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Abstract—We present a multimodal open-set speaker identifica-
tion system that integrates information coming from audio, face
and lip motion modalities. For fusion of multiple modalities, we
propose a new adaptive cascade rule that favors reliable modality
combinations through a cascade of classifiers. The order of the clas-
sifiers in the cascade is adaptively determined based on the relia-
bility of each modality combination. A novel reliability measure,
that genuinely fits to the open-set speaker identification problem,
is also proposed to assess accept or reject decisions of a classifier. A
formal framework is developed based on probability of correct de-
cision for analytical comparison of the proposed adaptive rule with
other classifier combination rules. The proposed adaptive rule is
more robust in the presence of unreliable modalities, and outper-
forms the hard-level max rule and soft-level weighted summation
rule, provided that the employed reliability measure is effective in
assessment of classifier decisions. Experimental results that sup-
port this assertion are provided.

Index Terms—Classifier combining, modality reliability, multi-
modal speaker identification.

1. INTRODUCTION

LTHOUGH performances of different biometric tech-
nologies for speaker identification have been extensively
studied individually, there is relatively little work reported in
the literature on the fusion of various biometric technologies
[1]. Audio is probably the most natural modality to identify
a speaker. However, video also contains important biometric
information, which includes still frames of face and temporal
lip motion information that is correlated with the audio. Most
speaker identification systems rely on audio-only data [2].
However, especially under noisy conditions, such systems are
far from being perfect for high security applications. The same
observation is also valid for systems using only visual data;
where poor picture quality, changes in pose and lighting con-
ditions or varying facial expressions may significantly degrade
performance [3], [4]. Hence, a robust and precise solution
should employ all available sources of information in a unified
scheme.
The general speaker identification problem can be formulated
as either an open-set or a closed-set identification problem. In
the closed-set problem, a reject scenario is not defined and an
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unknown speaker is classified as one of the N registered people.
In the open-set problem, the objective is, given the data of an
unknown person, to find whether the person is registered in the
database or not; the system identifies the person if there is a
match and rejects otherwise. Hence, the problem can be thought
of as an N + 1 class identification problem, including also a
reject class. Open-set identification has a variety of applica-
tions such as the authorized access control for computer and
communication systems, where a registered user can log onto
the system with her/his personalized profile and access rights.
We can further classify the speaker identification problem as
text-dependent and text-independent depending on the audio
content. In the text-independent problem, identification is per-
formed over a content free utterance of the speakers, whereas in
the text-dependent problem, each speaker is expected to utter a
personalized secret phrase for the identification task. Particular
attention needs to be paid in the latter case to handle impostor
identity claims and the system has to be robust against unautho-
rized attempts to use the secret phrase of a registered speaker.
The design of a multimodal identification system requires
addressing three basic issues. The first one is to decide which
modalities to fuse. The word “modality” can be interpreted in
various ways; in speaker identification it usually refers to a spe-
cific type of information that can be deduced from biometric
signals. In this sense, speech, i.e. the content, and voice can be
interpreted as two different, though correlated, modalities ex-
isting in audio signals. Likewise, video signal can be split into
different modalities, face and motion being the major ones. The
dominant modality in the motion of a speaking person is nat-
urally the lip movement which is highly correlated with audio
whereas gesture (or gait) could also be interpreted as a sepa-
rate but less significant modality for speaker identification. The
second issue is how to represent the raw biometric data for each
modality with a discriminative and low-dimensional set of fea-
tures and, in conjunction with this, to find the best matching
metric in the resulting feature space for classification. This step
also includes a training phase through which each class is rep-
resented with a statistical model or a representative feature set.
Curse of dimensionality, computational efficiency, robustness,
invariance, and discrimination capability are the most impor-
tant criteria in selection of the feature set and the classification
methodology for each modality. The third issue is how to fuse
different biometric signals. Different strategies are possible: In
the so-called “early integration” modalities are fused at data or
feature level, whereas in “late integration” decisions or scores
resulting from each unimodal classification are combined to
give the final conclusion [5], [6]. This latter strategy is also re-
ferred to as decision or opinion fusion and is effective especially
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in case the contributing modalities are uncorrelated and thus the
resulting partial decisions are statistically independent. Early in-
tegration techniques on the other hand, if adequately used, can
be favored if a couple of modalities is highly correlated as in
the fusion of audio and lip movement. Multimodal decision fu-
sion can also be viewed from a broader perspective as a way of
combining classifiers, which is a well-studied problem in pat-
tern recognition. The main motivation here is to compensate
possible misclassification errors of a certain classifier with other
available classifiers and to end up with a more reliable overall
decision. Misclassification errors are in general inevitable due
to numerous factors such as environmental noise, measurement
and modeling errors or time-varying characteristics of signals.
A comprehensive survey and discussion on classifier combina-
tion techniques can be found in [7].

