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Multimodal similarity-preserving hashing
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Abstract—We introduce an efficient computational framework for
hashing data belonging to multiple modalities into a single repre-
sentation space where they become mutually comparable. The pro-
posed approach is based on a novel coupled siamese neural network
architecture and allows unified treatment of intra- and inter-modality
similarity learning. Unlike existing cross-modality similarity learning
approaches, our hashing functions are not limited to binarized linear
projections and can assume arbitrarily complex forms. We show
experimentally that our method significantly outperforms state-of-
the-art hashing approaches on multimedia retrieval tasks.

Index Terms—similarity-sensitive hashing, metric learning, feature
descriptor

1 INTRODUCTION

Efficient computation of similarity between entries in
large-scale databases has attracted increasing interest,
given the explosive growth of data that has to be
collected, processed, stored, and searched for. In par-
ticular, in the computer vision and pattern recognition
community, this problem arises in applications such
as image-based retrieval, ranking, classification, detec-
tion, tracking, and registration. In all these problems,
given a query object (usually represented as a feature
vector), one has to determine the closest entires (near-
est neighbors) in a large database.

An even more challenging setting frequently arises
in tasks involving multiple media or data coming
from different modalities [30], [38]. For example, a
medical image of the same organ can be obtained us-
ing different physical processes such as CT and MRI;
a multimedia search engine may perform queries
in a corpus consisting of audio, video, and textual
information.

Since the notion of visual objects similarity is rather
elusive and cannot be measured explicitly, one often
resorts to machine learning techniques that allow con-
structing similarity from data examples. Such meth-
ods are generally referred to as similarity or metric
learning.

J. Masci and ]. Schmidhuber are with the Swiss Al Lab, Istituto Dalle
Molle di Studi sull’Intelligenza Artificiale (IDSIA), Manno, Switzerland;
M. M. Bronstein is with Universita della Svizzera Italiana, Lugano,
Switzerland and Intel Semiconductor, Switzerland; A. M. Bronstein is
with the School of Electrical Engineering, Tel Aviv University, Israel and
Intel Semiconductor, Israel.

Previous work. Traditionally, similarity learning
methods can be divided into unsupervised and super-
vised, with the former relying on the data only with-
out using any side information. PCA-type methods
[36] use global structure of the data, while manifold
learning techniques such as locally linear embedding
[32], eigenmaps [3], and diffusion maps [8] consider
data as low-dimensional manifold and use its local
intrinsic structure to represent similarity. On the other
hand, supervised methods assume additional infor-
mation is provided together with the data examples.
Such information can come in the form of class la-
bels [14], [27], [45], [49], distances [5], similar and
dissimilar pairs [9] or order relations [25], [39]. In
practice, many similarity learning methods use some
representation of the distance, e.g. in the form of a
parametric embedding from the original data space
to some target space. In the simplest case, such an
embedding is a linear projection acting as dimension-
ality reduction, and the metric of the target space is
Euclidean or Mahalanobis distance [39], [45].

More recently, there has been an increased interest
in similarity learning methods based on embedding
the data in spaces of binary codes with e.g. the
Hamming metric [11], [12], [17], [22], [28], [29], [34],
[44]. Such an embedding can be considered as a
hashing function acting on the data trying to preserve
some underlying similarity. Notable examples of the
unsupervised setting of this problem include locality
sensitive hashing (LSH) [1], [10] and spectral-type
hashing [23], [46], which try to approximate some
trusted standard similarity such as the Jaccard index
or the cosine distance. Shakhnarovich et al. [37] pro-
posed to construct optimal LSH-like hashes (referred
to as similarity-sensitive hashing or SSH) for data with
given binary similarity function using boosting, con-
sidering each dimension of the hashing function as a
weak classifier. In the same setting, a simple method
based on eigendecomposition of covariance matrices
of positive and negative samples was proposed by
[40]. Masci et al. [24] posed the problem as a neural
network learning. Hashing methods have been used
successfully in various vision applications such large-
scale retrieval [43], feature descriptor learning [40],
[24], image matching [15] and alignment [6].
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The extension of similarity learning to multimodal
data has been addressed in the literature only very
recently. Bronstein et al. [6] proposed an extension
of the SSH to the crossmodal setting, dubbed CM-
SSH. McFee et al. [26] proposed to learn multimodal
similarity using ideas from multiple kernel learning
[2], [25]. Multimodal kernel learning approaches have
been proposed in [21] for medical image registration.
Weston et al. [48] used multimodal embeddings for
image annotation. The main disadvantage of the lat-
ter is the fact that it is limited to linear projections
only. The framework proposed in [26] can be ker-
nelized, but it involves the computationally expen-
sive semidefinite programming, which limits scala-
bility. Also, both algorithms produce continuous Ma-
halanobis metrics, disadvantageous in computational
and storage complexity, especially when dealing with
large-scale data.

