.

It can be observed from Table 1 that our method significantly outperforms all other conventional feature and 
decision fusion methods. The confusion matrix for HAR classification using our SFLR (Sensor Fusion in the 
Latent Representation space) model is shown in Fig. 3 for the case when only ten labelled examples are used at 
the (classification) fusion stage.

Sensor fusion from subsampled observations (WiFi spectrogram data). Next, we evaluate the 
recovery performance of spectrograms under different numbers of compressed sensing measurements. The 
measurement function χm is a matrix initialized randomly and we assume that there is no additive Gaussian 
noise. The Adam optimizer is used to optimize ẑMAP with a learning rate of 0.01. The algorithm is run for 10,000 
iterations. After the loss in Eq. (8) has converged during the optimization process, the samples are decoded/
recovered for modality 1 and modality 2 using their respective decoders x̂m = ψm(ẑMAP) . Table 2 shows the 
compressed sensing results when a batch of 50 images is taken from the testing dataset and evaluated under 
different number of measurements (without noise). It can be observed that the samples can be recovered with 
very low reconstruction error when the number of measurements is as low as 196 (0.39%). An illustration is also 
shown in Fig. 4 where very good reconstruction is observed for the case when the number of measurements is 
equal to 784. Algorithm 1 was run for 10,000 iterations on a single GPU (GeForce RTX 2080 Ti) for a batch of 
50 subsampled WiFi spectrograms (number of measurements = 784 (1.56%)), and the optimisation process took 
on average approximately 48.1 seconds to converge for a given subsampled WiFi CSI spectrogram sample. More 
illustrations are shown in Fig. S6 in the Supplementary Information document, with further experimental results 
in Sects. S4 and S5.

Sensor fusion from asymmetric compressed sensing (WiFi spectrogram data). In this experi-
ment, we analyse the reconstruction of the WiFi spectrogram samples under two different scenarios, where 
we demonstrate the benefits of having multiple modalities. We are interested in recovery for one modality that 
is subsampled (loss of data) and noisy. This can be referred to as the weak data (or weak modality). Using the 

Figure 3.  Confusion matrix of Human Activity Recognition (HAR) classification using our SFLR model (with 
compressed sensing). Ten labelled examples per class are considered.
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SFLR method, we leverage the second modality data, which has no loss of information or does not suffer from 
noise (strong modality), to improve the recovery for the modality of interest i.e., the weak modality. In the first 
case, only modality 1 (subsampled and noisy) is considered in the reconstruction process. In the second case, 
modality 2 (strong modality) is added in the iterative fusion process to improve the reconstruction quality of 
modality 1.

The results are tabulated in Table 3, where additive Gaussian noise with a standard deviation of 0.1 is consid-
ered. The results show the mean reconstruction errors (over 50 WiFi spectrogram samples) when modality 1 is 
subsampled to different extents. We see that reconstruction error has a general tendency to decrease with increas-
ing number of measurements. It can be observed that the samples can be recovered with very low reconstruction 
error when the number of measurements is as low as 196 (0.39%). Furthermore, from Table 3, we observe that 

Figure 4.  Illustration of spectrogram recovery (for sitting down activity) using compressed sensing with 
measurements as low as 784 out of 50,176 (1.56%). No additive white Gaussian noise is considered. The left 
column shows the true spectrogram sample, the middle column shows reconstruction with an initial guess (no 
optimization) while the right column shows reconstruction with ẑMAP.

Table 2.  Compressed sensing mean reconstruction error over a batch of 50 WiFi spectrogram data samples 
(No additive Gaussian noise). An illustration is shown in Fig. 4.

No. of measurements Modality 1 Modality 2

1 (0.002%) 0.03118854 0.15024841

10 (0.02%) 0.00938917 0.02824161

196 (0.39%) 0.00348606 0.00613665

784 (1.56%) 0.00305005 0.00505758

1,568 (3.125%) 0.00284343 0.00489433

Table 3.  Asymmetric compressed sensing. Mean reconstruction error over 50 WiFi spectrogram data samples. 
Noise standard deviation: 0.1.