Multimodal speaker recognition systems existing in the
literature are mostly bimodal, in the sense that they integrate
multiple features from audio and face information as in [8]—[13]
or from audio and lip information as in [14]-[16]. There are
recent efforts to build multimodal databases, such as [17],
which will provide valuable resources for the multimodal
person recognition systems. The speaker identification and/or
verification schemes proposed in [8], [11], [13]-[15], [18]
are basically opinion fusion techniques that combine multiple
expert decisions through adaptive or nonadaptive weighted
summation of scores, whereas in [12] and [16], fusion is carried
out at feature-level by concatenating individual feature vectors
so as to exploit the temporal correlations that may exist be-
tween audio and video signals. The concurrent works [9], [10]
use decision-level fusion for the verification problem, where
scores resulting from each classifier are concatenated to form
a feature vector, which is then fed into another classifier, e.g.
a median radial basis function (MRBF) network as in [10] or
support vector machines and Bayesian classifier as in [9]. The
only work in the literature that addresses a multimodal speaker
identification system using audio, face and lip motion at the
same time is the one presented in [18]. In [18], the lip motion
is represented by DCT coefficients of the optical flow vectors
computed from lip frames extracted from the video signal. Face
and lip features are stored as biometric templates and classified
through a set of algorithms, so-called synergetic computer. The
acoustic information on the other hand is represented by cep-
stral coefficients that are then classified by vector quantization
using a minimum distance classifier.

In this paper, we present a new multimodality fusion strategy
where some of the modalities might be corrupted by measure-
ment noise and/or modeling errors. The basic idea is that a single
highly reliable modality alone may sometimes yield a correct
decision, whereas its linear fusion with some other less reli-
able modality may give incorrect results. On other occasions,
results obtained by fusion of two modalities may outperform
those obtained from each modality alone. Hence, our proposed
scheme considers all possible linearly fused modality combi-
nations (including single modalities) with their corresponding
reliability measures, and aims at maximizing the benefit of mul-
timodal fusion so that the upper bound for the system error
rate becomes the expected occurrence rate of the cases where
all classifier combinations fail. Thus, a critical feature of our

system is to be able to adaptively assess each modality classi-
fier with a reliability measure. There exist different approaches
to measure reliability, such as taking into account statistical dis-
persion of scores [14], score rank correlation [11], time-varying
stream reliability prediction by matching the test data to models,
and predictability of the score stream [13] or noise level of the
input signal [8]. The common way of incorporating these relia-
bility values into decision fusion is to use them as weighting
coefficients and to compute a weighted average of classifier
output scores. When the output scores correspond to some prob-
ability or likelihood values in logarithmic domain, one can argue
that the geometric average is the optimal fusion strategy in the
Bayesian sense, given that the classifier decisions are statisti-
cally independent and free of modeling and measurement er-
rors [19]. However, the optimality becomes questionable when
the geometric average is weighted with reliability values to take
errors into account. Weighting by reliability approach is usu-
ally formalized by using possibility and fuzzy set theory [20],
trying to approximate probabilistic likelihoods from classifier
opinions; there is in fact no formal justification that this strategy
will probabilistically produce a minimum error classifier. In this
work, we regard reliability as a means of giving priority to some
single or combined modality in the fusion process, rather than
using it as a numerical weight.

The main contributions of this paper to the multimodal
speaker identification problem are the following.

i) We propose a new adaptive cascade rule for fusion of mul-
tiple modalities. The proposed rule uses an ordered cas-
cade of classifiers each of which corresponds to a single
modality or a linearly fused combination of modalities.
The order of classifiers in the cascade is based on the es-
timated reliability of each modality, such that the goal is
not to fail whenever at least one of the classifiers gives the
correct accept or reject decision.

ii) We propose a new reliability measure to assess decisions
of a classifier under both reject and accept scenarios. We
also develop criteria that a good reliability measure has to
meet.

iii) We develop a formal framework based on probability
of correct decision for comparison of different classi-
fier combination rules. We show analytically that the
proposed rule outperforms the hard-level max rule and
the soft-level weighted summation rule, provided that
the employed reliability measure is effective enough in
assessment of classifier decisions.

iv) The proposed multimodal speaker recognition system
addresses the text-dependent open-set identification
problem where the presence of a reject class necessitates
specific considerations for the fusion process. Only a few
multimodal speaker identification schemes proposed in
the literature address the open-set identification problem,
such as [11].

In Section II, we describe the probabilistic framework that
we use for the open-set speaker identification problem, and dis-
cuss some critical problems with the fusion strategies that are
commonly used in the literature. We present the proposed adap-
tive cascade rule for multimodal fusion in Section III together
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with our reliability measure. We also introduce an error analysis
scheme for comparison of the proposed rule with others. The
details of the error analysis are provided in the Appendix. We
describe the feature extraction and unimodal classification tech-
niques that we use separately for audio, lip, fused audio-lip and
face modalities in Section IV. Experimental results are presented
and discussed in Section V, and finally concluding remarks are
given in Section VL.

II. THEORETICAL FRAMEWORK
A. Unimodal Open-Set Identification

The speaker identification problem is often formalized within
a probabilistic framework. The maximum a posteriori proba-
bility solution to the N-person open set problem requires com-
puting P(A,|f) for each class A,, n = 1,..., N + 1, given
a feature vector f representing the sample data of an unknown
individual. Alternatively, we can employ the maximum likeli-
hood solution, which maximizes the class-conditional proba-
bility, P(f|An), forn = 1,..., N + 1. Since it is difficult to
accurately model the imposter class, Ay 41, we employ the fol-
lowing solution which includes a reject strategy through the def-
inition of the likelihood ratio

_ P(fM)
P()\n) = log m = 10gp(f|)‘n) — log P(ﬂ/\NH()i)

The decision strategy can then be implemented in two steps.
First, determine

Ax = argmax p(Ay) 2)
Al AN
and then
if p(As) > 7, accept 3)
otherwise, reject

where 7 is the optimal threshold which is usually determined
experimentally to achieve the desired false accept or false reject
rate.