The appealing property of crossmodal similarity-
preserving hashing methods like the CM-SSH [6] is
the compactness of the representation and the low
complexity involved in distance computation. How-
ever, CM-SSH is limited to linear projections which
may not capture the structure of the data. Further-
more, it accounts only for the similarity across modal-
ities, completely ignoring the data similarity within
each modality. Finally, CM-SSH uses relaxation to
solve the underlying optimization problem.

Contributions. We propose a novel multimodal
similarity learning framework based on neural net-
works, that tries to simultaneously learn two (or
more) hashing functions that map the different modal-
ities into a common binary space. Our approach has
several advantages over the state-of-the-art. First, we
combine intra- and inter-modal similarity into a single
framework. This allows exploiting richer information
about the data and can tolerate missing modalities. We
show that several previous works can be considered
as particular cases of our model. Second, our ap-
proach produces compact binary code representation
of the data, thus reducing storage and computational
complexity of the similarity function, and is better
amenable for efficient indexing. Third, we solve the
full optimization problem without resorting to relax-
ations as in SSH-like methods; it has been recently
shown that such a relaxation degrades the hashing
performance [24], [40]. Fourth, we introduce a novel
coupled siamese neural network architecture to solve
the optimization problem underlying our multimodal
hashing framework. Finally, the use of neural net-
works can be very naturally generalized to more
complex non-linear projections using multi-layered
networks, thus allowing embeddings of arbitrarily
high complexity. We show experimental result on
several standard multimodal datasets demonstrating
that our approach compares favorably to state-of-the-
art algorithms.

2 BACKGROUND

Let X CR” and Y C R™ be two spaces representing
data belonging to different modalities (e.g., X are
images and Y are text descriptions). Note that even
though we assume that the data can be represented in
the Euclidean space, the similarity of the data is not
necessarily Euclidean and in general can be described
by some metrics dy : X x X - Ry anddy : Y xY —
R, to which we refer as intra-modal dissimilarities.
Furthermore, we assume that there exists some inter-
modal dissimilarity dxy : X x Y — R4 quantifying
the “distance” between points in different modality.
To deal with these structures in a more convenient
way, we try to represent them in a common metric
space. In particular, the choice of the Hamming space
offers significant advantages in the compact represen-
tation of the data as binary vectors and the efficient
computation of their similarity.

Unimodal (or single-modality) similarity-preserving
hashing is the problem of representing data from
one modality (say, X) in the space H™ = {£1}™
of m-dimensional binary vectors with the Hamming
metric dgn(a,b) = 2 — 23" a;b; by means of an
embedding, £ : X — H™ mapping similar points as
close as possible to each other and dissimilar points
as distant as possible from each other, such that
de 0(5 X f) %dx.

Multimodal similarity-preserving hashing is an exten-
sion of the former problem, in which two different
modalities X, Y are represented in the common space
H™ by means of two embeddings, £ : X — H™ and
n: Y — H™ mapping similar points as close as pos-
sible to each other and dissimilar points as distant as
possible from each other, such that dym o (§ X ) ~ dx,
dgm o (n X n) = dy, and dgm o (£ X 1) = dxy. In a
sense, the embeddings act as a metric coupling, trying
to construct a single metric that preserves the intra-
and inter-modal similarities. A simplified setting of
the multimodal hashing problem used in [6] is cross-
modality similarity-preserving hashing, in which only the
inter-modal dissimilarity dxy is taken into consider-
ation and dx, dy are ignored.

In the rest of this paper, we assume binary dis-
similarities dx,dy,dxy € {0,1}, i.e., a pair of points
can be either similar or dissimilar. This dissimilarity
is usually unknown and hard to model, however, it
should be possible to sample dx,dy,dxy on some
subset of the data X’ C X,Y’ C Y. This sample
can be represented as sets of similar pairs of points
(positives) Px = {(z € X' o', € X') : dx(z,2") = 0},
Py = {(y € Y,y €Y') : dy(y,y) = 0}, and
Pxy ={(x € X',y €Y') : dxy(z,y) = 0}, and likely
defined sets Nx,Ny, and Nxy of dissimilar pairs
of points (negatives). In many practical applications
such as image annotation or text-based image search,
it might be hard to get the inter-modal positive and
negative pairs, but easy to get the intra-modal ones.
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The problem of multimodal similarity-preserving
hashing boils down to finding two embeddings ¢ :
X — H™ and n : Y — H™ minimizing the aggregate
of false positive and false negative rates,

