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Abstract

Design and development of novel human-computer in-

terfaces poses a challenging problem: actions and inten-

tions of users have to be inferred from sequences of noisy

and ambiguous multi-sensory data such as video and sound.

Temporal fusion of multiple sensors has been efficiently for-

mulated using dynamic Bayesian networks (DBNs) which

allow the power of statistical inference and learning to be

combined with contextual knowledge of the problem. Unfor-

tunately, simple learning methods can cause such appeal-

ing models to fail when the data exhibits complex behav-

ior. We formulate a learning framework for DBNs based

on error-feedback and statistical boosting theory. We apply

this framework to the problem of audio/visual speaker de-

tection in an interactive kiosk environment using ”off-the-

shelf” visual and audio sensors (face, skin, texture, mouth

motion, and silence detectors). Detection results obtained

in this setup demonstrate superiority of our learning frame-

work over that of the classical ML learning in DBNs.

1. Introduction

Human-centered user-interfaces based on vision and

speech present challenging sensing problems in which mul-

tiple sources of information must be combined to infer the

user’s actions and intentions. Statistical modeling tech-

niques therefore play a critical role in system design. Dy-

namic Bayesian network (DBN) models are an attractive

choice, as they combine an intuitive graphical represen-

tation with efficient algorithms for inference and learn-

ing. DBNs are a class of graphical probabilistic models

which encode dependencies among sets of random variables

evolving in time. Examples of DBNs include Kalman filters

and HMMs. Previous work has demonstrated the power of

these models in fusing video and audio cues with contextual

information and expert knowledge [6, 8, 7, 3].

Speaker detection is a particularly interesting example

of a multi-modal sensing task which can serve as a test-

bed for DBN research. Detecting when users are speaking

is an important component of an open mike speech-based

user-interface. The need to handle multiple people in the

presence of background noise means that both audio- and

video-based sensing can provide useful information. Fig-

ure 6 gives an example of a DBN model for speaker de-

tection. We are interested in network models that combine

“off-the-shelf” vision and speech sensing with contextual

cues such as the state of the interaction. Previous work

has demonstrated promising results for speaker detection

using both static Bayesian networks [11] (BNs) and, more

recently, DBNs [6].

Learning the parameters of a DBN model is a key step

in the development of an effective system. The complexity

of these models and the number of free parameters make

hand-tuning impractical. Maximum likelihood (ML) learn-

ing is the most common approach, in which model param-

eters are adjusted to achieve the best fit to a set of train-

ing data. Unfortunately there is no guarantee that a model

which fits its training data well will make a good classifier.

However, a recent learning technique known as boosting

makes it possible to improve the accuracy of a weak clas-

sifier through error-feedback and the optimal combination

of multiple classifiers [13]. Boosting algorithms develop a

series of classifiers that concentrate on the errors made by

their predecessors, thereby improving performance.

This paper describes a novel learning algorithm for

DBNs that uses boosting to improve recognition accuracy.

We refer to this new model as an error feedback DBN or

EFDBN. It combines boosting with ML learning for esti-

mating the model parameters. We demonstrate the utility

of this new learning approach in the context of speaker de-

tection. Our experiments show that the EFDBN is superior

to conventional ML-based DBN models, and that both are

superior to static BNs. On a test set of five sequences we



achieve an accuracy of 90%. These promising results sug-

gest the general applicability of EFDBN to other problems

in which BN and DBN models are in use.

The rest of the paper is organized as follows. We be-

gin by introducing the problem of multi-sensor fusion for

speaker detection in Section 2, followed by a brief re-

view of the previous static and dynamic BN approaches.

Section 3 formally addresses the classical ML learning in

DBNs. In Section 5 we define our EFDBN learning frame-

work from the prospective of boosting and discuss its rela-

tion to other similar schemes. Section 6 describes the ex-

periments on speaker detection using the three frameworks

(static BN, DBN, and EFDBN.) Lastly, we provide some

final discussion of the framework and the results, followed

by the future research directions.