No. of Measurements Modality 1 Modality 2

Modality 1 with compressed sensing

1 (0.002%) 0.0246185 –

10 (0.02%) 0.01075371 –

196 (0.39%) 0.00258467 –

784 (1.56%) 0.00195997 –

1,568 (3.125%) 0.00184247 –

Modality 1 with compressed sensing

1 (0.002%) 0.00892453 0.00380795

10 (0.02%) 0.00798366 0.00420512

196 (0.39%) 0.0034269 0.00460956

Modality 2 with full information
784 (1.56%) 0.0030373 0.00466936

1,568 (3.125%) 0.0028537 0.00469946
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when only modality 1 is considered in the reconstruction process, the reconstruction errors are high when the 
number of measurements is equal to 1 (0.002%) and 10 (0.02%). However, by leveraging the good modality 2, 
the reconstruction quality is greatly improved for the same number of measurements, demonstrating the clear 
benefit of having multiple modalities. An illustration of the reconstruction quality is depicted in Fig. 5, where it 
can be observed that the unimodal reconstruction of modality 1 is far from the true sample. On the other hand, 
the reconstruction quality of modality 1 is improved by leveraging the good modality data.

Toy protein classification. Similar to the experiments on the  OPERAnet22 dataset, we perform two tasks, 
classification and sensor fusion from compressed sensing observations, on the synthetic toy protein dataset. As 
mentioned previously, the toy protein dataset contains 10 classes. The dataset is split into a training set and a test 
set, containing 80% and 20% of samples, respectively. We evaluate the classification performance under a few-
shot learning setting, using 1, 5 or 10 labelled samples per class. The few-shot classification via the SFLR model 
consists of two stages. In the first stage, the M-VAE is trained in an unsupervised manner using the training set. 
Using the maximum a posterior ẑMAP and a few labels, the K-NN classifier is applied to the latent representation 
space. Here the encoder and decoder in M-VAE are two-layer MLPs, with 16 neurons in the hidden layer.

We compare the SFLR method with 4 baseline models. The single modality model only considers one modal-
ity without sensor fusion. The probability fusion model independently computes the classification probability 
for each modality, which is a representative model for decision-fusion (Fig. 1a). The dual-branch feature fusion 
model concatenates the embedding of two modalities before the classification layer, which is a feature fusion 
method (Fig. 1b). All baseline models are trained in a supervised manner, with the same neural network structure 
as the encoder. Table 4 shows the F1-macro scores for different methods on the test set. On the 10-class protein 
dataset, SFLR outperforms other sensor fusion models using limited labelled samples.

Sensor fusion from subsampled toy proteins. Another advantage of the proposed SFLR model is that 
it can fuse modalities in subsampled cases. We use a set of samplers χ1:M to simulate the subsampled observa-
tions. The measurement function χm is a matrix initialized randomly. Here we use 10 initialization points to 
reduce the risk of getting trapped in a local minimum (points sampled from the prior with Stage 2 replicated for 
all of them). Figure 2(b) shows the recovered protein from subsampled observations, with only 2 measurements 
for each modality. Both modalities are successfully recovered from the latent representation space, even though 
the initial guess z0 is far from the true modality. Note that the proteins in Fig. 2 have a higher dimension than 
in the dataset, showing the robustness of the SFLR method. Table 5 shows the average reconstruction error of 
the synthetic protein dataset using different subsamplers. The reconstruction error reduced significantly when 
having 2 measurements for each modality, showing superior sensor fusion abilities.