Computation of class-conditional probabilities needs a prior
modeling step, through which a probability density function of
feature vectors is estimated for each class n = 1,..., N by
using available training data. A common and effective approach
to model the impostor class is to use a universal background
model, which is estimated by using all available training data
regardless of which class they belong to.

B. Multimodal Decision Fusion

When more than one information source is available, the
fusion of information from different sources can reduce overall
uncertainty and increase the robustness of a classification
system. Suppose that P different classifiers, one for each of
the P modalities f,, f,,..., fp, are available. As described
above, each classifier, say the pth classifier, produces a set
of N-class log-likelihood ratios p,(\,), n = 1,...,N. The
problem then reduces to computing a single set of joint log-like-
lihood ratios p(A1), p(A2),. .., p(AN) for these P modalities.
In the Bayesian framework, assuming that f;, fo,..., fp are
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statistically independent, the joint log likelihood ratio is given
by the sum of the individual ratios

/)()‘n) zlog P(f1|/\n) P(fP|/\n) :pr()\n)
P(filAN41)--- P(fplAns1) %

“)
which is equivalent to the so-called product rule [7]. In practice,
there are three main problems with the optimality of this rule.
First, partial decisions coming from different classifiers may be
correlated. Second, due to modeling errors and/or measurement
noise, the estimated distribution model of training features, i.e.,
P(f,|An), may not always comply with the actual distribution
of test features. Third, the impostor model, i.e., P(f,[An 1), is
a mere approximation of the reality. As a result, the log likeli-
hood ratios coming from separate classifiers should each be con-
sidered as an opinion or a likelihood score rather than a prob-
abilistic value. The statistics and the numerical range of these
likelihood scores mostly vary from one classifier to another, and
thus they need to be normalized into the interval (0,1) before
the fusion process, using methods such as sigmoid and variance
normalization. Unfortunately there is no formally “correct” or
optimal way of normalization, which is investigated in detail in
[21]. In this paper, a sigmoid normalization is used as in [8],
which maps likelihood ratios to the (0,1) interval by normal-
izing the likelihood ratio p using the function

o) = [1 4 (=] 5)

where 1 and o are the mean and the standard deviation of the
likelihood ratio p over the accept subjects, respectively.

In order to cope with the above problems, various approxi-
mation approaches have been proposed in the literature as al-
ternatives to the product rule (i.e., the sum rule in log domain)
such as max rule, min rule and reliability-based weighted sum-
mation. In fact, the most generic way of computing joint ratios
(or scores) can be expressed as a weighted summation

P
p()\n):prpp()\n), forn=1,2,...,N ©)
p=1

where w,, denotes the weighting coefficient for modality p, such
that > »wp = 1. Then, the fusion problem becomes finding the
optimal weight coefficients. Note that when w, = (1/P)Vp,
(6) is equivalent to the product rule. Most of the existing clas-
sifier fusion schemes [7], [22] actually vary in the way they
interpret the weighting coefficients in (6). On one side, there
are hard-level combination techniques such as max rule, min
rule, and median rule [7] that use binary values for assignment
of the weighting coefficients. These techniques combine deci-
sions rather than likelihood scores and in this way try to filter
out some of the erroneous likelihoods. The max rule and the
min rule for example rely only on the classifier with the highest
and the lowest best likelihood scores, respectively, and disre-
gard the decisions of the other classifiers. In this sense, the max
rule tends to have a high false accept rate, whereas the min rule
is suited to high security applications. Both methods rely solely
on likelihood scores and do not employ an additional reliability
measure. Soft-level combination techniques, on the other hand,
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regard each coefficient as a measure of the relative reliability
R, of each classifier so that each w, becomes directly equal
to I7,. We refer to this combination method as the reliability
weighted summation (RWS) rule. Reliability values I2, can be
set to some fixed values using some a priori knowledge about
the performance of each modality classifier or can be estimated
adaptively for each decision instant via various methods such as
those in [8], [11], [13], [14]. The problem of the reliability-based
weighting approach is that the numerical estimation of relia-
bility values itself, which is ideally feature and class dependent,
is not in general very accurate; thus erroneous likelihood scores
contribute to the joint score, corrupting correct partial decisions.
Actually optimal assignment of the reliability weights still re-
mains as an open problem [22]-[24].

III. PROPOSED METHOD

We start by introducing a modified version of the so-called
max rule that will give us insight to develop our proposed
scheme. The proposed adaptive cascade will eventually offer a
compromise between the soft-level and the hard-level classifier
combination strategies.

A. Confidence Measure and Modified Max Rule

We propose a confidence measure to define a modified max
rule for the open-set problem. The conventional max rule sets
the coefficients w,, in (6) equal to

1, ifp=argmaxp; (AL
wp:{ p = g (1) @)

0, otherwise

?

where A% denotes the decision class of the ith classifier, i.e. the
decision with the corresponding highest best likelihood score.
The max rule may filter out some of the erroneous contributions
in the final decision; however, there are still three problems with
this conventional hard-level classifier combination scheme.

1) The max rule is not well-suited to the open set identifi-
cation problem, i.e., to detect impostors; it does not ade-
quately take into account strong reject decisions and tends
to yield a high false accept rate.

