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Abstract: Multimodal sentiment analysis has gained popularity as a research field for its ability
to predict users’ emotional tendencies more comprehensively. The data fusion module is a critical
component of multimodal sentiment analysis, as it allows for integrating information from multiple
modalities. However, it is challenging to combine modalities and remove redundant information ef-
fectively. In our research, we address these challenges by proposing a multimodal sentiment analysis
model based on supervised contrastive learning, which leads to more effective data representation
and richer multimodal features. Specifically, we introduce the MLFC module, which utilizes a convo-
lutional neural network (CNN) and Transformer to solve the redundancy problem of each modal
feature and reduce irrelevant information. Moreover, our model employs supervised contrastive
learning to enhance its ability to learn standard sentiment features from data. We evaluate our model
on three widely-used datasets, namely MVSA-single, MVSA-multiple, and HFM, demonstrating
that our model outperforms the state-of-the-art model. Finally, we conduct ablation experiments to
validate the efficacy of our proposed method.

Keywords: multimodal; multimodal sentiment analysis; supervised contrastive learning; MLFC;
SCSupCon

1. Introduction

With the rapid development of the Internet, multimodal social media sites are becom-
ing increasingly popular. Users increasingly use data in multiple modalities to express their
emotions, the most common of which is a combination of text and images. Social media
sentiment analysis can analyze people’s attitudes toward hot topics and important events,
and it has a high research value in box office prediction and product recommendations.
As a result, multimodal sentiment analysis based on text and images has emerged as a
research focus in recent years [1]. Early research focused on sentiment analysis on single-
modal data (images, text, or video). Text sentiment analysis refers to the task of mining
through the emotional polarity contained in a given text [2]. Text sentiment analysis using
deep learning methods usually integrates multiple low-level machine learning models,
uses neural networks to encode the text contextually, and converts low-level vector rep-
resentations into high-level vector representations [3]. This method has achieved good
results in sentence-level and chapter-level sentiment analysis tasks. In [4], they proposed
the Interactive Attention Network (IAN), which enables interactive learning of target and
contextual attention. In [5], they proposed a multi-attention network (MAN), which solves
the problem of information loss by using intralayer and interlayer attention mechanisms
for aspect-based sentiment analysis. Visual sentiment analysis uses image processing
techniques to extract and recognize emotions from facial expressions and body gestures.
The literature [6,7] has achieved good results in sentiment analysis of large-scale visual
content. Although sentiment analysis for single-modal data has been applied to product
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recommendation and consumption prediction, there are still shortcomings, such as low
recognition rate and poor generalization, due to factors such as single expression form and
insufficient information. Multiple modalities’ data frequently have a certain complemen-
tarity, which can compensate for each other’s shortcomings. The data in the sentiment
analysis task of large-scale visual content in the literature lacks complementary modal
information, making the model’s representation more incomplete.

In recent years, sentiment analysis research has been different from previous ones,
focusing on using deep learning-related techniques and multiple modalities to improve
results in sentiment analysis tasks [8–10]. After entering multimodal data, extract the
characteristics of pictures and texts, obtain the representation information of each modality,
and then select the appropriate multimodal data fusion algorithm to fuse various modal
information to obtain multimodal representation. Based on this representation information,
sentiment analysis is performed. Figure 1 depicts the primary flow.

Text

Image text multimodal 
information

Image

Text  feature

Image  feature

Modal fusion
Sentiment 
prediction

Figure 1. Illustration of Fusion method. The image and text are extracted by features for the
multimodal information of image text corresponding to the model input, and the emotional polarity
is judged after feature fusion.

You et al. proposed cross-modality consistent regression. This CCR model, for the
first time, constructed a semantic tree structure based on sentence resolution to align areas
of text and images for accurate analysis [11]. In 2017, Chen et al. explored an end-to-
end deep fusion convolutional neural network for co-learning text and visual emotional
representations, effectively fusing bimodal information of text and images and predicting
overall sentiment [12]. Tree-structured Recursive Neural Networks were proposed by [13].
Construct a semantic tree structure based on sentence parsing and fused with visual
attention. In [14], they proposed a novel multimodal emotion analysis model based on
the Multi-view Attentional Network (MVAN) that employs a memory network to achieve
information interaction between modalities and obtain deep semantic features of images
and text with promising results.