Ex [Px} + E{dum o (n x n)[Py} —

min

E{dgm o
& {H

(
E{dmm o (§ x §)INx} — E{dmm o (n x n)|Ny } +
E{dum o (£ xn)|Pxy} —
E{dgn o (& x n)Nxy} 1)

In what follows, we briefly review the existing ap-
proaches to supervised similarity-preserving hashing.

2.1 Single-modality similarity-preserving hashing

In his Ph.D. dissertation, Shakhnarovich [37] intro-
duced one of the first supervised hashing techniques
called similarity-preserving hashing (SSH). The au-
thor proposed to regard the construction of an LSH-
like similarity-preserving hash as a binary classifi-
cation problem, in which pairs of points (x,x’) are
assigned positive or negative labels. The minimization
of the expected Hamming distance dyg~ on the set of
positive pairs (and, respectively, its maximization on
the negative set) can be achieved by minimizing the
exponential loss of the form

E {exp(—fﬁ(x)Tf(X/»} =F {H exp(—ﬂgi(x)fi(xl))} :

where ¢/ = +1 for a positive pair, and ¢ = —1 for
a negative one. Observing the above separability of
the exponential loss, the author proposed to train the
individual bits &; of the embedding sequentially as
weak learners using standard boosting techniques. In
particular, Shakhnarovich considered linear embed-
dings of the form x;(x) = sign(ey x + a;), where ey,
is a standard basis vector acting as a feature selector,
and a; is a threshold.

The sequential construction of binary codes is
clearly suboptimal. As the result, SSH typically re-
quires relatively long codes to achieve good perfor-
mance. A remedy to this problem was proposed in
the DiffHash scheme introduced by Strecha et al. [40].
The authors considered linear embeddings of the form
&(x) = sign(Px+a) trained by minimizing a quadratic
loss

E {[[£(x) — £(xX) 3P} — aE {[I¢(x) — NZN T, ()

with the parameter a controlling the relative impor-
tance of false positives and negatives. By relaxing the
problem through the removal of the sign function,
P can be found as the m smallest negative eigen-
vectors of the difference of the covariance matrices
Cp — aCy, with Cp = E{(x — x)(x — x/)T|P} and
Cy defined likely on the negative pairs. Once the
projection matrix P has been found, the thresholds a
are found by solving m independent one-dimensional

minimization problems. The authors showed that a
globally optimal a; can be computed from the cumu-
lative histograms of p}x.

Despite its simplicity and computational efficiency,
the main drawback of DiffHash is the fact that it
is limited to linear projections, which might not be
able to properly capture the intricate structure of the
data. In machine learning, it is common to introduce
non-linearity into linear projection-based schemes via
the kernel trick. Generalizing kernelized LSH [18]
to the supervised setting, Liu et al. [22] proposed
the kernelized supervised hashing (KSH) scheme, in
which they considered embeddings of the form &(x) =
sign(Pk(x)), with P being an m x r projection matrix,
and k(x) = (k(x,%1) — g1, - -, 5(x,%.) — pr) T a non-
linear map created by computing the inner product
between x and a fixed set of r points x1, . ..,x, drawn
at random from the training set. The inner products
are computed via the kernel function x, which has
to satisfy the standard Mercer conditions, and p; is
precomputed as k(x,x;) averages over all x’s in the
training set. In this formulation, the supervised learn-
ing of the hash function boils down to minimizing a
loss of the form

E { (5-s0amex) - f)} ,

where / = +1 or —1 on (x,x’) belonging to P or N,
respectively. The authors show that the learning of
P can be performed either via greedy optimization
similar to SSH, or by dropping the sign function and
resorting to a spectral relaxation closely resembling
DiffHash. In fact, depending on the choice of the
optimization algorithm, KSH can be viewed as a
kernelized version of either SSH or DiffHash. The
greedy approximation or the spectral relaxation can
be further refined by solving the highly non-convex
problem minimizing (3), in which the sign function is
replaced by a smooth sigmoid approximation.