2) The fact that misclassification errors may occur even with
high likelihood scores is not taken into account as the best
likelihood itself is used to favor the decision of a classifier
over the others.

3) Since only the best likelihood score is considered for each
classifier, the correct decision cannot be made in cases
where the correct decision does not show up as winner
in any of the classifiers, although there may be strong ev-
idence for it over the ensemble of all likelihood scores.

In the proposed modified max rule, the highest likelihood
ratio in (7) is substituted with the highest confidence measure.
Looking back to (3), once a threshold 7 is set in the log-likeli-
hood ratio test, one can claim that if the best likelihood score
pp(AY) for modality p is much larger or much smaller than T,
the confidence of the accept or reject decision, respectively, is
stronger. Hence, the absolute difference between the likelihood

score p,,(AY) and the threshold 7 can be considered as a confi-
dence measure
CP:|pP()‘£)_T|7 p:17,P (8)
Then the modified max rule uses the following assignment for
the weighting parameters:
1, ifp=arg max C;
wy = { 8 1<i<r )

0, otherwise.

This addresses the first problem in the sense that, a strong reject
decision can be favored even though the corresponding likeli-
hood score is not the maximum of the best likelihoods resulting
from the P modalities. However, the last two problems above
still remain unaddressed.

B. Estimation of Modality Reliability

While the confidence measure (), indicates our confidence
in the accept/reject decision of the classifier for modality p, the
proposed adaptive cascade rule will also need to assess the re-
liability of the source data for modality p. There are two main
approaches in the speaker identification literature for adaptive
estimation of the reliability of a modality. One approach is the
analysis of the data itself from which the corresponding feature
vector is extracted and fed to the classifier. Techniques based
on this approach try to estimate how much the actual data devi-
ates from the estimated distribution model as in [8], [13]. Such
an analysis requires an a priori model for the corruption or the
noise of the test data [25]. However, in practice the source of
statistical deviation is various and difficult to model, such as
acoustic/visual noise, time varying characteristics of signals,
lighting and pose variations for visual data, etc.

An alternative method is to analyze directly the statistics and
rank correlation of the resulting likelihood scores [11], [14],
[22]. Reliability estimates based on this approach might be less
accurate compared to the first approach in some controlled en-
vironments; but the latter is more general, addressing all kinds
of possible corruption. It is a known fact that a correct speaker
model would create a likelihood ratio that would be significantly
higher than the likelihood ratios of the other speaker models.
Therefore, the difference between the best two likelihood ratios
is commonly used as a reliability measure for the accept sce-
nario [14], [26]. Let p, (A« ) and p,, () denote the best and the
second best likelihood ratios, respectively, resulting from the pth
classifier. Then the associated likelihood ratio difference A, is
defined as

Ap = pp(As) = Pp(Aex)- (10)

However, in the presence of areject class, A, does not convey
a reliability measure for true reject decisions. In the NV + 1 class
open-set identification problem that includes a reject class, we
should consider a reliability measure that would also favor true
reject decisions as well as true accept decisions. We would ex-
pect that a high likelihood ratio p,(A.) and a high likelihood
ratio difference A, are evidences of a true accept decision, and
alternatively a low likelihood ratio and a low A, are evidences



844
0.06 T T T
0.04+ E
0.02} |
(%.5 2 25 3 3.5 4
0.4 T T T |
0.2} I |
0 AL 1 1 1
041.5 2 2.5 3 3.5 4
021 |
0 L . . . .
1.5 2 2.5 3 3.5 4
i T T T
051 L :
0 . . . .
1.5 2 2.5 3 3.5 4
(a)
Fig. 1.

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 5, OCTOBER 2005

0.03 T T T

__]-True Accept
0.02 |
0.01} ]
0
01.5 2 25 3 3.5 4
0.2 ]
0 *I_l.. I L L L
0 11.5 2 2.5 3 3.5 4
0.05 R
0 A . . .
1‘I.5 2 2.5 3 3.5 4
05} L 1
0 Il 1 1 1
1.5 2 2.5 3 3.5 4

(b)

Histograms of the reliability measure I?,, for different classifiers for accept (top two rows) and reject (bottom two rows) scenarios. (a) Audio only classifier

at 15-dB noise with EER 6.1%. (b) RWS rule for audio, face, and audio-lip modalities at 10-dB noise with EER 0.7%.
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Fig. 2. Block diagram of the proposed modality fusion system for open-set speaker identification.

of a true reject decision. Thus, we propose a new reliability mea-
sure It, given by

R

1
e ) (11)
DT

where
Ty = (e@p(A*)mp) _ 1) n (e(nfpp(A*%Ap) _ 1) . (12)

The first and second terms in ~y, are associated with the true
accept and true reject, respectively, and x is a factor that sets
the relative weight of the true reject case. Hence, the reliability
measure I7;, increases when there is an evidence of either true
accept or true reject, otherwise stays low. Fig. 1 provides an
illustration that the reliability measure I7,, attains low values for
false accept and false reject decisions as compared to true accept
and true reject cases. It should also be noted that when the equal
error rate is smaller, the separation of I2, values for true and
false decisions is better, which is an expected indication that
better classifiers will produce better reliability measures.