2. Speaker Detection

Speaker detection is an important component of open-

mike speech-based user-interface. For any interface which

relies on speech for communication, an estimate of the per-

sons state (whether he/she is or isn’t a speaker) is important

for its reliable functioning. We argue that for a person to

be an active user (speaker), he must be expected to speak,

facing the system and actually speaking. Visual cues can be

useful in deciding whether the person is facing the system

and whether he is moving his lips. However, they are not

capable on their own to distinguish an active user from an

active listener (listener may be smiling or nodding). Audio

cues, on the other hand, can detect the presence of relevant

audio in the environment. Unfortunately, simple audio cues

are not sufficient to discriminate a user in front of the sys-

tem speaking to the system from the same user speaking to

another individual. Finally, contextual information describ-

ing the “state of the world” also has bearing on when a user

is actively speaking. For instance, in certain contexts the

user may not be expected to speak at all. Hence, audio and

visual cues as well as the context need to be used jointly to

infer the active speaker.

The Smart Kiosk [10, 4] developed at Compaq’s Cam-

bridge Research Lab (CRL) provides an interface which al-

lows the user to interact with the system using spoken com-

mands. The public, multi-user nature of the kiosk appli-

cation domain makes it ideal as an experimental setup for

speaker detection task. The kiosk (see Figure 1) has a cam-

era mounted on the top that provides visual feedback. A

microphone is used to acquire speech input from the user.

This setup forms an ideal testbed for our problem.

We have analyzed the problem of speaker detection in a

specific scenario of the Genie Casino Kiosk. This version

of kiosk simulates a multiplayer blackjack game (see Fig-

ure 7 for a screen capture.) The user uses a set of spoken

commands to interact with the dealer (kiosk) and play the

Figure 1. The CRL Smart Kiosk

game.

Audio and visual information can be obtained directly

from the two kiosk sensors. We use a set of five “off-

the-shelf” visual and audio sensors: the CMU face detec-

tor [12], a Gaussian skin color detector [15], a face tex-

ture detector, a mouth motion detector, and an audio silence

detector. A detailed description of these detectors can be

found in [11]. Contextual sensor provides the state of the

environment which may help in inferring the state of the

user. Contextual information can tell whether the user is

expected to speak or not.

2.1. Bayesian Networks for speaker detection

The speaker detection problem represents a challenging

ground for testing the representational power of DBN mod-

els and more specifically the EFDBN algorithm in a com-

plex multi-sensor fusion task. Different types of sensors

need to be seamlessly integrated in model that both reflects

the expert knowledge of the domain and the sensors and

benefits from the abundance of observed data. We approach

the model building task by first tackling the expert design of

networks that fuse individual sensor groups (video and au-

dio). We then proceed with the integration of these sensor

networks with each other, with contextual information, and

over time. Finally, data-driven aspect comes into play with

data-driven parameter learning.

The graph in Figure 2 shows the vision network for this

task. This network takes the binary output of the sensors

(skin color detector, face detector and texture detector) and

outputs the query variables corresponding to visibility and

the frontal information of the user.

The silence detector and the mouth motion detector are

used to infer whether the user is talking. The audio network
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Figure 2. Vision Network

selected for this task is shown in Figure 3. It takes the input

from the sensors and outputs the probability that the audio

present in the environment corresponds to the user.

Mouth Motion Silence Detector

Audio

Figure 3. Audio network for speaker detection.

Once constructed, the audio and visual networks are

fused to obtain the integrated audio–visual network. At this

stage one would also like to incorporate any information the

environment may play in deciding the user’s state. The con-

textual information (state of the blackjack game), together

with the visual and audio subnetworks is now fused into a

single net through the virtue of the speaker node, as shown

in Figure 4. The chosen network topology represents our

knowledge that both audio, visual, as well as contextual

conditions need to be met for the decision on the presence

of the speaker to be made.

Visible Frontal

Face DetectorTexture DetectorSkin Detector

Speaker

Audio
Contextual

Information

Silence DetectorMouth Motion

Figure 4. Integrated audio-visual network.

The final step in designing the topology of the speaker

detection network involves its temporal aspect. Measure-

ment information from several consecutive time steps can

be fused to make a better informed decision. This expert

knowledge becomes a part of the speaker detection network

once the temporal dependency shown in Figure 5 is im-

posed. The presence of all possible arcs among the three

nodes stems from our lack of exact knowledge about these

temporal dependencies, i.e., we allow for all dependencies

to be present and later on determined by the data.