In multimodal sentiment analysis, there are three main challenges. First, it faces
problems related to model performance, such as training speed, inference speed, and model
parameters. Because multimodal models need to model multiple modalities, the model
volume becomes more significant, and performance suffers. Second, there needs to be more
labeling data resources. At present, the primary multimodal datasets used are the Flickr30k
dataset [15], the VQA dataset [16], and the CMU-MOSEI dataset [17]. Moreover, a model
trained in one specific scenario cannot be directly applied to other scenarios.

This paper mainly analyzes sentiment information in two modes: pictures and text.
Unlike single-modality models, multimodal models can extract better and more com-
plete feature representations and achieve the desired effect after fusion by utilizing the
association information between each modality. Contrastive learning has recently gained
popularity because it solves the problem of less or no labeling, constructs similar samples
as positive samples through data enhancement, and can learn more common features for
sentiment analysis tasks. The CLMLF model employs contrastive learning to learn senti-
mental representations containing multimodal data. However, due to the small number of
positive samples and the presence of false positive samples, we implemented a supervised
comparative learning task and added loss to bring the same type of sample as close as pos-
sible and different types of samples as far away as possible. Our task entails avoiding the
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problem of misclassified negative samples in supervised sample situations and improving
classification problem accuracy, which is ideal for contrastive learning. Based on the earlier
challenges, this paper proposes a multimodal sentiment analysis approach incorporating
CNNs in a fusion approach to merge the original Transformer structure. We compare the
model’s effectiveness to all baseline models on the MVSA-Single, MVSA-Multiple [18],
and HFM datasets [19]. The experimental results show that our proposed model has a
better detection effect. A comprehensive set of ablation experiments demonstrates the
benefits of our proposed model for problem-solving on multimodal sentiment analysis.
The following are our primary contributions.

• we propose a CNN and Transformer-based approach for multimodal sentiment anal-
ysis that aims to extract more comprehensive text and image features. Our method
uses CNN to extract local features and Transformer to capture global features, which
are then combined to obtain a better representation of the data.

• We employ a supervised contrastive Learning approach with data augmentation to
improve the performance of our method. By using the supervised contrastive learning
loss, we encourage the embedding vectors of the same class to be closer to each other
and those of different classes to be farther apart. This approach better characterizes
the intra-class similarity and improves the robustness of our method.

2. Related Work
2.1. Multimodal Learning

In [20], they provided a systematic summary and future outlook for multimodal
learning in 2021, kicking off the multimodal learning research boom. In [21], they proposed
Category-based Deep Canonical Correlation Analysis (C-DCCA), a novel deep learning
model for projecting the modal information of image and text into the same semantic space
and completing the matching and retrieval of heterogeneous information.

Song et al. [22] proposed multimodal stochastic RNNs networks (MS-RNN), which
extract semantic information from two different modalities and convert it into text subtitles.
As a subdivision direction of multimodal learning, multimodal fusion is the basis for our
work, such as multimodal sentiment analysis, so it is widely used [23,24]. The multimodal
data fusion step includes four parts: single-modal feature extraction, feature fusion, model
classification, and result output. According to different fusion strategies, it can be divided
into early fusion, late fusion, and intermediate fusion. Early fusion is mainly achieved
through dot product operation or series concatenation, and the time synchronization be-
tween multimodal features could be better. It is not easy to obtain cross-correlation between
modes. Late fusion uses the corresponding models to train different modalities and then
fuses the output results of these models, increasing the fusion difficulty. Intermediate
fusion combines the advantages of the first two. Due to the flexibility and diversity of deep
learning models, it is more suitable to use intermediate fusion methods. With the develop-
ment of deep learning technology, structures, such as convolutional neural networks, and
attention has been applied to intermediate fusion and achieved good results [25,26].