C. Adaptive Cascade Rule

Our objective now is to define a new modality fusion rule
that addresses all problems associated with the max and RWS
rules, inheriting the merits of each of them. This strategy should

be able to switch between two modes (hard-level or soft-level)
on each decision instant depending on both the reliability of the
modalities and the confidence measures. When there is evidence
for a reliable strong accept or reject decision in at least one of
the classifiers, the strongest decision that is most likely to be true
should be favored disregarding the other modalities. When there
is ambiguity in the decisions coming from all modalities, the de-
cision is rather not be made based only on a single modality. It
may even be the case that all classifiers are wrong and the true
decision can be deduced by taking into account the whole en-
semble of likelihood scores that they produce. Hence, the need
to incorporate reliability weighted modality combinations into
the decision scheme. To this effect, assume that there are P dif-
ferent classifiers, each associated with a single modality. Theo-
retically, it is possible to create a total of P’ = 2 — 1 classifier
combinations, including P unimodal classifiers and oP_1—-pP
for new combined modalities. Each of these multimodal com-
binations corresponds to a classifier that produces another set
of likelihood scores by some linear combination, i.e., the RWS
rule, of the corresponding likelihoods. A reliability measure can
also be estimated for each of the combined classifiers and then
be incorporated into the decision scheme. The block diagram of
the proposed overall modality fusion system is shown in Fig. 2,
where all classifier combinations, including unimodal and mul-
timodal combinations, are input to a decision fusion rule which
is called the adaptive cascade rule.
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r = argmax(Cp, , Cp,)
C = max(Cyp,,Cp,)

Fig. 3.

r=argmax(Cp,,...Cp,, )
C = maX(Cm, ..C

Ppr—y

r = argmax(Cyp,,...,Cp,.)

Flowchart of the adaptive cascade rule. The modality classifiers in the cascade are ordered with respect to their reliability values. C',, stands for the

confidence of the most reliable modality py and p,.(A7) is the log-likelihood ratio of the decision coming from the rth modality.

The proposed adaptive cascade rule employs a cascade of P’
classifiers, which are adaptively ordered based on their relia-
bility estimates, given P’ reliability measures Ry, Ro, ..., Rps
and P’ confidence measures C1, Cs, ..., Cp:. The order in the
classifier cascade {p;} is then arranged such that R,, > R,, >

. > R,,,. This order implicitly defines a priority on each
modality or modality combination. Then starting with the most
reliable classifier p1, the cascade rule successively searches for
a decision with a sufficiently high confidence measure. As soon
as a classifier p; with sufficiently high confidence measure is
encountered, the decision cascade is concluded with accept or
reject decision. The exact structure of the adaptive cascade rule
is depicted in Fig. 3. Note that the adaptive cascade rule uses
P’ confidence measure thresholds 7 and (71, ...,7p/_1), each
of which has to be determined experimentally. Determining the
minimum equal error rate or the receiver operating surface for
the above algorithm requires O(N T ') computation, where NV is
the number of classes. For large P’, this much computation is
usually infeasible. Two ways of improving the algorithm com-
plexity is possible with no significant performance loss. The first
improvement is achieved initially by selecting a reduced set of
modality combinations that are statistically meaningful and dis-
carding the rest. A further reduction is obtained by adaptive se-
lection of the most reliable P classifiers from the reduced set
depending on the reliability order that varies from one decision
instant to another. Setting P =3is usually sufficient resulting in
O(N?) complexity for determination of the three corresponding
thresholds 7, 71, and 7.

D. Error Analysis

The comparison of conventional classifier combination rules
such as the max, min, sum, product, or majority vote rules, is
usually based on the analysis of the error sensitivity in their es-
timates of joint likelihood scores or a posteriori probabilities
[71, [27]. This framework, however, is not appropriate when re-
liability estimates are incorporated into fusion scheme as in the
RWS and the adaptive cascade rules. This is mainly because
these reliability-based rules are in fact heuristic methods to ap-
proximate the joint likelihoods in the presence of error and can
not formally be justified in the Bayesian framework. Moreover,

although different techniques exist in the literature to estimate
reliability, there is no formal clear definition of what reliability
is; nor are there any means to assess how good or effective a
given reliability measure is. In the Appendix, we present a de-
tailed error analysis of the proposed adaptive rule in comparison
with the RWS and the max rules. The analysis is based on a prob-
abilistic framework that allows the comparison of the probabil-
ities of correct decision for the three rules under question. The
probability of correct decision in each case mainly depends on
how good the reliability and likelihood estimates are.

To assess the effectiveness of a given reliability measure, we
propose to use the probability of that reliability measure to dif-
ferentiate between true and false decisions coming from dif-
ferent classifiers. Consider two classifiers, one of which gives
a true decision (accept or reject) for a given feature sample and
the other gives a false decision. Let Rt and C't denote respec-
tively the reliability estimate and the confidence measure for the
true classifier, that is the classifier with true decision. Similarly,
the reliability and the confidence measure for the false classi-
fier are denoted by Rr and Cg. Then the probability that the
true classifier has higher reliability, i.e. P(Rt > Rp), can be
used to measure the effectiveness of the employed reliability
measure whereas the probability P(Ct > CF) similarly mea-
sures the effectiveness of the confidence measure. For a given
rule, the true accept and true reject probabilities can then be ex-
pressed in terms of these two probabilistic measures as given
in Appendix. In fact, one can at once intuitively see that a rea-
sonable reliability measure has to at least meet the following
condition: P(Rt > Rp) > P(Ct > Cp) since otherwise a re-
liability-based technique would hardly be of any use. The main
conclusion of the error analysis in Appendix is that the adaptive
cascade rule is expected to outperform the max and the RWS
rules, provided that the above condition is satisfied and the em-
ployed reliability measure is effective enough in assessment of
classifier decisions.

