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Abstract—PROPRE is a generic and modular neural learning
paradigm that autonomously extracts meaningful concepts of
multimodal data flows driven by predictability across modali-
ties in an unsupervised, incremental and online way. For that
purpose, PROPRE consists of the combination of projection
and prediction. Firstly, each data flow is topologically projected
with a self-organizing map, largely inspired from the Kohonen
model. Secondly, each projection is predicted by each other map
activities, by mean of linear regressions. The main originality of
PROPRE is the use of a simple and generic predictability measure
that compares predicted and real activities for each modal stream.
This measure drives the corresponding projection learning to
favor the mapping of predictable stimuli across modalities at the
system level (i.e. that their predictability measure overcomes some
threshold). This predictability measure acts as a self-evaluation
module that tends to bias the representations extracted by the
system so that to improve their correlations across modalities.
We already showed that this modulation mechanism is able
to bootstrap representation extraction from previously learned
representations with artificial multimodal data related to basic
robotic behaviors [1] and improves performance of the system
for classification of visual data within a supervised learning
context [2]. In this article, we improve the self-evaluation module
of PROPRE, by introducing a sliding threshold, and apply it to
the unsupervised classification of gestures caught from two time-
of-flight (ToF) cameras. In this context, we illustrate that the
modulation mechanism is still useful although less efficient than
purely supervised learning.

I. INTRODUCTION

Biological agents are able to adapt efficiently to unknown

situations and tasks using online, incremental and partially

unsupervised learning. These capabilities are the result of

millions of years of evolution. Thus, we think that taking

inspiration from the architecture and processing of the brain

may be one promising way to transfer these interesting learn-

ing properties to the developmental robotics field. Here, we

study more precisely the merging of multiple data flows by ex-

tracting correlated stimuli with a cortically inspired paradigm

having these learning properties. This paradigm processes each

data flow in a generic way wherever it comes from. Thus, we

define such a processing as multimodal as the data flows may

come from different senses, even if in this article we consider

multiple data flows coming from the same kind of sensor, as

a first study. This work fits in the currently active research

on autonomous and progressive construction of sensory-motor

representations in the developmental robotics field [3], [4], [5].

Detection of correlated stimuli seems to play an impor-

tant role in multimodal fusion as a single event can induce

sensory changes in various channels. Multiple psychophysical

experiments on humans reveal that consistent multimodal

stimuli improve learning and detection of events compared

to monomodal stimuli or inconsistent multimodal ones [6],

[7], [8]. Moreover, such a detection of correlated signals

across modalities is consistent with sensory-motor theories

that claim that sensory-motor regularities are one key point

for structuring the agent interaction with its environment [9].

From a macroscopic point of view, the cortex is composed

of a set of multiple cortical areas defined by their functional

processing, as for example visual or motor areas. Despite

their functional specialization, cortical areas seem to have

generic layered architecture [10] and data processing [11],

[12]. Especially, self-organization (i.e. close neurons in one

cortical area have close sensibilities) is a widely spread

computational paradigm that is mainly observed in low level

sensory areas [13], [14], [15].

Based on these considerations, we propose the PROPRE

(projection-prediction) paradigm. Each modal data flow is

projected on a low-dimensional manifold by a self-organizing

map (SOM). From each modal projection, predictions of all

other projections are computed. A correct prediction can only

be obtained if the corresponding modal stimuli are correlated.

A predictability measure quantifies this ability of a projection

to predict the other ones and modulates this projection learning

so that the representation of predictable multimodal stimuli is

favored at the system level. One of our claims with PROPRE

is that by biasing the representation of the input flow towards

stimuli that are interesting for the current task, here the

correlated stimuli across modalities, we can improve the global

performance of the system. In this context, the predictability

measure acts as a self-evaluation module of the extracted

representations by the system that influences the learning in

order to improve the correlations between these representations

across modalities.