Currently, the most common graphic and text fusion method assumes that images and
text have a one-to-one correspondence. However, in most online social scenarios, users
attach multiple images to enhance the vividness of the text and fully display the emotional
information. These images supplement the text and aid in the expression of emotions. As a
result, this paper investigates sentiment analysis technology without sufficient cross-modal
fusion feature information [27]. The image is matched with the text content using the multi-
head attention mechanism and CNN, and the cross-modal information of graphics and
text is deeply integrated. Furthermore, existing graphic sentiment classification methods
typically only mine the association interaction information between modalities while
ignoring the unique properties of models.
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2.2. Multimodal Sentiment Analysis

Multimodal sentiment analysis is used as a combination of verbal and non-verbal fea-
tures to complete user sentiment analysis. More precisely, the field aims to mine emotions,
interpretations and feelings by observing people’s language, facial expressions, speech,
music, movements, and more [1]. Common public datasets in this field include CMU-
MOSEI [17], Memotion Analysis [28], CH-SIM [29], CMU-MOSEAS [30], B-T4SA [31],
MEMOTION 2 [32], and others. Xu et al. built the Multisentinet deep semantic network
to extract deep semantic features from images, which they then used to extract objects
and scenes from images as additional information for multimodal sentiment analysis [9].
Multisentinet’s proposal outperforms traditional feature extraction methods in terms of the
high correlation between extracted semantic features and human emotions. Many excellent
models are actively produced in this field’s development, resulting in higher recognition
rates and F1 values. Poria et al. presented a multimodal sentiment analysis model based on
LSTM that captures contextual information in the video’s environment to aid in sentiment
classification, achieving a performance improvement of more than 5% [33]. The underly-
ing feature extraction method in text, voice, and video still has room for improvement,
and feature fusion is also hierarchical, with no sequential relationship between different
modes. In [34], they proposed a deep multimodal attention fusion model (DMAF) that uses
hybrid fusion to leverage intrinsic correlations between visual and textual features for joint
sentiment analysis, and the model achieves good results in weakly labeled and regular
datasets. Truong et al. investigated the visual aspect attention network (Vistanet) in 2019,
which employs attention to direct the model’s attention toward key sentence information
in the document rather than visual information as a feature [35]. In [36], they proposed
the attention-based heterogeneous relational model (AHRM) in 2020. The model uses a
progressive dual attention module to capture the correlation between images and text and
learns the image-text joint representation from the perspective of content information by
combining rich social information to improve the model’s performance. In 2021, Wu et al.
focused on developing a text-centric Shared Private (TCSP) framework [37]. The framework
concentrates on text modalities, extracts shared and private semantic information from the
other two modalities to supplement modal text information, and proposes a new method
for training multimodal sentiment analysis models with unlabeled data. Tan et al. investi-
gated multimodal emotion recognition using face and EEG, facial features extracted with
CNN, final classification with soft-max, multiple voting in the late fusion layer, and the
final classification results of the two modalities combined with the threshold method,
as well as statistical simulation methods to obtain the final multimodal emotion classifi-
cation results [38]. In [39], they proposed a social network-based real-time traffic accident
monitoring framework that uses sentiment analysis technology to identify the polarity of
traffic incidents through user comments, which is useful for identifying the polarity of
traffic incidents and accurately understanding the situation of traffic incidents. To improve
classification task accuracy, the proposed word embedding model converts formal and
informal words into low-dimensional vector representations. Li et al. combine multi-layer
fusion with contrastive learning and multi-modal sentiment analysis. The token-level
feature fusion method, according to this method, is better suited to fusing local information
in images and text than the previous feature fusion layer [40].

At present, most image-text sentiment analysis methods realize the interaction be-
tween modal features by sharing the feature vectors of the neural network representation
layer, and design specific connection units to effectively integrate multiple modal features.
Although the preceding literature has achieved success in terms of accuracy, issues such
as a lack of training samples and the inability to effectively capture multi-level feature
information in each modality remain. In the current research, we mainly solve the problems
of irrelevant information interference and incomplete fusion features, so that the model
can learn more emotional common features in the fusion stage after extracting the data
features of each modality. Based on the models in the above literature and the analysis
of the current problems, we proposed the MLFC module, and verified the effectiveness
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of the proposed model after continuous experiments. In order to reduce the interference
of irrelevant features and learn more emotional common features, we adopt supervised
contrastive learning method, so that the features of different categories are far away from
each other and similar features are close to each other.