®)

2.2 Cross-modality similarity sensitive hashing

To the best of our knowledge, only one attempt has
been made to date to generalize supervised hash-
ing techniques to multiple modalities. Bronstein et
al. [6] studied the particular case of cross-modal
similarity-sensitive hashing (without incorporating
intra-modality similarity), with linear embeddings of
the form £(x) = sign(Px+a) and 7(y) = sign(Qy +b),
which can be considered an extension of SSH. The
CM-SSH algorithm constructs the dimensions of ¢
and 7 one-by-one using boosting. At each iteration,
one-dimensional embeddings &;(x) = sign(pfx + a;)
and 7;(y) = sign(q;y + b;) are found using a two-
stage scheme: first, the embeddings are linearized
as &(x) ~ pix and 7;(y) ~ q,y and the resulting
objective is minimized to find the projection

min E{x"p,q; y|Pxy} — E{x'p;q/ yNxv}, (4

P;.q;
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(here pf and q] are unit vectors representing the
ith row of the matrices P and Q, respectively, and
the expectations are weighted by per-sample weights
adjusted by the boosting). With such an approxima-
tion, the optimal projection directions p and q have a
closed-form expressions using the SVD of the positive
and negative covariance matrices. At the second stage,
the thresholds a; and b; are found by two-dimensional
search.

This approach has several drawbacks. First, CM-
SSH solves a particular setting of problem (1) with
Pxy,Nxy only, thus ignoring the intra-modality sim-
ilarities. Second, the assumption of separability (treat-
ing each dimension separately) and the linearization
of the objective replace the original problem with a
relaxed version, whose optimization produces subop-
timal solutions. Finally, this approximation is limited
to a relatively narrow class of linear embeddings that
often do not capture well the structure of the data.

3 MuLTIMODAL NN HASHING

Our approach for multimodal hashing is related to
supervised methods for dimensionality reduction and
in particular extends the framework of [13], [35], [41],
also known as the siamese architecture. These methods
learn a mapping onto a usually low-dimensional fea-
ture space such that similar observations are mapped
to nearby points in the new manifold and dissimilar
observations are pulled apart. In our simplest setting,
the linear embedding ¢ = sign(Px + a) is realized
as a neural network with a single layer (where P
represent the linear weights and a is the bias) and a
sign activation function (in practice, we use a smooth
approximation sign(z) ~ tanh(fz)). The parameters
of the embedding can be learned using the back-
propagation algorithm [47] minimizing the loss

Ly = 5 Y e -6l 5)
(x,x")eEPx
by Y max{0my - 660 - €)Y

(x,x")eENX

w.r.t. the network parameters (P,a). Same way, em-
bedding 7 is learned by minimizing the loss £y w.r.t.
parameters (Q, b). Note that for binary vectors (when
B = o0), the squared Euclidean distance in (5) is
equivalent, up to constants, to the Hamming dis-
tance. The second term in (5) is a hinge-loss providing
robustness to outliers and produces a mapping for
which negatives are pulled mx apart. The system
is fed with pairs of samples which share the same
parametrization and for which a corresponding dis-
similarity is known, 0 for positives and 1 for negatives
(thus the name siamese network, i.e. two inputs and
a common output vector). This approach has been
also successfully applied by [41] to problems such as
matching people in similar pose and which exhibits

invariance to identity, clothing, background, lighting,
shift and scale.

3.1 Coupled siamese architecture

In the multimodal setting, we have two embeddings ¢
and 1), each cast as a siamese network with parameters
(P,a) and (Q,b), respectively. Such an architecture
allows to learn similarity-sensitive hashing for each
modality independently by minimizing the loss func-
tions Lx,Ly. In order to incorporate inter-modal
similarity, we couple the two siamese networks by the
cross-modal loss

Loy = 50 O -l ©)
(x,y)€EPxy

3 w0y — 660 -0l
(x,y)eNxY

thus jointly learning two sets of parameters for each
modality. We refer to this model, which generalizes
the siamese framework, as coupled siamese networks.

Our implementation differs from the architecture of
[13] in the choice of the output activation function (we
use tanh activation that encourages binary represen-
tations rather than a linear output layer). This way
the maximum distance is bounded by v/4m and by
simply enlarging the margin between dissimilar pairs
we enforce the learning of codes which differ by the
sign of their components. Once the model is learned,
hashes are produced by thresholding the output.

This architecture can be extended to arbitrarily
complex mappings by adding multiple layers of non-
linearities. This has the advantage of scaling linearly
with the number of activations which is a very desir-
able property in large scale problems.