IV. FEATURE REPRESENTATION AND CLASSIFICATION

In this section we describe the feature representation and
classification technique that we use for each modality, i.e.
for audio, face and lip motion information. We consider a
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text-dependent open-set speaker identification scenario, where
the database consists of audio and video signals belonging to
individuals of a certain population.

A. Face Modality

The eigenface technique [4], or more generally the principal
component analysis, has proved itself as an effective and pow-
erful tool for recognition of still faces. The core idea is to re-
duce the dimensionality of the problem by obtaining a smaller
set of features than the original dataset of intensities. In eigen-
face technique, every face image is expressed as a linear combi-
nation of some basis vectors, i.e. eigenfaces, that best describe
the variation of intensities from their mean. Obtaining principal
components of a face image can be thought of as an eigenvalue
problem. Suppose that the training set consists of M mean-re-
moved face image vectors Zg,Z1,...,Za—1. Then the eigen-
faces v,,,, m = 0,1,..., M — 1, can be computed as the eigen-
vectors of the following covariance matrix X:

| M-t

— T

X = i E LT,
m=0

Each eigenface v,,, is associated to an eigenvalue, and principal
components are given by the first R eigenfaces associated to the
first R eigenvalues when ordered with respect to their magni-
tudes. Usually, the reduced dimension R is much smaller than
M, and the rth eigenimage coefficient w,. is obtained by the pro-
jection w,. = vX'z for a given image vector .

When a face image sequence, rather than a single image, is
available for each speaker as in our case, the images in the se-
quence can all be used to enforce the classification performance.
The eigenface coefficients, when computed for every frame ¢
of a given test sequence, constitute a set of face feature vec-
tors fr = [wi,wo,---,w.],4 = 1,2,..., K, that needs to be
matched with features of the registered speaker classes. Sup-
pose that the training set contains L face sequences from each
speaker class A, and let f. ,j =1,..., K - L, denote the fea-
ture vectors of these images belonging to the class A,,. Then the
minimum distance d,, between these two sets of feature vectors
can be used as a similarity metric between the speaker class A,
and the unknown person

13)

J

2]

The similarity metric defined in (14) can also be expressed as a
probabilistic likelihood by making use of the Gibbs distribution:
Given the face texture feature vectors f 11;, f 12;, i 1{3 the class
conditional probability of the test feature set can be written as

- 1 _dn
P(f%:*,f%,/f{:}|/\n):;€ 7

whererv =), e~%/7 and o is the decay coefficient of the Gibbs
distribution function. The log-likelihood ratio is then defined as

15)

p(F5Fooe o 8 A0) = low P (£ S50 FE 1A

_logp(f%‘flg‘vaI‘(b\N-i-l)
d—d,

g

(16)
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where o can be set to 1 or can be used for variance normaliza-
tion of the likelihood scores. The log-likelihood ratio as defined
in (16) requires the definition of a universal background class
An+1. For this, we adapt the faceness measure defined by the
authors in [4] and use the face eigenspace to represent the face
universal background class. Hence, d is defined as the distance
(or the error) between the original mean-adjusted image vector
and its projection to the eigenspace. The log-likelihood ratio in
(16) is computed for each class \,,, and can then be fused with
decision scores coming from other available modalities.

B. Audio and Lip Modalities

The two synchronized modality streams, audio and lip, are
considered as valuable information sources for the speaker iden-
tification problem, especially when they are used jointly under
adverse environmental conditions. Audio and lip features are ex-
tracted separately from these two synchronized streams at dif-
ferent rates. In our identification system, we employ separate
unimodal classifiers for audio and lip modalities as well as bi-
modal classifiers to exploit the correlation between these two
modalities. In the bimodal scenario audio and lip features are
concatenated together so that a rate adjustment of audio and lip
features becomes necessary.

Audio stream is represented with the mel frequency cep-
stral coefficients (MFCC), as they yield good discrimination
of speech signal. The audio stream is processed over 10-ms
frames centered on a 25-ms Hamming window for 16-kHz
sampled audio signal. Each analysis frame is first multiplied
with a Hamming window and transformed to frequency do-
main using fast Fourier transform (FFT). Mel-scaled triangular
filter-bank energies are calculated over the square magnitude
of the spectrum and represented in logarithmic scale [28]. The
resulting MFCC features, c;, are derived using discrete cosine
transform (DCT) over log-scaled filter-bank energies e;

1 ks
¢ = N—M;eicos <(L—05)]'<[—M> , j=12,....,N

a7

where Ny, is the number of mel-scaled filter banks and [V is the

number of MFCC features that are extracted. The MFCC feature

vector for the kth frame is defined as, C = [cica---en]T.

The audio feature vector f’f\ for the kth frame is formed as a

collection of MFCC vector C}, along with the first and second

delta MECC’s, f% = [CL ACLAACY].