3. Materials and Methods

Using labeled multimodal data, we hope to train a feature embedding network. Em-
bedding vectors from the same class should be close together, whereas embedding vectors
from different classes should be far apart [41]. Our method adjusts the supervised classifi-
cation using supervised comparative learning. Classification performs data augmentation
with a batch of input data for a model. Under different data enhancement of text and
image, the embedding vector of the same instance will not be changed, and the embedding
vector of different instances will be different. Figure 2 shows how to enter the original
graphic example and the enhanced example, enter the MLFC module and obtain the feature
sequence after the fusion of graphics and text. Finally, embodied in the feature space, so
that similar features are closer and different classes are far from each other, we design the
SCSupCon module here. The multilayer fusion module maps the embedding vectors to the
output layer. A cross-entropy loss and supervised comparative learning loss are calculated
at the network’s output. In this section, we will introduce the overall framework used,
monitor the comparison loss and multilayer fusion modules, and outline the optimization
of the multilayer convergence approach.
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Figure 2. Illustration of our Model overall framework diagram. To judge sentiment polarity, the pro-
posed architecture employs supervised contrastive learning and a CNN-connected Transformer
fusion. The MLFC module is intended to solve feature extraction and fusion problems in input data.
Invariance occurs for graphic sample features when embeddings from the same category, such as z1

and z′1. Different categories of graphic features, such as z1 and z2, on the other hand, are far apart.

3.1. Representation Learning Framework

Contrastive learning is a self-supervised learning method inspired by recent con-
trastive learning methods. Because different modal data need to pay more attention to
their invariant features after fusion, SCSupConLoss maximizes the immutability of learn-
ing similar features through potential contrast loss. Emotionally related features exist
in these unchanged features to ensure that the real meaning the user wants to express
will not change with the text change and that the real meaning the user wants to express
will not change. Figure 2 shows that the overall model framework is divided into four
main components.

3.1.1. Data Augmentation

Data augmentation, also known as data enrichment, is the process by which limited
data yields the equivalent value of more data without significantly increasing the data.
Using data augmentation improves the robustness and generalization of your model.
Because the data contains text and images and different modal data must pay more attention
to their unchanging characteristics after fusion, data augmentation is required.
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Back-translation is an option for text data enhancement because it can generate dif-
ferent interpretations while preserving the semantics of the original sentence [42]. Back
translation is the process of translating one sentence into another language and then back
into the original language, comparing the differences between the two sentences so that the
new sentence can be used as enhanced text. RandAugmentation was chosen as the data
enhancement method in the image because it does not require tagging data and is more
concise and convenient to sample uniformly from the same set of enhancement transforma-
tions [43]. RandAugmentation learns data augmentation strategies using a simple raster
search method, and RandAugmentation can significantly reduce the incremental simple
grid search by data augmentation, incorporating it into the model training process and
avoiding execution as a separate preprocessing task.

3.1.2. Encoder Network

The encoder network is primarily in charge of processing the encoding sequence
before the fusion of input text and image generation in various processing methods. The
encoder network receives a set of image and text pair data as input, and the image selection
Resnet-50 model extracts features. M′

c is the image feature produced by Resnet’s final
convolutional layer. The following equation depicts the feature sequence representation of
the image M′:

M′ = f latten(M′
cWm + bm) (1)

The flatten function is a reconstruction of the first two dimensions of the vector spread
into one dimension, where M′ = {M′

1, M′
2, . . . , M′

ni
}. To obtain the final encoding of the

image sequence features, we enter M′ into the vanilla Transformer Encoder [44].

M = {M1, M2, . . . , Mni}(M ∈ Rni∗dt) (2)

To obtain the text hidden representation, we feed the text information into the BERT
pre-trained model. We use the symbol T to represent text encoding information for ease
of representation:

T = {Tc, T1, T2, . . . , Ts}(T ∈ Rnt∗dt) (3)

The original sample and the sample enhanced by data are fed into the same encoder
network to produce two representation vectors. Because a sample set is made up of text
and images, the enhanced sample network generates the final text encoding T and image
sequence M generated by the encoder network.

3.1.3. Multi-Layer Fusion Convolution Neural Network

Multi-Layer Fusion Convolution Neural Network (MLFC) is a multilayer fusion
module that converts the encoder output into the final multimodal representation R. It
is primarily used for the alignment and fusion of two modal data. CNN, a Transformer
encoder, and an attention layer are all part of MLFC. Because the Transformer encoder
is limited in that it can only capture long-range feature dependencies while ignoring
the details of local features, the convolution operation is added before the Transformer.
The convolution operation effectively extracts local features but has limitations when
capturing global feature representation. As a result, combining the two can yield better
results. The following is an equation:

F = { f1, f2, . . . , fnt+ni} = Trans f ormer{CNN[concat(T, M)]} (4)

To align and fuse the text and image features, we connect the text feature T and the
image sequence feature M. As the text-image fusion layer, we use the new multilayer trans-
former encoder and CNN, which will align and fuse multi-mode capabilities. The featured
result F of the fusion sequence of text and image can then be obtained.
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Finally, the sequence features for text and image fusion are obtained, where nt + ni
is the result of graphical stitching, but the sequence features cannot be used directly for
the classification task. As a result, we employ a superficial attention layer to generate a
multimodal representation of R = Attention(F). Enter the fusion result F into Attention to
obtain the final multimodal fusion representation, which is denoted by the symbol R.