Figure 5.  Reconstruction examples showing the benefit of multimodal system compared to a unimodal system. 
Modality 1 is subsampled data with 1 single measurement while modality 2 has full information (no noise and 
no loss of data). Additive Gaussian noise with a standard deviation of 0.1 is considered in this example: (a) 
reconstruction with modality 1 only, (b) reconstruction with both modalities 1 and 2. Left column shows true 
spectrogram sample, middle column shows reconstruction with initial guess (no optimization) while right 
column shows reconstruction with ẑMAP . Adding modality 2 during reconstruction stage helps in the sample 
recovery of modality 1.
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The Supplementary Information document (see Sect. S6) contains additional experiments, including tasks 
showcasing the ability to leverage between modalities, where a strong modality can be used to aid the recovery 
of a weak modality. It also presents the performance under subsampled and noisy conditions.

Despite the fact that the SFLR method achieves superior performance in the HAR problem, it has its weak-
nesses and limitations. The performance of sensor fusion heavily relies on the success of the first stage, which 
requires high-quality training data. Learning the manifold of p(z) is the key to the estimation of ẑMAP . In stage 2, 
z might fall into local minima which leads to sub-optimal solutions. This is a common issue when using gradient 
descent in optimization problems, with existing solutions to mitigate it.

Conclusions and broader impacts
The paper presents a new method for sensor fusion. Specifically, we demonstrate the effectiveness of classifica-
tion and reconstruction tasks from radar signals. The intended application area is human activity recognition, 
which serves a vital role in the E-Health paradigm. New healthcare technologies are the key ingredient to bat-
tling spiralling costs of provisioning health services that beset a vast majority of countries. Such technologies in 
a residential setting are seen as a key requirement in empowering patients and imbuing a greater responsibility 
for own health outcomes. However, we acknowledge that radar and sensor technologies also find applications 
in a military context. Modern warfare technologies (principally defensive) could potentially become more apt 
if they were to benefit from much-improved sensor fusion. We firmly believe that, on balance, it is of benefit to 
the society to continue the research in this area in the public eye.

Data availibility
The data that support the findings of this study are openly available in figshare at https:// doi. org/ 10. 6084/ m9. 
figsh are.c. 55512 09. v126. The toy protein dataset is not publicly available at this time but can be made available 
from the authors upon request.

Received: 2 August 2022; Accepted: 21 November 2022

References
 1. Seth, A. Being You: A New Science of Consciousness (The Sunday Times Bestseller) (Faber & Faber, 2021).
 2. Doya, K., Ishii, S., Pouget, A. & Rao, R. P. N. Bayesian Brain: Probabilistic Approaches to Neural Coding (The MIT Press, 2007).
 3. Gao, J., Li, P., Chen, Z. & Zhang, J. A survey on deep learning for multimodal data fusion. Neural Comput. 32, 829–864. https:// 

doi. org/ 10. 1162/ neco_a_ 01273 (2020).
 4. Wang, Z., Wu, Y. & Niu, Q. Multi-sensor fusion in automated driving: A survey. IEEE Access 8, 2847–2868. https:// doi. org/ 10. 1109/ 

ACCESS. 2019. 29625 54 (2020).
 5. Sutter, T. M., Daunhawer, I. & Vogt, J. E. Generalized multimodal ELBO. Preprint at arxiv: 2105. 02470 (2021).
 6. Minoura, K., Abe, K., Nam, H., Nishikawa, H. & Shimamura, T. A mixture-of-experts deep generative model for integrated analysis 

of single-cell multiomics data. Cell Rep. Methods 1, 100071. https:// doi. org/ 10. 1016/j. crmeth. 2021. 100071 (2021).
 7. Wu, M. & Goodman, N. Multimodal generative models for scalable weakly-supervised learning. In Proceedings of the 32nd Inter-

national Conference on Neural Information Processing Systems, NIPS’18, 5580-5590 (Curran Associates Inc., Red Hook, NY, USA, 
2018).

 8. Shi, Y., N, S., Paige, B. & Torr, P. Variational mixture-of-experts autoencoders for multi-modal deep generative models. In Wallach, 
H. et al. (eds.) Advances in Neural Information Processing Systems, vol. 32 (Curran Associates, Inc., 2019).

 9. Suzuki, M., Nakayama, K. & Matsuo, Y. Joint multimodal learning with deep generative models. Preprint at arxiv: 1611. 01891 
(2016).