This use of predictability to influence representations in

PROPRE is motivated by a conceptual work [16] arguing that

symbolic quantities are defined by their power to predict other

quantities. It is also conceptually very close to the predictive

coding model of hierarchical visual processing [17], [18],

[19]. This focus on predictability and on generic multimodal

processing are the two main points that distinguish our work

from other multimodal self-organizing maps models [20], [21],

[22].

PROPRE was already successfully applied to the bootstrap-

ping of selectivities based on previously learned representa-

tions with artificial multimodal data related to basic robotic

behaviors [1]. We also show that the self-evaluation module of

predictability leads to learning of representations that improve

classification of visual pedestrian data in a supervised context.

Moreover, these representations can be incrementally updated

to take into account various changes in the data flows [2]. Fol-

lowing our target to use PROPRE for multimodal online and

incremental learning on real developmental robotic platforms,

in this article, we apply it to the unsupervised learning of hand

gestures observed by two time-of-flight (ToF) cameras and also

propose a new improved self-evaluation module. In the next

section, we introduce the PROPRE paradigm and equations.

The task protocol and obtained results with the various tested

architectures are presented in section III.

II. PROPRE

A. Paradigm

Kohonen map [23] is a learning paradigm that represents a

high dimensional input space by projecting it on a manifold

with a fixed low dimension thus providing a low dimensional

spatial coding of the input space. Kohonen map provides a

vector quantization that is related to the mapping of the input

space statistic [24]. However, achievement of a robotic task

may need to have a granularity of the sensory-motor space

representation that is different from the input space statistic.

For that purpose, we propose to modulate the Kohonen learn-

ing rule so that to bias the obtained representations towards

stimuli that are considered as relevant for the targeted task,

here the correlated stimuli across modalities for a multimodal

learning task.

PROPRE is a modular and generic neural paradigm for

online, incremental and unsupervised learning of multimodal

representations. It consists on the interaction between three

modules (see figure 1):

• Projection: each modal flow is projected on a self-

organizing map derived from the model of Kohonen.

Each modal stimulus is represented by the spatial location

of a Gaussian (centered on the best matching unit) that

can be combined with any other modalities, e.g. in an

incremental way.

• Prediction: each modal projected representation tries to

predict the other ones. The spatial relationship between

stimuli representation is learned at this stage.

• Predictability measure: the predictability measure quan-

tifies the precision of the prediction with a simple and

generic measure that does not do any assumption on the

data flow. This measure is an indicator of the correlation

between the stimuli and modulates the projection learning

so that to favor stimuli correlated across modalities. This

module can be considered as a simple autonomous self-

evaluation module of the performance of the system to

extract multimodal representations.
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Fig. 1. PROPRE architecture is composed of three interacting modules.
First, a projection module that provides a low dimensional representation of
each modal stimulus. Second, a prediction of each modal representation by
the other ones. Third, a predictability measure that quantifies the ability of a
stimulus to predict the other ones and modulates the corresponding projection
learning.

From a computational point of view, the reception of each

multimodal stimulus in the model leads to one transmission

and one learning steps so that the model provides online learn-

ing (i.e. the stimulus is represented and learned at the same

time). Technically speaking, the transmission stage consists

on the evaluation of each module activity. Then, the learning

stage updates the weights of the plastic connections linking the

modules. In the three next sections, we describe the equations

used for each module of PROPRE. These equations are given

for the processing and learning of the first data flow and are

symmetrical for the second data flow.

B. Projection

S1 is a discrete bi-dimensional square grid of neurons.

Let wS1D1
(x, t) be (wS1D1

(x, y, t))y with wS1D1
(x, y, t) the

weight between the y-st value in the current stimulus D1(t)
and the unit at position x in S1 at time t. The activity of S1

at position x at time t is computed as

S1(x, t) = (wS1D1
(x∗, t).D1(t))e

−||x−x
∗||2

2

σ
2

with x∗ the best matching unit of the map defined as

x∗ = max
x

wS1D1
(x, t).D1(t)

1. σ is the variance of the

Gaussian neighborhood radius and || · ||2 is the euclidean



distance.