3.2 Training

The training of our coupled siamese network is per-
formed by minimizing

Iglin Lxy +axLx +ayLy, )
where ax,ay are weights determining the relative
importance of each modality. The loss (7), can be
considered as a generalization of the loss in (1), which
is obtained by setting ax = ay = 1, margins = 0,
and 8 = oo. We call the setting ax,ay > 0 MM-NN.
Furthermore, setting ax = ay = 0, we obtain the
particular setting of cross-modal loss (referred to in
the following as CM-NN), whose relaxed version is
minimized by the CM-SSH algorithm of [6]. It is also
worth repeating that in many practical cases, it is very
hard to obtain reliable cross-modal training samples
(Pxy,Nxy) but much easier to obtain intra-modal
samples (Px, Nx, Py, Ny). In the full multimodal set-
ting (ax,ay > 0), the terms Lx, Ly can be considered
as a regularization, preventing the algorithm from over
fitting.
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We apply the back-propagation algorithm [47], [20],
[33] to get the gradient of our model w.r.t. the em-
bedding parameters. The gradient of the intra-modal
loss function w.r.t. to the parameters of ¢ is given by
VLx = (£(x) (%) (VE(x) = VE(X)) for (x,X') € Px;
VEx = (£(x) — E(x) — mx)(VE(X) — VEX)) for
(x,x) € Nx and mx > ||£(x) — £(x')||2; and zero
otherwise (here the term V¢ = 9¢/9(P, a) is the usual
back-propagation step of a neural network). The gra-
dient of the inter-modal loss function w.r.t. to the pa-
rameters of ¢ is given by VLxy = (£(x) —n(y))VE(x)
for (x,y) € Pxy; VLxy = (§(x) —n(y) —mxy)VE(x)
for (x,y) € Nxy and mxy > ||&(x) — n(y)l|l2; and
zero otherwise. Equivalent derivation is done for the
parameters of 7.

The model can be easily learned jointly using any
gradient-based technique such as conjugate gradient
or stochastic gradient descent. The latter is the pre-
ferred choice for large datasets as it has minimal mem-
ory footprint and performs many more updates of the
parameters, one per sample in the fully online setting,
speeding up convergence of deep architectures.

3.3 Non-linear embeddings

Our model straightforwardly generalizes to non-
linear embeddings using multi-layered network archi-
tectures. The proposed framework is in fact general
and any class of neural networks can be applied to
arbitrarily increase the complexity of the embedding.
Deep and hierarchical models are able to model highly
non-linear embeddings and scale well to large-scale
data by means of fully online learning, where the
parameters are updated after every input tuple pre-
sentation. This allows to sample a very large training
set with constant memory requirements.

Learning deep models. To avoid bad local minima
a long list of techniques have been proposed, see [4]
for an overview. For our purpose we found that the
hybrid batch on-line approach of [19] worked the best.
We sample batches and train for only 5 iterations
using L-BFGS, repeating until convergence. We found
that, because all parameters are learned, setting 5 = 1
and adjusting the margin dependent on the code
length delivered the best results.

4 RESULTS

In this section, we evaluate our approach on several
standard multimedia datasets: CIFAR10 [16], NUS [7],
and Wiki [31] (see Table 1). All datasets were centered
and unit-length normalized. In our experiments, we
distinguish between uni- and multi-modal training,
where in the former the hash functions are learned
on each modality individually without using the other
modality, and in the latter, inter-modal information is
also used. Furthermore, we distinguish between uni-
and cross-modal retrieval. In the former case, both the
query and the database are from the same modality;

in the latter case, the query and the database belong
to different modality.

In the unimodal setting, we compare to the follow-
ing state-of-the-art hashing methods: Diffhash [40],
SSH [37], AGH [23], and KSH [22], using the code
provided by the authors. In the cross-modal setting,
we used Euclidean embedding by means of canonical
correlation analysis (CCA) as a baseline, and compare
to CM-SSH [6]. As a ‘sanity check’, we also tested
hash functions trained in the multimodal setting on
unimodal retrieval tasks. Ideally, the use of another
modality information during training should improve
(or at least not deteriorate) the performance of uni-
modal retrieval.

Our NN hash was tested in single-layer (L1) and
two-layered (L2) configurations. We also distinguish
between a version trained on inter-modal data only
(CM-NN, corresponding to ax = ay = 0) and full
multimodal version (MM-NN, using ax = oy = 0.5)
making use of inter- and intra-modal training data.
The architecture of CM-NN L1 is directly comparable
to CM-SSH.

We adopted the following rule of thumb for the
margins: 3 for 12bit, 5 for 24 and 48 bit, 7 for 64 and
16 for 256bit. For training the neural networks, we
used L-BFGS with randomly sampled mini-batches
[19], run until convergence.!