Table 4.  Few-shot learning sensor fusion classification results ( F1 macro) for synthetic proteins. Best results 
are shown in bold.

Model 1 example 5 examples 10 examples

Single modality (Modality 1) 0.3188 0.4342 0.5843

Single modality (Modality 2) 0.3221 0.4849 0.5555

Probability fusion (product rule) 0.2256 0.3736 0.3836

Dual-branch feature fusion 0.3769 0.4973 0.5953

SFLR (ours) 0.4183 0.5501 0.6120

Table 5.  Compressed sensing mean reconstruction error over a batch of 100 protein samples.

No. of measurements Modality 1 ( 10−5) Modality 2 ( 10−5)

1 (3.125%) 4,622.4 4,923.5

2 (6.250%) 22.5 27.9

4 (12.500%) 7.1 7.4

8 (25.000%) 2.3 2.7

https://doi.org/10.6084/m9.figshare.c.5551209.v1
https://doi.org/10.6084/m9.figshare.c.5551209.v1
https://doi.org/10.1162/neco_a_01273
https://doi.org/10.1162/neco_a_01273
https://doi.org/10.1109/ACCESS.2019.2962554
https://doi.org/10.1109/ACCESS.2019.2962554
http://arxiv.org/abs/2105.02470
https://doi.org/10.1016/j.crmeth.2021.100071
http://arxiv.org/abs/1611.01891


10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2005  | https://doi.org/10.1038/s41598-022-24754-w

www.nature.com/scientificreports/

 10. Lee, M. & Pavlovic, V. Private-shared disentangled multimodal VAE for learning of latent representations. In IEEE Conference on 
Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2021, virtual, June 19-25, 2021, 1692–1700, https:// doi. 
org/ 10. 1109/ CVPRW 53098. 2021. 00185 (Computer Vision Foundation / IEEE, 2021).

 11. Schönfeld, E., Ebrahimi, S., Sinha, S., Darrell, T. & Akata, Z. Generalized zero- and few-shot learning via aligned variational 
autoencoders. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8239–8247, https:// doi. org/ 
10. 1109/ CVPR. 2019. 00844 (2019).

 12. Zou, H. et al. WiFi and vision multimodal learning for accurate and robust device-free human activity recognition. In 2019 IEEE/
CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 426–433, https:// doi. org/ 10. 1109/ CVPRW. 
2019. 00056 (2019).

 13. Memmesheimer, R., Theisen, N. & Paulus, D. Gimme signals: Discriminative signal encoding for multimodal activity recognition. 
In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 10394–10401, https:// doi. org/ 10. 1109/ IROS4 
5743. 2020. 93416 99 (2020).

 14. Muaaz, M., Chelli, A., Abdelgawwad, A. A., Mallofré, A. C. & Pätzold, M. WiWeHAR: Multimodal human activity recognition 
using Wi-Fi and wearable sensing modalities. IEEE Access 8, 164453–164470. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30222 87 
(2020).

 15. Ding, J., Wang, Y., Si, H., Gao, S. & Xing, J. Multimodal fusion-adaboost based activity recognition for smart home on wifi platform. 
IEEE Sens. J. 22, 4661–4674 (2022).

 16. Roche, J., De-Silva, V., Hook, J., Moencks, M. & Kondoz, A. A multimodal data processing system for lidar-based human activity 
recognition. IEEE Transactions on Cybernetics (2021).

 17. Bora, A., Jalal, A., Price, E. & Dimakis, A. G. Compressed sensing using generative models. In Precup, D. & Teh, Y. W. (eds.) Pro-
ceedings of the 34th International Conference on Machine Learning, vol. 70 of Proceedings of Machine Learning Research, 537–546 
(PMLR, 2017).

 18. Wu, Y., Rosca, M. & Lillicrap, T. Deep compressed sensing. In Proceedings of the 36th International Conference on Machine Learn-
ing, vol. 97 (PMLR, 2019).