The video stream is processed to label lip center locations,
where each lip stream is extracted by cropping 64 x 40 lip
frames that are centered to these locations. The gray scale lip
stream is transformed into two-dimensional DCT domain and
then each lip frame is represented by the first M DCT coeffi-
cients of the zig-zag scan excluding the dc-term [29]. The lip
feature vector for the ith lip frame is denoted by f7..

The unimodal and bimodal temporal characterizations of the
audio and the lip modalities are performed using hidden Markov
models (HMM), which are reliable structures to model human
hearing system and thus widely used for speech recognition and
speaker identification problems [2]. In this paper, a word-level
continuous-density HMM structure is built for the speaker iden-
tification task. Each speaker in the database population is mod-
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eled using a separate HMM and is represented with the feature
sequence that is extracted over the audio/lip stream while ut-
tering the secret phrase. First a world HMM model is trained
over the whole training data of the population. Then each HMM
associated to a speaker is trained over some repetitions of the
audio-video utterance of the corresponding speaker. In the iden-
tification process, given a test feature set, each HMM structure,
associated with speakers and the world class, produces a likeli-
hood. The log-ratio of the speaker likelihoods to the world class
likelihood results in a stream of log-likelihood ratios to be used
in the multimodal decision fusion.

The feature level audio-lip fusion is carried out by concate-
nating these two features. As the audio features are extracted at
arate of 100 fps and the lip features are extracted at a rate of 15
fps, rate synchronization should be performed prior to any data
fusion. The rate of the lip features is increased to match the rate
of the audio features by linear interpolation, and it is formulated
as follows:

fro=(—anfi +afi ™ (18)
where }]Z is the interpolated lip feature, which is synchronized
by the kth audio feature f¥ using the i*th and (7* — 1)th lip
features fi and f{fl; further +* and «, are defined as i* =
|3%/20], ax. = (3k/20) — i*. After synchronization of the fea-
tures, the audio and the lip modalities can be fused to each other
using data concatenation [29]. The data concatenation is based
on the early integration model, where the integration is per-
formed in the feature space to form a composite feature vector
of audio and lip modalities. Hence, the joint audio-lip feature
flf'\L is formed by combining the audio feature f’; and the inter-

~k
polated lip features f;, for the kth audio-visual frame as
k ko 3k
faL= [f A f Li| :
The temgoral characterization of the fused audio-lip feature
stream f; can be performed using a single-stream or a mul-
tistream HMM structure [30]. In the multistream HMM, each
observation vector at kth frame is represented as a collection of
audio and lip features, that is f’;L. The observation probability

for the multistream HMM at state 7, b;( f%.), is computed as a
synchronous function of audio and lip features

VR YA
b; (ff\L) = [g: cajmN (ka;“Ajm,vajm)]
m=1

X [% cLjmN (}i§ﬂij72ij)

m=1

19)

YL

(20)

where M and M7, are respectively the number of mixture com-
ponents in the audio and the lip streams, cajn, and cp;j,, are
the weights of the mth component and N (-; g, ¥) is a multi-
variate Gaussian with mean vector g and covariance matrix X.
The exponents v and i, are the stream weights. Note that, for
single-stream HMM the observation probability is simply given
as
M
bj (ff\L) = Z carjmN (f]ZL;ll'Aijvaij) -

m=1

21

For statistical modeling of the audio feature f, and the lip
feature fy, single-stream HMM structures are used whereas for
the fused audio-lip feature f,;, both single-stream and multi-
stream HMM structures are employed. As presented in the ex-
periments, the most encouraging results are obtained with audio
only and multistream audio-lip modalities. Hence, these two
modalities along with the face constitute the three unimodal
components of our multimodal speaker identification system.

V. EXPERIMENTAL RESULTS

The proposed multimodal speaker identification system has
been tested on the audio-visual database MVGL-AVD [29]. The
database includes 50 subjects, where each subject utters ten rep-
etitions of her/his name as the secret phrase. A set of impostor
data is also available for each subject in the population uttering
five different names from the population. The performance of
the open-set speaker identification system will be presented in
terms of the equal error rate (EER) figure. The EER is calculated
as the operating point, where the false accept rate (FAR) equals
the false reject rate (FRR). FARs and FRRs are defined as

number of false accepts

FAR =100
X N, + N,
FRR — 100 x number of;alse rejects 22)

where N, and N, are the total number of trials for the true and
imposter clients in the testing, respectively. False accepts in-
clude the cases where a registered speaker is accepted with a
wrong identification or an unregistered speaker is classified as
one of the speakers in the database. The database is partitioned
into two equal sets in two different ways, so that four different
and independent training and testing sessions are deployed. Let
Dy represents the whole database for the true clients. In the
experimental simulations, the true clients database D is parti-
tioned in two ways as {Dr,, Dz, } and {Dr,, Dy}, where
Dy, and Dr, are disjoint sets, each having five repetitions
from each subject in the database. Training and testing are per-
formed over four independent sessions, where {Dr,, D7, },
{D3,.Dr,}, {Dr,,Dz,}, and {Dz,,Dr,} pairs are, re-
spectively, used for training and testing. As there are 50 subjects
and five repetitions for each true and imposter client tests, the
resulting total number of trials are given by N, = 1000 and
N, = 1000.