Incorporating all of the above elements into a single

structure lead to the DBN shown in Figure 6. Here the nodes

Speaker

Audio Audio

FrontalFrontal

Speaker
(t-1)

(t-1)

(t-1)

(t)

(t)

(t)

Figure 5. Temporal dependencies between the speaker,

audio, and frontal nodes at two consecutive time instances.

shown in dotted lines are the direct observation nodes while

the ones in solid are the unobserved nodes. The speaker

node is the final speaker detection query node.
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Figure 6. Two time slices of the dynamic Bayesian net-

work for speaker detection.

It has been shown in [11] and [6] how both the speaker

detection models based on the static BN, similar to the one

in Figure 4, and the DBN in Figure 6 can be learned from

data using standard ML learning techniques and then effec-

tively utilized to fuse multi-sensory information. The DBN

framework has been show in [6] to outperform the static

one mainly due to the existence of temporal links but also

because of the presence of contextual information. A sig-

nificant improvement of 15% in speaker detection error rate

was reported. Further improvements occured when higher

order temporal dependencies were introduced through du-

ration density DBNs.

3. ML Learning in Dynamic Bayesian Net-

works

Dynamic Bayesian networks are a class of Bayesian net-

works specifically tailored to model temporal consistency

present in some data sets. In addition to describing de-

pendencies among different static variables DBNs [5] de-

scribe probabilistic dependencies among variables at differ-



ent time instances. In general, a DBN has a specific struc-

ture shown in an example in Figure 6. A set of random

variables at each time instance � is represented as a static

BN. Out of all the variables in this set temporal dependency

is imposed on some. Namely, distribution of some variable✁✄✂✆☎ ✝
at time � depends on a variable at time �✟✞✡✠ , ✁✄☛☞☎ ✝✍✌✏✎

through some conditional distribution Pr ✑ ✁✒✂✆☎ ✝✔✓ ✁✕☛✖☎ ✝✍✌✗✎✔✘ . An

example of this structure is depicted in Figure 6. Finally,

some variables at each time slice are considered to be ob-

servable (sensor measurements) and are usually denoted by✙ ✝ . The rest of the variables can but need not be observed.

Probability distribution among all variables in a DBN can

in general be written as Pr ✑ ✙ ✎✒✚✄✛✔✛✄✛✜✚ ✙✣✢ ✚ ✁ ✎✒✚✄✛✔✛✄✛✔✚ ✁✤✢✥✘✧✦
Pr ✑ ✁ ✎ ✘ Pr ✑ ✙ ✎ ✓ ✁ ✎ ✘✩★ ✢✝✫✪✭✬ Pr ✑ ✁ ✝ ✓ ✁ ✝✍✌✏✎ ✘ Pr ✑ ✙ ✝ ✓ ✁ ✝ ✘ . Each of

the Pr terms can be either a table of probabilities of some

parametric pdf. In both cases, they yield a set of model pa-

rameters, which we denote by ✮ . In general, ✮ consists of

three types of parameters: transition probability parameters✯
, static BN parameters ✰ , and initial state distribution ✱ .

Inference in DBNs is concerned with finding the distri-

butions (i.e., estimates ✲✁✤✝ ) of unobserved variables
✁✤✝

given

the measurements
✙✳✎ ✚✔✛✔✛✄✛✜✚ ✙ ✢ . Thanks to its constrained

topology efficient algorithms such as the forward-backward

propagation [2] can be employed for this task.

ML learning in DBNs is a special case of ML learning in

general BNs. The goal is to maximize the likelihood of ob-

served variables by varying the model’s parameters. Given

the DBN pdf it is easy to formulate the ML learning as

✮✵✴ ✦✷✶✣✸☞✹✻✺✼✶✾✽✢❀✿✒❁ ✝✆❂ Pr ✑ observed variables
✓ ✮ ✘ ✛ (1)

The optimization usually has a closed-form solution when

all the variables in the DBN are visible and the optimal val-

ues of three parameters
✯

, ✰ , and ✱ are independent. If

some of the variables ( ❃ ) are hidden, the closed-form solu-

tion is usually replaced by an iterative procedure known as

the expectation-maximization or EM:

Get initial guess of ✮❅❄ ;
do

Infer hidden variables ✲✁ ✝ from measurements✙ ✎✒✚✄✛✔✛✄✛✜✚ ✙✣✢ using model ✮✵❆ ;✮ ✴❆✕❇ ✎ ✦✷✶✣✸☞✹❈✺✼✶❉✽❊✢❋✿✒❁ ✝✆❂ Pr ✑ ✙ ✎✒✚✔✛✄✛✔✛✄✚ ✙ ✝●✚ ✲✁ ✎✾✚✔✛✔✛✄✛✔✚ ✲✁✄✢❍✓ ✮ ✘ .
until ( convergence )

Because three types of parameters are present,
✯

, ✰ , and ✱ ,

the iterations can be formulated such that all parameters are

updated at one time or only some of them are updated while

the others are held fixed. It is important to note that in this

case the optimal values of parameters can depend on each

other.

4. Classification Error and Boosting

ML estimators have an undeniable appeal. The argu-

ments in favor of ML estimation are based on the assump-

tion that the form of the underline distribution is known,

and that only the value of the parameters characterizing the

distribution is unknown. However, maximizing the likeli-

hood does not necessarily lead to minimum classification

error, an important criterion in problems such as multi-

sensor speaker detection.

Recently, Schapire et al. [13] have proposed method

called boosting aimed at improving the performance of any

weak classifier. In particular, they have derived an algo-

rithm called Adaboost that “boosts” the classification on a

set of data points by linearly combining a number of weak

classifiers, each of which is trained to correct “mistakes” of

the previous one.

More formally, consider a binary classification problem

with data given by ■ ✦✡❏ ✑ ✁❉✎ ✚ ✙❑✎✔✘ ✚✔✛▲✛▲✛▼✚ ✑ ✁✤◆ ✚ ✙✣◆❖✘●P . Here
✙◗✂

is

a feature vector and
✁✒✂

is the desired label (or ground truth).

The goal of the learning algorithm is to find a hypothesis

(classifier) ❘❚❙❱❯✧❲❳■ that minimizes misclassification. In

a binary classification scenario,
✁❩❨❬❏✾❭ ✠ ✚ ✞✵✠ P , Adaboost

can be described as

Given: ❪ ✦❫❏ ✑ ✁✾✎ ✚ ✙❑✎✔✘ ✚✔✛▲✛▲✛▼✚ ✑ ✁✤◆ ✚ ✙✣◆❴✘●P ✚ ✙✣✂❵❨❜❛ ✚ ✁✤✂❵❨❝❏ ✞✵✠ ✚ ❭ ✠ P ;
Initialize distribution over data pairs ❞❢❡ ✎❤❣✐ ✑✫❥ ✘❈✦ ✠✒❦✒❧ ;
For ♠ ✦ ✠ ✚✔✛▲✛▼✛▲✚☞♥♦ Train hypothesis ❘❀❆ using data ❪ with distribution ❞❢❡ ❆ ❣✐ .♦ Choose ♣✥❆ ✦ ✎✬❈q▲rts ✎●✌✗✉✇✈✉ ✈②①

where ③✕❆ ✦ ❞❖④ ✂⑥⑤✏⑦⑨⑧ ✈❤⑩❶❸❷ ❘❀❆✳✑ ✙ ✂ ✘❅❹✦❺✁ ✂✆❻♦ Update: ❞ ✐ ✑✇♠ ❭ ✠ ✘ ✑✆❥ ✘❈✦ ⑦ ⑧ ✈❤⑩❶ ❡ ✂▼❣✄❼✍❽✜❾ ❡ ✌✗❿ ✈✜➀➂➁ ✿ ✈ ❡▼➃ ➁ ❣✫❣➄ ✈
where ➅➆❆ is the normalization factor.