3.2. Sentiment Classification Contrastive Loss

We explain how to incorporate supervised contrastive learning into sentiment classifi-
cation loss.

3.2.1. Supervised Contrastive Losses

Traditional contrastive learning is applied to unsupervised learning, with no label
information, the same image is one class, i photos are twice random data augmentation,
the result of two data improvements of the same image is positive samples, and other 2i-2
images are negative samples [45]. The loss we use is the loss of supervised comparative
learning, which is to make better use of label information so that the characteristics of
the same type of things are closer and the characteristics of different types of things are
farther away. Supervised contrastive loss (SupCon) can handle the situation where multiple
samples are known to belong to the same class due to the presence of labels:

LSupCon =
n

∑
i=1

−1
|P(i)| ∑

p∈P(i)
log

exp(zi · zp/τ)

∑a∈A(i) exp(zi · za/τ)
(5)

LSupCon is the loss of Supervised contrastive loss. P(i) contains the indices of positive
samples in the augmented batch (original + augmentation) with respect to zi and |P(i)| is
the cardinality of P(i). zi is an anchor. za are negative samples. zp are positive samples and
A(i) is the index set of negative samples.

3.2.2. Sentiment Classification Loss

In the sentiment classification task, the multi-layer fusion module’s graphic-text senti-
ment representation R is transferred to the fully connected layer, and the soft-max function
is used for sentiment classification. The sentiment classification loss is calculated using the
cross-entropy loss function, which is widely used in deep learning:

LSC = Cross − Entropy(GELU(RWsc + bsc)) (6)

LSC represents cross-entropy loss. Here the activation function selects the GELU
function, and the Wsc and bsc are hyperparameters.

3.2.3. Sentiment Classification Supervised Contrastive Loss

We propose Sentiment Classification Supervised Contrastive loss (SCSupCon), which
incorporates SupConLoss and SCLoss for supervised embedded learning.

LSCSupCon = λscLsc + λSupConLSupCon (7)

λsc and λSupCon are coefficients that balance different training losses. Sentiment Clas-
sification Supervised Contrastive loss is composed by combining cross-entropy loss and
supervised contrastive learning loss through two different adjustment coefficients.

SCSupCon has the following advantages:

• Samples with the same label and enhanced samples are the molecular weight of the
SupConLoss formula for the same batch of original pattern pairs. The supervised
contrastive learning loss mechanism stimulates the encoder to provide a closer repre-
sentation of the same class so that samples of the same class are more closely combined
in the embedding space [46].
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• SCSupCon optimizes the separation distance in the normalized hypersphere using
the angle–arc relationship. As a result, SCSupCon may show a more pronounced
separation between the nearest classes on the Loss sphere’s surface.

4. Experiment

We built the proposed model using the Pytorch framework, with ACC and F1 as
the primary evaluation indicators. Our research was conducted on a high-performance
computing (HPC) node with one NVIDIA 3090 GPU and one A40 GPU. The parameters
of the pre-trained BERT model and the Resnet-50 model are fixed, while the parameters
of word embedding and attribute embedding are constantly updated during the training
process [19]. Word and attribute embeddings were trained on the Twitter dataset using
Glove [47].

For the MVSA dataset, the F1 we use is Weighted-F1 [48], while for the HFM dataset,
we chose Macro-F1.

4.1. Data Processing

The MVSA-Single and MVSA-Multiple datasets are publicly available datasets in the
field of multimodal sentiment analysis that were collected via Twitter, where users post
messages with text, images, hashtags, and so on. Each text-image combination corresponds
to a distinct sentiment label. Positive, neutral, and negative sentiment labels are manually
applied to the MVSA dataset. The MVSA dataset is divided into two parts: MVSA-Single
(MVSA-S), which contains 4869 image-text pairs labeled by one annotator with only one
sentiment label, and MVSA-Multiple (MVSA-M), which contains 19,598 image-text pairs
labeled by three annotators with three sentiment labels. The other component is MVSA-
Multiple, where each sample is annotated by three annotators and contains three sentiment
labels, totaling 19,598 image-text pairs.