The incoming weights of the unit at position x in S1 at time

t are updated as following:

∆wS1D1
(x, t) = ηλ1(t)S1(x, t)(D1(t)−wS1D1

(x, t))

λ1(t) =

{

1 if Pr1 (t) ≥ θ1(x
∗, t)

0 otherwise

θ1(x, t) =











0 if t = 0

θ1(x, t− 1) if x 6= x∗

τPr1 (t) + (1− τ)θ1(x, t− 1) if x = x∗

with η the constant learning rate, Pr1 (t) the predictability

measure (see section II-D) and θ1 the sliding predictability

threshold. Compared to our previous work [2], we introduce

this sliding threshold θ1(x, t), defined for each unit x as an

iterative average on a sliding window of the predictability

measure when x is the best matching unit, so that it is

autonomously adapted to the data.

This learning equation of the SOM weights is the one of

Kohonen map in which we introduce the modulation term

λ1(t). Thus, only stimuli that are more predictable than the

average, with respect to the best matching unit, are learned

by the system. This influences the distribution statistic of

stimuli and consequently the obtained quantization of the SOM

towards predictable stimuli across modalities.

C. Prediction

The projection activity in S1 is used to provide a prediction

in P1→2 of the projection activity in S2. Consequently, P1→2

and S2 have the same size. The activity in P1→2 at position

x at time t is:

P1→2(x, t) =
∑

y

wP1→2S1
(x, y, t)S1(y, t)

with wP1→2S1
(x, y, t) the weight from the unit at position y

in S1 to the unit at position x in P1→2.

The weights of the connection between S1 and P1→2 are

learned with an online version of the classical linear regression

algorithm [25] that minimizes the mean square error between

the prediction P1→2(t) and the target activity S2(t):

∆wP1→2S1
(x, y, t) = η′S1(y, t)(S2(x, t)− P1→2(x, t))

with η′ the constant learning rate.

D. Predictability measure

The predictability measure provides a quantification of the

prediction quality. In one previous article [2], we studied

multiple measures and showed that the precise choice of the

measure does not significantly influence the model perfor-

mances. Here, we slightly adapt one of these measures.

Let define X2(t) as {x|S2(x, t) > ǫ} with ǫ low and strictly

positive. X2(t) is the set of indices corresponding to the

1In practice, we normalize the weights wS1D1
(x, t) and the input D1(t)

so that the opposite of the dot product is directly related to the euclidean
distance between the two values that is classically used as matching function
in Kohonen map.

location of the Gaussian in S2 at time t (see section II-B).

The predictability measure is computed as

Pr1 (t) =

∑

x∈X2(t)

P1→2(x, t)

∑

x

P1→2(x, t)

This measure, whose possible values are between 0 and 1,

represents the proportion of the prediction corresponding to the

correct location of the Gaussian and consequently the ability

of one stimulus to predict the other one.

III. EXPERIMENTS

A. Protocol

We recorded a set of ten left hand poses: point, fist, grip,

L, stop and counting from 1 to 5 (see figure 2). The data were

obtained using two ToF cameras which provide depth images

of resolution 165x120 pixels at 90 frames per second. Since

the ToF principle works by measuring the time the emitted

light needs to travel from the sensor to an object and back

pixel-wise the light is modulated by a frequency of 30MHz in

order to be able to distinguish it from interferences. In a multi-

sensor setup, as the one we use, this may lead to a distortion

of measurements since both sensors have the same modulation

frequency. To avoid such measurement errors, the data were

recorded by taking alternating snapshots from each sensor.

Fig. 2. Gestures recorded by the two ToF cameras.