The final hypothesis is➇ ✑ ✙❱✘❈✦②✁ ❥➉➈❑➊ s✤➋➍➌❆ ✪⑨✎ ♣➎❆❉❘❀❆✳✑ ✙❱✘ ①
Adaboost has a number of appealing properties. It can

been shown that if the weights ( ♣❵❆ ) are chosen in the way

described above than the training error is bounded by➏ ❆➑➐➓➒❱➔ ③ ❆ ✑➂✠→✞➣③ ❆ ✘✍↔ ✛ (2)

Hence, if the weak hypotheses are slightly better than the

chance, the training error decreases exponentially fast. Ad-

ditional bounds on the generalization error can also be de-

rived [13]. It has also been shown empirically that Adaboost



has a good generalization property, unless the number of

hypothesis becomes too large. Extensions of Adaboost to

multilabel and soft classification problems have also been

reported.

5. Error Feedback DBNs

Consider the training data ❪ ✦ ❏ ✑ ✁ ✎✒✚ ✙ ✎ ✘ ✚✔✛▲✛▼✛▲✚ ✑ ✁ ◆ ✚ ✙ ◆ ✘✕P ,
and the DBN shown in Figure 6. The modified goal of DBN

learning can now be described as: given data ❪ obtain DBN

model ✮ ✦ ✑ ✯ ✚ ✰ ✚ ✱ ✘ , which minimizes the probability of

classification error in
✁

on dataset ❪ . EFDBN algorithm for

this setting can now be formulated as follows.

Given: ❪ ❏ ✑ ✁ ✎✒✚ ✙ ✎ ✘ ✚✔✛▲✛▼✛▲✚ ✑ ✁✄✢ ✚ ✙◗✢⑨✘●P ✁
where ✙ ✝ is an observation vector and ✁ ✝ is

the corresponding label of the hidden state

Initialize ❞✻❡ ✎❤❣✐ ✑✫❥ ✘❈✦ ✠✒❦✾❧ ;

For ♠ ✦ ✠ ✚✔✛▲✛▼✛▲✚☞♥♦ Train static BN1 with ✁ ✝ as the root node

to obtain ✰❖❆ .
Use ❞✻❡ ❆ ❣✐ as the weight over the training samples.♦ Use the DBN learning algorithm to obtain the
the transition probability matrix

✯
for fixed ✰✵❆ .♦ Use the learned DBN, ✮ ✦ ✑ ✯ ✚ ✰ ✝✕✚ ✱ ✘ to

decode the hidden state sequence ✑✜✲✁ ✎❉✚✔✛▲✛▲✛ ✲✁✤✢⑨✘
given ✑ ✙❑✎ ✚✔✛▲✛▼✛▲✚ ❃ ✢ ✘ as the input:✲✁✄✝➎✦✄✂ ④✤➈✳❧ ✂ ❃ ✂ ❞✼✑ ✁✔✝❵✦ ❥ ✓ ✙❑✎ ✚ ❃ ✬ ✚✔✛▲✛▼✛ ❃ ✢ ✘♦ Choose ♣ ❆ ✦ ✎✬➆q▼r s ✎✕✌❋✉ ✈✉✇✈❫①

where ③ ❆ ✦ ❞❖④ ✝✆⑤✏⑦ ⑧ ✈❤⑩❶ ❷ ✲✁✄✝ ❹✦②✁✄✝ ❻♦ Update:

if ✲✁ ❆ ✦❺✁ ❆ then❞✻❡ ❆✕❇ ✎❤❣✐ ✑✆� ✘➆✦ ⑦ ⑧ ✈❤⑩❶ ❡ ✝✫❣✜❼✍❽✜❾ ❡ ✌❋❿❑✈✕❣➄ ✈
else❞✻❡ ❆✕❇ ✎❤❣✐ ✑✆� ✘➆✦ ⑦ ⑧ ✈❤⑩❶ ❡ ✝✫❣✜❼✍❽✜❾ ❡ ❿◗✈✜❣➄ ✈
where ➅ ❆ is the normalization factor.

The final HMM model is ☎ ✦ ✑ ✯ ✚ ✰ ✚ ✱ ✘
where ✰ ✦ ➋✝✆✈✟✞✡✠ ❿◗✈☞☛✏✈➋✝✆✈✟✞✡✠ ❿❑✈

The algorithm maintains a weight distribution defined

over the data. It starts by assigning equal weight to all the

1During training all the nodes of the BN are considered to be observ-

able. If that is not the case, EM algorithm needs to be used for learning the

BN with the hidden nodes.

samples. As the algorithm proceeds, the weight of correctly

classified samples is decreased whereas that of misclassified

ones is increased. Our observations show that the points

where the error is made are normally the points which were

classified with low confidence.