We process the original two MVSA datasets in the same way as the literature [9].
We randomly divide the MVSA dataset into training sets, validation sets, and test sets
using a split ratio of 8:1:1. For HFM datasets, we used the same data preprocessing
method described in the literature [19], the difference we use that the datasets are randomly
partitioned. The development and test sets were manually checked to ensure the accuracy
of the labels. The primary method is to use the NLTK toolkit to separate words, emojis,
and labels. The symbol # is used to divide the labels and replace uppercase letters with
lowercase letters.

MLF is a multi-layer fusion method based on Transformer-Encoder that uses multi-
head attention alignment and fusion graphic features. MLFC is a fusion method that
adds convolution operations on top of MLF. The other hyperparameters are listed in
the table below. On the MVSA dataset, we first trained and tested our implementation.
In particular, we report the ACC and F1 values for the datasets MVSA and HFM in the
evaluation. All experiments are carried out in a pre-configured environment. Table 1 shows
the detailed experimental configuration. Back-translation and RandAugment are two terms
that describe how text and image data are enhanced. The table also shows the specific
sentiment polarity of the three datasets, and “SCSupCon” represents the loss naming of
the design, which includes sentiment analysis loss and supervised versus learning loss.
Sections 4.3 and 4.4 provide experimental details.

4.2. Comparative Experiments

We started with MVSA-Single and then proved the model’s validity on the remaining
two datasets: MVSA-Multiple and HFM. The results showed that our model reached the
current comparable to the SOTA model. Our model is compared to the unimodal and
multimodal baseline models. The following tables present them separately.
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Table 1. Hyperparameter setting display.

Hyperparameter MVSA-Single MVSA-Multiple HFM

Text data augmentation back-translation back-translation back-translation
Image data augmentation RandAugment RandAugment RandAugment
Emotional polarity 3 3 2
Loss Conloss/SCSupConloss Conloss/SCSupConloss Conloss/SCSupConloss
Contrasting learning styles Self-Supervised/Supervised Self-Supervised/Supervised Self-Supervised/Supervised
Text Encoder BERT BERT BERT
Image Encoder Resnet-50 Resnet-50 Resnet-50
Fuse model epoch 20 20 20
Epoch 30 30 30
Integration method MLF/MLFC MLF/MLFC MLF/MLFC
Optimizer Adams Adams Adams
Learning rate 2 × 10−5 2 × 10−5 2 × 10−5

Batch 32/32 64/64 128/48

Text baseline model: as we can see, the image-based model performs poorly, whereas
the text adoption CNN has begun to perform better, demonstrating the significance of the
text model. The TGNN model is a new GNN-based model that constructs graphs with
shared global parameters for each input text instead of constructing a single graph for the
entire corpus. This method eliminates the dependency burden between individual texts and
the entire corpus, allowing for online testing while still preserving global information [49].

On images, the Resnet and the OSDA models are chosen as the baseline models.
The OSDA model is an image sentiment analysis model that focuses on both targets
and scenes, and image features from various perspectives aid in the analysis of users’
sentiments [14].

Here we chose MGNNS and CLMLF as multimodal models for the MVSA dataset.
The MGNNS model is a multi-channel graph neural network for image text sentiment
detection. The multi-channel graph neural network learns global features of multimodal
representation, and the fusion method of the model is implemented by the multi-head
attention mechanism [48]. The CLMLF model is a multilayer fusion and contrast learning
application that uses multilayer fusion to align and fuse token-level features of text images
and two contrast. The D&R Net model is a decomposition and relational network-based
model that establishes cross-modal contrast and semantic correlation at the same time
(D&R network). The relationship network represents the semantic association in a cross-
modal context, while the decomposition network represents the similarities and differences
between images and text [50].

First, the MVSA dataset is compared with other models to evaluate the effectiveness
of our model, and the experimental results are shown in the table. These are representative
models based on text, images, and multimodality, arranged in order.