The two cameras were positioned with a 30◦ shifted angle

and about 20 cm away from each other. In order to have

some variability in the data, each pose was recorded with a

variation of the hand posture in terms of translation (range

of 20-50 cm from each camera) and rotation of the hand and

fingers (± 15◦). Moreover, all ten gestures were recorded for

eight different persons independently. As for each pose and

each person, a set of 2000 point clouds was recorded for each

camera, this yields a multimodal dataset of 160.000 samples.

Each data was preprocessed using a descriptor built upon the

PFH (Point Feature Histogram) descriptor described in [26].

The PFH descriptor tries to describe the relationship for two

points in a point cloud by the calculation of each of the point’s

normals as well as the distance between the points. The main

difference between the descriptor used and PFH is that the

PFH considers all couples of points in some neighborhood of

each point of the cloud to calculate a quadruplet of features
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Fig. 3. Architectures compared in this article: unsupervised learning with PROPRE (I.a and I.b), supervised learning without the self-evaluation module (II)
and supervised learning with PROPRE (III). Please refer to the text for more details.

(distance, pan, tilt and yaw) whereas we randomly subsample

10000 couples of points from the cloud and compute the

quadruplet of features only on this sub-sampled set in order

to discard variabilities in number of point detected, as already

proposed in [27]. The resulting 10000 quadruplet values are

normalized and grouped in 5 bins per feature leading to a

625 dimension vector histogram representing the hand pose

for each camera. The gesture category is represented by a

(160, 7) discrete spatial coding vector.

B. Architectures

We tested our PROPRE architecture with the setup depicted

in the previous section where preprocessed data provided by

each camera defines one input flow for the system (see figure 3

I.a). This paradigm learns unsupervised representations of

each data flow in the corresponding SOM with a focus on

representations that are efficient to predict the ones of the

other modality (see section II). After convergence of this un-

supervised learning, we labeled these representations provided

by the SOM. For this, we learn to predict the real category

(ground truth) of the gesture presented to the cameras from

each representation given by a SOM with previously learned

and fixed connections (see figure 3 I.b). This supervised

learning phase only targets to label data in order to quantify the

classification performance of the model but is not mandatory

for the use of PROPRE.

We compare the performance of this unsupervised learning

with two baselines.

First, to quantify the influence of the modulation mechanism

proposed in PROPRE, we tested the corresponding architec-

ture without any modulation of the projection learning (see

figure 3 II) which is equivalent to force the modulation term

λ1(t) = 1, ∀t (see section II-C).

Second, we tested the performance of the predictability mod-

ulation corresponding to a supervised learning provided by a

similar architecture. For that purpose, we use simultaneously

two PROPRE architectures. Each architecture receives one

flow provided by a camera and another one corresponding to

the ground truth (see figure 3 III). In this case, the architecture

is slightly adapted as the ground truth data flow is not projected

as already proposed in [2].

C. Results

We randomly split our 160000 examples data set (see

section III-A) in a learning and a test data sets respectively

composed of 90% and 10% of the data. For each tested data,



the location of the induced highest peak in each prediction map

encodes the gesture recognized from the corresponding cam-

era. The multimodal classification of the system is obtained by

the location of the highest peak in the sum of the prediction

of both cameras. All presented results were obtained using

10×10 SOMs and averaged over 10 simulations with random

initial weights for each setup.

1) Sliding threshold: In order to evaluate the influence of

the new sliding threshold used in PROPRE, we compare the

performance obtained by the model when using this sliding

threshold or a fixed one. In the last case, we force both pre-

dictability thresholds to be equal to some constant going from

0.1 to 0.9 with a 0.1 incremental step (as the predictability

measure is in [0, 1]). One of the advantage of the sliding

threshold is that it is easy to parametrize (as independent of

the input). But we can also observe that the performance of

the system with this sliding threshold is equivalent or even

better to the best performance that we can obtain with a fixed

threshold (see figure 4).