The hash functions learned by each of the methods
were applied to the data in the datasets, and the exact
Hamming distance was used to rank the matches. Re-
trieval performance was evaluated using mean average
precision mAP = Zf‘:l P(r) - rel(r), where rel(r) is
the relevance of a given rank (one if relevant and
zero otherwise), R is the number of retrieved results,
and P(r) is precision at r, defined as the percentage
of relevant results in the first r top-ranked retrieved
matches.

TABLE 1
Summary of the experiments and datasets.
Modalities  Classes Testing
Dataset n n' queries  database
Wiki 128 10 10 693 2173
CIFARIO 384 486 10 1000 59000
NUS 500 1000 81 2100 193739

CIFAR10 [16] is a set of 60K labeled images belong-
ing to 10 different classes, sampled from the 80M tiny
image benchmark [42]. The images are represented us-
ing 384-dimensional GIST and 486-dimensional HOG
descriptors, used as two different modalities. Follow-
ing [22], we used a training set of 200 images for each
class; for testing, we used a disjoint query set of 100

1. For our methods, as it allows stochastic optimization, we do
not run into memory problems when the number of data points
grows. In fact we are not bounded at all by the size of the training
set which is generated on the fly. This is a crucial difference
between our method and other hashing approaches, since real-
world datasets are typically orders of magnitude larger than what
can be handled by standard batch methods.
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Fig. 2. Example of GIST-HOG matching on CIFAR dataset.
Shown are the original descriptors and their 48-bit MM-NN
L2 hash codes. Red shows the bits different w.r.t. query.

GIST

HOG

HOG

images per class and the remaining 59K images as
database.

Table 2 shows the unimodal (GIST-GIST and HOG-
HOGQG) retrieval performance; examples of a few top
matches produced by different hashing algorithms
are shown in Figure 1. We can see that our NN-
based methods significantly outperform all the rest
of the methods, including the previous state-of-the-
art AGH and KSH. Further significant improvement
is achieved by using a two-layer configuration with
48 tanh units (NN-L2).

TABLE 2
Unimodal training and retrieval experiment on the CIFAR10
dataset. NN hash was trained on single modality only.
Performance is shown as mAP in %.

GIST - GIST HOG - HOG

Method / m 12 24 48 12 24 48
DiffHash 14.72 1335 12.85 13.05 1192 1147
SSH 1542 16.75 17.06 1549 16.15 16.71
AGH1 1559 1545 14.66 16.82 16.56 16.65
AGH2 1546 1529 15.15 16.09 16.74 16.43
KSH 25.79 29.01 30.84 25.70 2895 30.17
NN L1 3148 3541 36.79 3148 3724 38.03
L2 45.42 49.88 50.46 49.20 50.16 53.01

Raw 19.16 19.19

Table 3 (bottom) shows the performance of cross-
modal retrieval. Figure 2 shows examples of query
and database descriptors in this setting and their cor-
responding binary codes. NN-based method signifi-
cantly outperform CM-SSH. Furthermore, we observe
that MM-NN shows superior performance compared
to CM-NN, which we explain by the importance of
using intra-modal training data in addition to inter-
modal one.

Applying the hash functions trained in the multi-
modal setting to unimodal retrieval (GIST-GIST and
HOG-HOG in Table 3), MM hash achieves slightly

better performance compared to the corresponding
results obtained with unimodal training shown in
Table 2. We interpret this result as the usefulness of
multimodal information in training as a kind of reg-
ularization. Figure 3 (left) shows the precision recall
curves for the cross-modal retrieval cases.

TABLE 3
Unimodal and cross-modal retrieval experiment on the
CIFAR10 dataset. All methods were trained using
multimodal data. CCA produces Euclidean embeddings.
Performance is shown as mAP in %.