 19. Candès, E. J., Romberg, J. K. & Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. 
Math. 59, 1207–1223. https:// doi. org/ 10. 1002/ cpa. 20124 (2006).

 20. Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306. https:// doi. org/ 10. 1109/ TIT. 2006. 871582 (2006).
 21. Ulyanov, D., Vedaldi, A. & Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition (CVPR) (2018).
 22. Bocus, M. J. et al. OPERAnet, a multimodal activity recognition dataset acquired from radio frequency and vision-based sensors. 

Sci. Data 9, 474. https:// doi. org/ 10. 1038/ s41597- 022- 01573-2 (2022).
 23. Bocus, M. J. et al. Translation resilient opportunistic WiFi sensing. In 2020 25th Int. Conf. Pattern Recogn. (ICPR), 5627–5633, 

https:// doi. org/ 10. 1109/ ICPR4 8806. 2021. 94122 63 (2021).
 24. Li, W. et al. On CSI and passive Wi-Fi radar for opportunistic physical activity recognition. IEEE Trans. Wireless Commun. (2022).
 25. Li, W. et al. A taxonomy of WiFi sensing: CSI vs passive WiFi radar. In 2020 IEEE Globecom Workshops (GC Wkshps, 1–6, https:// 

doi. org/ 10. 1109/ GCWks hps50 303. 2020. 93675 46 (2020).
 26. Bocus, M. J., Li, W., Vishwakarma, S. & Tang, C. A comprehensive multimodal activity recognition dataset acquired from radio 

frequency and vision-based sensors. figsharehttps:// doi. org/ 10. 6084/ m9. figsh are.c. 55512 09. v1 (2022).

Acknowledgements
This work was performed as a part of the OPERA Project, funded by the UK Engineering and Physical Sciences 
Research Council (EPSRC), Grant EP/R018677/1. This work has also been funded in part by the Next-Generation 
Converged Digital Infrastructure (NG-CDI) Project, supported by BT and Engineering and Physical Sciences 
Research Council (EPSRC), Grant ref. EP/R004935/1.

Author contributions
All authors, R.P, X.W and M.B, contributed equally to this work. The main tasks involved conceiving and con-
ducting the experiments, algorithm implementation, analysis, validation and interpretation of results, and finally 
preparing and reviewing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 24754-w.

Correspondence and requests for materials should be addressed to R.J.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1109/CVPRW53098.2021.00185
https://doi.org/10.1109/CVPRW53098.2021.00185
https://doi.org/10.1109/CVPR.2019.00844
https://doi.org/10.1109/CVPR.2019.00844
https://doi.org/10.1109/CVPRW.2019.00056
https://doi.org/10.1109/CVPRW.2019.00056
https://doi.org/10.1109/IROS45743.2020.9341699
https://doi.org/10.1109/IROS45743.2020.9341699
https://doi.org/10.1109/ACCESS.2020.3022287
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1038/s41597-022-01573-2
https://doi.org/10.1109/ICPR48806.2021.9412263
https://doi.org/10.1109/GCWkshps50303.2020.9367546
https://doi.org/10.1109/GCWkshps50303.2020.9367546
https://doi.org/10.6084/m9.figshare.c.5551209.v1
https://doi.org/10.1038/s41598-022-24754-w
https://doi.org/10.1038/s41598-022-24754-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multimodal sensor fusion in the latent representation space
	Contributions. 
	Related work
	Methods
	Multimodal VAE. 
	Fusion on the M-VAE prior. 

	Experiments
	Synthetic toy protein dataset. 
	Passive WiFi radar dataset. 

	Results and discussion
	Classification results of WiFi CSI spectrograms for HAR. 
	Sensor fusion from subsampled observations (WiFi spectrogram data). 
	Sensor fusion from asymmetric compressed sensing (WiFi spectrogram data). 
	Toy protein classification. 
	Sensor fusion from subsampled toy proteins. 

	Conclusions and broader impacts
	References
	Acknowledgements