As shown in Table 2, the multimodal sentiment analysis model outperforms most
single-modal sentiment analysis models on the MVSA dataset. Furthermore, due to the low
density of image information, capturing feature information is complex, and the sentiment
analysis effect on image mode is the worst. Our model outperforms the current best
SOTA model on the MVSA-Single dataset, with ACC and F1 improving by 1.10% and
2.15%, respectively. The ACC effect is comparable to the MVSA-Multiple dataset, and F1 is
improved by 0.52%. In general, our model is comparable to the SOTA model.

As illustrated in Table 3, our model’s performance improves by 1.21% and 1.35%,
demonstrating the benefits of our proposed model in multimodal sentiment analysis.
First, the proposed Multi-Layer Fusion Convolution Neural Network (MLFC) can capture
the interaction between images and text at a finer level. Then, valuable complementary
information can be extracted by supervising the contrast-loss sentiment classification
and de-motivation encoder to provide a more accurate representation of the same kind.
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SCSupCon processes samples located at the decision boundary in multimodal sentiment
analysis to achieve more accurate sentiment prediction.

Table 2. Using the MVSA dataset and HFM set, the results of the results show the ACC and F1
performance (%) of our designed model, and our experimental results are highlighted in bold.

Modality Model
MVSA-Single MVSA-Multiple

Acc(%) F1(%) Acc(%) F1(%)

Text

CNN 68.19 55.90 65.64 57.66
BiLSTM 70.12 65.06 67.90 67.90

BERT 71.11 69.70 67.59 66.24
TGNN 70.34 65.94 69.67 61.80

Image ResNet-50 64.67 61.55 61.88 60.98
OSDA 66.75 66.51 66.62 66.23

Multimodal

MultiSentiNet 69.84 69.84 68.86 68.11
HSAN 69.88 66.90 67.96 67.76

Co-MN-Hop6 70.51 70.01 68.92 68.83
MGNNS 73.77 72.70 N/A –
CLMLF 75.33 73.46 70.53 67.45

Ours 76.44 75.61 70.53 67.97

Table 3. For the HFM set, the results in the table show the ACC and F1 performance (%) of our design
model evaluation metrics. Our experimental results are highlighted in bold.

Modality Model
HFM

Acc(%) F1(%)

Text
CNN 80.03 75.32

BiLSTM 81.90 77.53
BERT 83.89 83.26

Image ResNet-50 72.77 71.38
ResNet-101 72.48 71.22

Multimodal

Concat(2) 81.03 77.99
Concat(3) 81.74 78.74

MMSD 83.44 80.81
D&R Net 85.02 80.60
CLMLF 85.43 84.87

Ours 86.64 86.22

4.3. Ablation Experiments

We conducted ablation experiments on the three datasets to demonstrate the effective-
ness of supervised contrast learning and MLFC, and the results are shown in Table 4.

Table 4 shows that the model’s performance decreases when the contrast learning
approach and the MLF module are used. When the experimental ablation results Sentiment
Classification Supervised Contrastive loss (SCSupCon) is added, the contrast learning
effect is enhanced. The final experimental results show that combining the two modules
makes the model more valuable, and combining SCSupCon with Multi-Layer Fusion
Convolution Neural Network (MLFC) helps to obtain local features and improve model
performance in general. All of the experimental metrics have improved, demonstrating the
model’s effectiveness.
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Table 4. Ablation study results. The results of our experiments are highlighted in bold.

Model
MVSA-Single MVSA-Multiple HFM

Acc(%) F1(%) Acc(%) F1(%) Acc(%) F1(%)

BERT 71.11 69.70 67.59 66.24 83.89 83.26
ResNet-50 64.67 61.55 61.88 60.98 72.77 71.38
BERT + ResNet-50 + MLF + DBCL + LBCL 75.33 73.46 70.53 67.45 85.43 84.87
BERT + ResNet-50 + MLF + SCSupConLoss 75.33 75.75 69.88 67.14 86.27 85.70
BERT + ResNet-50 + MLFC + LBCL + SCSupConLoss 76.44 75.61 70.53 67.97 86.64 86.22

4.4. Data Visualization

To test whether our supervised comparative learning task can assist the model in
learning common features related to sentiment in multimodal data, we run feature space
visualization experiments on the dataset. By reducing dimensionality, visualize the data
feature vectors at the model’s final layer. Figure 3a depicts the visualization of cross-entropy
loss using the model, and Figure 3b depicts the visualization of the model’s results using
SCSupConLoss. The figure shows that adding supervised comparative learning increases
the distance between positive and negative emotions in the vector space and increases
the degree of data aggregation. This demonstrates that the model distinguishes these
data in vector spaces based on shared features in the sentiment data. This demonstrates
that the model distinguishes these data in vector spaces based on shared features in the
sentiment data. Because the amount of neutral sentiment data is relatively small, our
model’s visualization aggregates the neutral data rather than scattering it across the vector
space as if it were only cross-entropy losses [51]. All of this suggests that incorporating
supervised contrastive learning can help the model learn common features associated with
emotions more effectively, thereby improving the model’s performance.