At each iteration, algorithm obtains an observation den-

sity matrix ✰ ❆ using the present distribution over the data

given by ❞✻❡ ❆ ❣✐ . The DBN learning algorithm gives an esti-

mate of the transition probability matrix
✯

, for which all

the sample are considered to be equally probable. Once

DBN is trained, we use a DBN inference algorithm to de-

code the hidden state sequence. During decoding we obtain

the most likely state, at any time, for the given observation

sequence. This estimated state is compared with the true

state, the discrepancy of which corresponds to an error. The

final DBN model uses the weighted sum of individual ob-

servation probability matrices. The weight of the individual

probability matrix is a function of the expected error made

by that model. This DBN is now used for classification.

Since ✰ ❆ gives the confidence in a certain state and not the

binary decision, we need to modify the way we are measur-

ing the error: ③✕❆ ✦✄✌ ✝✆⑤✭⑦ ⑧ ✈☞⑩❶ ❷ ❘ ✝ ✁ ✝➉❻➉✚ (3)

where ❘ ✝ ✦ ✑ ➒ ✍ ❞❖④❊✑✜✲✁ ✝ ✓ ✙ ✎✒✚✄✛▼✛▲✛▼✚ ✙✣✢⑨✘ ✞ ✠ ✘ (i.e., ❘ ✝ ❨ ❷ ✞✵✠ ✚ ❭ ✠ ❻ .)
It has been shown in [13] that the bound on training error

of Eqn 2 still holds. This algorithm can be extended eas-

ily to the case when ✁ ✂ takes multiple values by using the

multiple class version of Adaboost [13].

Algorithms similar in flavor to ours have appeared in

recent literature. In [1], the authors suggested the use of

corrective training for improving the performance of hid-

den Markov models (simple DBNs) in a speech recognition

framework. While improved performance compared to the

standard HMM classification was reported, certain conver-

gence issues remained at stake. The use of Adaboost to train

the hybrid HMM/neural network speech recognizer was re-

cently reported in [14]. The Adaboost was utilized to en-

hance the performance of the neural network measurement

model, hence resulting in better overall recognition perfor-

mance.

6. Experiments and Results

We conducted three experiments using a common data

set. The data set comprised of five sequences of a user play-

ing the blackjack game in the Genie Casino Kiosk setup.

The exerperimental setup is depicted in Figure 7. The se-

quences were of varying duration (from 2000 samples to

3000 samples) totaling to 12500 frames. Figure 8 shows

some of the recorded frames from the video sequence. Each

sequence included audio and video tracks recorder through

a camcorder along with frequency encoded contextual in-
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Figure 7. Data collection set-up for Genie Casino kiosk.

formation (see Figure 7.) The visual and audio sensors were

then applied to audio and video streams. Because some of

the sensors provide continuous estimates of their respec-

tive functions, decision thresholds were determined for each

sensor that yield binary sensor states (e.g., silence v.s. no si-

lence.) These discretized states were then used as input for

the DBN model. Examples of individual sensor decisions

(e.g., frontal v.s. non frontal, silence v.s. non silence, etc.)

are shown in Figure 9. Abundance of noise and ambiguity

in these sensory outputs clearly justifies the need for intelli-

gent yet data-driven sensor fusion.

Figure 8. Three frames from a test video sequence.

6.1. Experiment Using Static BN

The first experiment was done using the static BN of Fig-

ure 4 to form the baseline for comparison with the dynamic

model. In this experiment all samples of each sequence was

considered to be independent of any other sample. Part of

the whole data set was considered as the training data and

rest was retained for testing. During the training phase, out-
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Figure 9. Figure (a) shows the ground truth for the

speaker state. 1 means that there is a speaker and 0 means

an absence. x axis gives the frame no. in the sequence. (b)

gives the contextual information. 1 means, its users turn

to play where as 0 means the computer is going to play.