GIST — GIST HOG - HOG
Method / m 12 24 48 12 24 48
CCA Ti21 1173 1236 1026 1044 1083
CM-SSH 1693 1678 1617  17.65 17.60 17.50
ovnN L1 2371 2882 3134 510 2923 3155
L2 41.60 4523 4422  47.15 4511 4425
T1 2849 3431 3433 3064 3611 3601
MM-NN' 15 4662 4862 5200 4946 5234 53.40
GIST - HOG HOG - GIST
Method / m 12 24 48 12 24 48
CCA 1004 1006 1009 1021 1040 10.84
CM-SSH 1721 1583 1444 1728 17.04 16.62
cvnN L1 2656 2838 3272 2511 2930 3325
L1 4789 4752 47.00  43.05 4579 4532
I1 2953 3500 3539 2911 3526 35.07
MM-NN 1> 4897 5115 5401  46.80 49.97 51.06

NUS [7] is a multi-class dataset containing anno-
tated images from Flickr. The images are manually
categorized into 81 classes (one image can belong to
more than a single class) and represented as 500-
dimensional bags of SIFT features (BoF, used as the
first modality) and 1000-dimensional bags of text
tags (Tags, used as the second modality). To produce
results consistent with previous state-of-the-art, we
follow the dataset generation protocol of [23], which
considers only the top-21 frequent classes and used 5K
samples for KSH. We used full mAP and mAP@10 as
the retrieval quality criteria.

Table 4 shows the unimodal performance of sev-
eral hashing methods of different lengths, where
our method outperforms the best competitor. Due to
the ambiguous nature of this multi-class dataset we
did not experience improvement using an additional
layer. We also notice that KSH performs worse than
AGH, a completely unsupervised technique. We at-
tribute this to the inability of binary labels to discrim-
inate the various degrees of similarity given by class
intersection; we believe that trivial and less generaliz-
able solutions are favored with such setup. We intend
to further investigate the multi-class problem in future
work.

Table 5 (bottom) reports the performance of the
several methods using hashes up to 256bit. CCA is
used as Euclidean baseline also in this case. NN-
based methods outperforms CM-SSH by large margin
while still keeping almost the same code generation
complexity. Figure 3 (right) shows the precision-recall
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Fig. 1.

Unimodal training and retrieval experiment on the NUS dataset. NN hash was trained on single modality only. Performance
is shown as mAP@10 / mAP in %, (— indicates no convergence was reached).
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Unimodal retrieval on CIFAR dataset. Shown are top 10 matches to three different queries (marked in red) using
different hashing method with codes of length 48. All NN methods are used in L2 configuration. CM-SSH, CM-NN and MM-NN
were trained on multiple modalities, and used in this experiment for single modality retrieval.
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BoF — BoF Tags — Tags

Method / m 16 64 256 16 64 256
DiffHash 54.70 / 37.40 5297 / 36.88 53.71 / 36.75 72.85 / 4245 8097 / 41.02 79.82 / 39.58
SSH 45.31 /4376 59.00 / 43.40 59.58 / 42.21 4451 / 4199 61.54 / 4423 70.26 / 45.09

AGH1 5453 /3831 59.38 / 38.09 -/ - 74.60 / 45.37 79.07 / 41.52 -/ -

AGH2 53.86 /3824 59.56 / 39.08 -/ - 67.60 / 47.55 7799 / 43.29 -/ -
KSH 5625/ 49.84 6425 /5130 66.46 / 51.78 7225 / 60.11 70.29 / 57.69  84.05 / 62.68
NN 60.93 / 53.40 66.52 / 57.10 72.57 / 59.36 79.25 / 65.96 83.87 / 68.04 87.08 / 67.40

Raw 61.53 83.02
TABLE 5

Unimodal and cross-modal retrieval experiment on the NUS dataset. All methods were trained using multimodal data. CCA

produces Euclidean embeddings. Performance is shown as mAP@10 / mAP in %.

BoF - BoF Tags — Tags
Method / m 16 64 256 16 64 256
CCA 5872 /4226 6158 /4326 63.51 / 43.94 77.66 / 4250 81.79 / 3871 81.64 / 37.87
CM-SSH 41.23 / 4469 50.30 / 43.45 53.23 / 41.56 7133 / 48.74 80.11 / 49.80 83.00 / 47.62
CM-NN 5216 / 50.34 64.33 / 51.44 67.55 / 50.14 7518 / 61.70 79.62 / 6121 83.44 / 64.68
MM-NN  60.02 / 53.09 64.66 / 51.87 70.45 / 57.84 78.99 / 65.52 83.31 / 64.64 86.79 / 69.4
BoF - Tags Tags — BoF
Method / m 16 64 256 16 64 256
CCA 3575 /3435 39.17 /3584 32.00 / 36.79 35.72 / 35.16 4833 / 4046 61.52 / 43.11
CM-SSH 61.63 / 47.78 62.08 / 44.61 61.18 / 40.61 55.48 / 4598 59.10 / 46.87 55.83 / 45.31
CM-NN 70.07 / 57.16 72.86 / 58.44 74.83 / 60.28 70.10 / 57.17 71.56 / 57.70  76.74 / 59.59
MM-NN 6457 / 5744 68.07 / 56.33 73.12 / 61.63 73.40 / 5691 73.28 / 55.83  78.77 / 61.09

curve for the cross modal retrieval, MM-NN delivers
the best performance.