(a) Cross-entropy (b) SCSupConLoss

Figure 3. Loss function clustering visualization. In supervised comparative learning, clustering can
be accomplished by embedding samples into low-dimensional embedding spaces and then using
clustering algorithms to divide the samples in the embedding space into different clusters. The
red, blue, and yellow dots in the embedding space represent the aggregation of different classes of
samples, and we can see how our model loss function outperforms the cross-entropy loss function.

Figure 4 depicts the accuracy and F1 value curves of our model and CLMLF on the
HMM test set after 50 epochs of training. As shown in Figure 4a, our model has a shorter
growth curve and higher accuracy than CLMLF in terms of accuracy as a percentage of the
total sample of correctly predicted results. In comparison to CLMLF, our proposed model’s
performance fluctuates less and gradually stabilizes after 40 epochs. F1 Score is a statistical
measure of classification model accuracy that is a harmonic average of model accuracy and
recall. Figure 4b shows that our model achieves an F1 value greater than the CLMLF of
1.35% and stabilizes after 40 epochs, resulting in better classification results.
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(a) Accuracy curve (b) F1 value curve

Figure 4. Accuracy and F1 value plot.

4.5. Case Study

Here are a few illustrative examples to help you understand the validity of our model
more intuitively. A case study is given here to help demonstrate the effectiveness of the model
we designed. We compared sentiment labels based on our model and BERT predictions.

The leftmost column in the case study is the example image, the second column is the
text information corresponding to the image, the third column is the predicted sentiment
result of the BERT pre-trained model, and the last column is our model performance, which
is useful for comparison with the BERT pre-training model.

As shown in Table 5, we can find that if we only consider the emotion of the text in the
sentiment analysis task, it is not easy to analyze the user’s emotional tendency correctly.
For example, the first data in Table 5 has a negative meaning, but the smiley face has a
positive meaning when combined with the image expression. If we only look at the text for
the second data, we can see that it may express a neutral meaning. When we add an image,
we discover that it is a negative sentiment image expressing a negative emotion. The case
study in this section demonstrates how well our model captures multimodal information
and interactions.

Table 5. Example of misclassified by BERT and correctly classified by Ours.

Image Text BERT Ours

Campaigning in Polegate
this morning with

the ebullient MariaCaulfield
and the frugal
Francis Maude

Neutral Positive

AVFCBlog oldmansaid
JackWoodwardAV StanCollymore

avfcforums worried
avfc utv

Neutral Negative

laurencekinlan: Met my
hero in Cork last

night, my bleeding
Ronnie looks

disgraceful though?

Negative Positive

5. Conclusions

We propose a multimodal sentiment analysis model based on supervised contrastive
learning to improve the performance of multimodal sentiment analysis. Our model ad-
dresses the problems of insufficient multimodal fusion feature information and fusion
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feature interference information by adopting supervised contrastive learning and a multi-
layer fusion module. Our model combines CNN and a multi-layer fusion module to
obtain local features, which are then stitched together to avoid interference from irrel-
evant information in the sentiment analysis task. This helps us more effectively obtain
emotional features. We also use the Transformer in our model to obtain global features,
improving the fusion effect and obtaining more understandable graphic features. By using
supervised contrastive learning and data augmentation, we reduce the interference of
irrelevant information and highlight valuable features. Our proposed model achieves
good detection performance on the MVSA and HFM datasets, improving the Acc and F1
evaluation indicators.

In the future, to solve the feature redundancy problem for sentiment analysis tasks,
the feature extraction method that is better for multimodal data is considered in the existing
encoder network. Additionally, we will investigate new multimodal fusion methods
and consider adding audio modality to solve the problem of incomplete cross-modal
feature fusion.
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