(c),(d),(e),(f) are the output of texture, face, mouth motion

and silence detector respectively.

put of the sensors along with the hand label values for the

hidden nodes (speaker, frontal and audio) were presented to

the network.

During testing only the sensor outputs were presented

and inference was done to obtain the values for the hidden

nodes. Mismatch in any of the three (speaker, frontal, au-

dio) is considered to be an error. Cross validation was done

by choosing different training and test data. An average

accuracy of �✂✁☎✄ is obtained (see Figure 10 for results on

individual sequences.) The accuracy obtained is low. The

Figure 10. A comparison between the results obtained

using static BN, DBN, EFDBN

sensor data (as shown in Figure 9) is noisy and it is hard

to infer the speaker without making substantial errors. Fig-

ure 11(a) shows the ground truth sequence for the state of

the speaker and (b) shows the decoded sequence using static



BN. On the other hand, temporal consistency in the query

state (speaker ground truth) indicates that a model should

be built that exploits this fact.

6.2. Experiment Using DBN

Second experiment was conducted using the DBN

model. At sequence level data was considered independent

(e.g. seq1 is independent of seq2.) The learning algorithm

described in Section 3 was employed to learn the dynamic

transitional probabilities among frontal, speaker, and audio

states. During testing phase a temporal sequence of sen-

sor values was presented to the model and Viterbi decoding

(c.f. [9]) was used to find the most likely sequence of the

speaker states. Overall, we obtained the accuracy of the

speaker detection (after cross validation) of about �✂✁☎✄ , an

improvement of ✠ ✁✂✄ over the static BN model. An indica-

tive of this can be seen in actual decoded sequences. For

instance, decoded sequence using the DBN model in Fig-

ure 11 is obviously closer to the ground truth than the one

decoded using the static model. The improved performance

by the use of DBN stems from the inherent temporal corre-

lation present between the features.

6.3. Experiment using EFDBN

Our final experiment employed the newly designed

EFDBN framework. The learning algorithm described

in Section 5 was used. For a training sequence, we used

EFDBN to estimate the parameters which minimized the

classification error. A leave-one-out crossvalidation re-

sulted in the overall accuracy of ✄✂✁ ✛ ☎ ✄☎✄ . Figure 10 sum-

marizes classification results on individual sequences. We

see that for all the sequences, an improvement of ✁✵✞✷✠✆✁☎✄
over the best DBN result is obtained.

One additional issue deserves our comment: “Unless a

classifier performs well on the training data, it cannot be ex-

pected to do a great job on the test data”. During DBN train-

ing, we found the accuracy of classification on the training

set of about � ➒ ✄ . This implies that one should not expect

anything better than � ➒ ✄ on the test data (provided training

data is a representative of the test data). Fortunately, this

is where boosting comes into play. It takes a weak classi-

fier (which showed poor performance on the training data)

and enhances its performance. In our case, by doing boost-

ing, we were able to improve the performance on the train-

ing data to as much as ✄ ☎ ✄ . As expected, we also found a

greatly improved performance on the test data.

The DBN model learned using the EFDBN framework

was also applied to the prediction of hidden states. An over-

all accuracy of �✝� ✄ was obtained. This indicates, together

with the previously noted results, that EFDBN significantly

improves the performance of simple DBN classifiers.

7. Discussions and Conclusions

We have presented a general purpose error-feedback

learning framework for DBNs. The results obtained for the

difficult problem of speaker detection where a number of

noisy sensory outputs need to be fused indicate the utility of

this algorithm. Significant improvements in classification

accuracy over a simple DBN model were achieved with-

out sacrificing of complexity of the learning algorithm. We

have also demonstrated a general purpose approach to solv-

ing man-machine interaction tasks in which DBNs are used

to fuse the outputs of simple audio and visual sensors while

exploiting their temporal correlation.

In future work, we will focus on extending the boosting

to encompass the transition parameters. Our initial experi-

ments indicate that convex combination of transition matri-

ces obtained in a manner similar to the one used for obser-

vation matrix ✰ does not yield significant improvements in

performance. We will also like to point that the bound on

the error (given in Eqn 2) may no longer hold because of

the temporal dependence between the data2 . Our current

research focuses on obtaining the bounds for this case.
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