1

o
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Fig. 3. Precision-Recall curves for the cross-modal retrieval
experiments on CIFAR10 (solid: HOG-GIST, dashed: GIST-
HOG) and NUS (solid: Tag—Bof, dashed: Bof-Tag).

Figure 4 shows cross-modal retrieval results using
as queries artificially created Tag vectors containing
specific words. These Tags are hashed using 7 and
matched to BoFs hashed using &. The retrieved results

are meaningful and most of them belong to the same
class. The results produced by NN hash (bottom) are
visually more meaningful compared to CM-SSH (top).
Figure 5 shows image annotation results. We retrieve
the top five Tags matches from a BoF query and assign
the corresponding annotations to the image.

Wiki. In the third experiment, we reproduced the
results of [31] using the dataset of 2866 annotated
images from Wikipedia. The images are categorized
in 10 classes and represented as 128-dimensional bags
of SIFT features (Image modality) and 10-dimensional
LDA topic model (Text modality). Table 6 shows the
mAP for the Image-Text and Text-Image cross-modal
retrieval experiment. For reference, we also reproduce
the results reported in [31] using correlation matching
(CM), semantic matching (SM), and semantic corre-
lation matching (SCM). MM-NN largely outperforms
SCM in all evaluation criterion with codes that are
at least 10x smaller and that can be searched very
efficiently. Figure 7 shows a few matching examples.
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green,
colors

portrait,
people

Fig. 4. Example of text-based image retrieval on NUS
dataset using multimodal hashing. Shown are top five image
matches produced by CM-SSH (odd rows) and MM-NN (even
rows) in response to three different queries.

nature, blue, green, bravo,

color, animal, england, animals,

photo, bird, cute, spring, cat, zoo,

garden, dog, india, life, plants, pet,

i cats, fab, insect, star, butterfly,
Ifemale, sheep, sweet, pets, shot,

nice, kitty, kitten, adult, cubism, kit

nature, sky, blue, water,
clouds, green, bravo,
landscape, explore, sunset,
travel, trees, reflection,
tree, river, mountains,

A autumn, colour, scotland,
waves, norway, arctic, agua

sky, blue, water, clouds, green, landscape, sunset, light, people, sea, art,
architecture, beach, trees, tree, sun, orange, ocean, interestingness, river, old,
france, london, grass, autumn, shadow, fun, silhouette, cloud, island, fall, design,

o reflections, morning, coast, storm, boats, evening, men, photographer, dusk, waves,
bay, sunlight, fence, bright, pool, sport, image, illustration, shore, castle, seascape,
twilight, wave, play, creative, cloudy, surf, dust, graphic, rays, afternoon, barge

Fig. 5. Example of image annotation on the NUS dataset
using multimodal hashing. Shown are Tags returned for the
image query on the left. Groundtruth tags are shown in green.

5 CONCLUSIONS

We introduced a novel learning framework for mul-
timodal similarity-preserving hashing based on the
coupled siamese neural network architecture. Our
approach is free from assuming linear projections un-
like existing crossmodal similarity learning methods;
in fact, by increasing the number of layers in the
network, mappings of arbitrary complexity can be
trained (our experiments showed that using multi-
layer architecture results in a significant improvement
of performance). We also solve the exact optimization
problem during training making no approximations
like the boosting-based CM-SSH. Our method does
not involve semidefinite programming, and is scalable
to a very large number of dimensions and training

Cross-modal (Bof-Tags) retrieval on the NUS
dataset. Shown are top five matches different image queries
(marked in red), ranked according to Tags similarity using 64-
bit MM-NN hash.

TABLE 6
Cross-modal retrieval experiment on the Wiki dataset using
32-bit hashes (L2 with 32 tanh units) and Euclidean
embeddings from [31] (marked with *).

Image-Text Text-Image Avg

CM-SSH 222 184 20.3
CcM* 249 19.6 223

SM* 22.5 223 2.4

SCM* 27.7 22.6 25.2

L1 37.8 247 31.2
MM-NN 1, 57.5 27.4 42.4
I1 32.6 232 255

CM-NN- 1, 485 258 371

samples. Experimental results on standard multime-
dia retrieval datasets showed performance superior to
state-of-the-art hashing approaches.
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