Fig. 4. Top (resp. bottom): Average multimodal classification performance
obtained with unsupervised (resp. supervised) learning, i.e. architecture I (resp.
III), depending on the threshold used (sliding or fixed).

2) Classification performance: Classification performance

obtained with unsupervised learning (architecture I) are pre-

sented in figure 5 and compared to the one obtained without

modulation (architecture II) and with supervised modulation

(architecture III).

Fig. 5. Average classification performance over all ten gestures depending of
the camera flow used for the prediction (one of two or both) and architectures.

We can observe that the predictability measure used with

unsupervised learning improves slightly classification perfor-

mance, compared to the baseline without modulation, in all

cases (one camera or both). This seems to suggest that rep-

resentations of stimuli correlated across modalities are mean-

ingful as they improve the obtained classification performance.

However, classification performance with unsupervised learn-

ing is not as good as the one achieved with supervised learning

in PROPRE. Such a difference can be easily explained as the

supervised learning task is easier as all data are labeled during

learning. By the way, this supervised performance confirms the

efficiency of the modulation introduced in PROPRE in this

case as already shown in [2].

Moreover, we can notice that a simple multimodal merging,

based on the sum of the different predictions, achieves a

significant increase of the classification performance of around

8% for all three architectures. This emphasis the importance

of combining multiple sensors for object recognition. Even

if this improvement can be easily explained as considering

both camera increases the amount of data available, it is

quite surprising that its range is similar for all architectures,

including the one using unsupervised learning. Indeed, in

this case, SOM representations learned are stimuli correlated

across both cameras. A deeper study will be necessary to

understand this phenomenon and especially the precise impor-

tance of the unsupervised and supervised steps in the obtained

performance.

IV. CONCLUSION AND PERSPECTIVES

PROPRE is a generic cortico-inspired paradigm that au-

tonomously extracts meaningful representations of multiple

input flows with an online and incremental predictability

driven learning. It combines the projection of each modal

flow on a dedicated self-organizing map with the prediction

of each projection by the other ones. The main originality

of PROPRE consists in the use of a predictability measure,

that quantifies the quality of the predictions obtained from

one representation, to influence the corresponding projection



learning. This predictability measure acts as a simple self-

evaluation module of the system performance, i.e. its ability

to learn multimodal correlations, that will bias the learned

representations towards stimuli correlated across modalities.

In this article, we introduce a new sliding predictability

threshold and apply PROPRE to the classification of prepro-

cessed data corresponding to ten gestures recorded by two ToF

cameras for eight different persons. In addition to being easier

to parametrize, we show that this sliding threshold provides

equivalent or even better classification performance than a

fixed one.

Moreover, the use of a predictability measure reflecting

the ability of one camera to predict the content of the other

one, proposed in PROPRE, slightly improves the classification

performance compared to a baseline without predictability

module. This suggests that these representations of stim-

uli correlated across modalities, obtained with unsupervised

learning, are meaningful for this classification task. However,

obtained performances are not as good as the one obtained

with a supervised predictability module, which confirm the

efficient of the modulation mechanism used in PROPRE, but

can be explained as the task is more difficult. By the way,

we observe that in all cases, multimodal classification of

gestures, obtained by summing the prediction driven by each

camera, is significantly higher than the classification provided

by considering only one of the two cameras.

These first results on learning representations from multiple

data flows are promising and a deeper study will be necessary

to confirm them with the combination of data coming from

different kind of sensors. It will be also interesting to compare

the performance of the representations extracted with unsuper-

vised or supervised predictability influence when the system

has to learn multiple tasks. The relative importance of the

unsupervised learning stage and the post supervised labeling

stage in the classification performance has also to be precisely

quantified. Moreover, targeting the use of PROPRE for a

sensori-motor learning, we also want to study the influence

of temporal evolution of performance in the self-evaluation

module computation, as already proposed in [28] for robotic

curiosity, in order to explore and represent simultaneously the

multimodal input space.
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