The temporal characterization of the audio, lip and multi-
stream audio-lip has been achieved using a 6-state left-to-right
HMM structure for each speaker. The acquired video data is
first split into segments of secret phrase utterances. The visual
and audio streams are then separated into two parallel streams,
where the visual stream has gray-level video frames of size 720
x 576 pixels containing the frontal view of a speaker’s head at a
rate of 15 fps and the audio stream has 16 bits/sample at 16-kHz
sampling rate. The audio recordings are perturbed with varying
levels of additive noise during the testing sessions to simulate
adverse environmental conditions. The additive acoustic noise
is picked to be a mixture of office and babble noise.

In the analysis of audio stream, the MFCC feature vector, Cy,
is composed of 13 cepstral coefficients using 26 mel frequency
bins. The first mel-band that corresponds to the first energy term
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TABLE 1
ABBREVIATIONS AND DESCRIPTIONS FOR MODALITIES AND FUSION TECHNIQUES

Audio only modality

Lip only modality

Face only modality

Audio-Lip data fusion with single-stream HMM

=)=
3
@

Audio-Lip data fusion with multi-stream HMM

Product rule

RWS rule

Modified max rule

ok |@|+|p] | = =

Non-adaptive cascade rule (fixed a priori reliability ordering, where leftmost
being the most reliable modality)

Adaptive cascade rule (adaptive reliability ordering)

TABLE 1I
SPEAKER IDENTIFICATION RESULTS: EQUAL ERROR RATES AT VARYING
NOISE LEVELS FOR DIFFERENT MODALITIES

EER (%)
Source Noise Level (dB SNR)
Modality |[clean [ 25 [ 20 [ 15 [ 10 | 7 [ 5
A 24 [ 25 137 ] 61 J11.0]189 ] 265
F 8.4
L 18.0
AL 156 [ 158 [ 158 [ 162 [ 164 [ 167 [ 167
[ALms 135 [ 138 [ 13.8 [ 13.8 [ 149 [ 153 | 154

ey [see (17)] is picked to start at 250 Hz and the dc-term cg
is excluded, as the low frequency components and the dc-term
do not carry valuable information for the speaker identification
process [29]. The resulting audio feature vector, f’Z of size 39,
includes the MFCC vector together with the first and second
delta MFCC vectors.

Each video stream for a single secret phrase uttering is
around 1 second in duration and during this time it is assumed
that the subject does not considerably move her/his head. The
MVGL-AVD database includes the hand-labeled lip center
locations for the first frames of each video stream. Hence,
each lip stream is extracted by cropping 64 x 40 lip frames
to form the lip sequence of each secret phrase utterance. The
lip feature vectors ff which are used in both training and
testing of the HMM-based classifier, are obtained as described
in Section IV-B with M = 60. The stream weights v4 and
~r are picked, respectively, as 0.7 and 0.3 for the multistream
HMM structure. Similarly, face image streams are extracted
and an eigenspace of dimension R = 20 is computed using a
collection of face images that includes two face images from
each utterance in the training part of the MVGL-AVD database.

A summary of the employed modalities and the decision
fusion techniques is given in Table I that also describes the nota-
tion used in presenting the experimental results. The unimodal
identification results are shown in Table II, where we observe
the equal error rates at varying levels of acoustic noise. In the
audio-only scenario, the identification performance degrades
rapidly with decreasing SNR. For the face-only case, images in
the training and test sets have varying backgrounds and lighting;
this is why the face-only identification performance may seem
to be worse than expected. The lip modality alone yields 18%
equal error rate performance. When lip features are fused with
audio using single-stream or multistream HMM structures, the
identification performance improves with respect to lip-only
performance only at low SNR levels and even degrades under

acoustically clean conditions. However, they still carry im-
portant information on the temporal correlations of audio-lip
modalities that can be exploited during the multimodal fusion
process to improve the overall performance. We also note that
multistream audio-lip fusion visibly outperforms single-stream
fusion at all SNR levels.

A. Performance of the RWS

In the targeted audio-visual speaker identification problem,
audio stream is correlated with the audio-lip stream, and under
different environmental conditions such as additive noise or
varying lighting conditions, some of the modalities do not
produce unbiased features. Under such varying environmental
conditions, if a classifier is not capable of producing reliable
decisions, its contribution should better be reduced in the
classifier combining process. The RWS rule addresses this
classifier combining process with properly selected weights.
The proposed reliability measure in (11) assumes a « factor that
needs to be determined so that it sets an optimal compromise
between accept and reject scenarios. The audio-only, face-only
and multistream audio-lip modalities are combined using RWS
rule at varying acoustical noise levels with a set of possible &
factors. The average equal-error-rate curve over different SNR
levels is plotted in Fig. 4(a) for varying values of  factor.
The optimal value is observed to be x = 0.65 that minimizes
the average EER curve in Fig. 4(a). The value of the factor
x = 0.65 sets some bias to weight true accept decisions slightly
more than true reject decisions, which is expected from the
nature of product rule that normally favors true accepts.

The RWS rule based performances are presented in Table III
together with the performances of the so-called product
rule, that is the summation of log-likelihoods with uniform
weighting. One can observe that at all SNR levels, any com-
bination of modalities obtained by both the product rule and
the RWS rule performs at least better than the worst unimodal
performance. When audio and face are employed in the fusion
(see also Table I), bimodal performances are all better than the
best unimodal performance. The RWS rule yields a significant
improvement over product rule for all test conditions, and the
best equal-error-rate scores are obtained with the fusion of
audio, face image, and multistream audio-lip modalities. Note
that, when the multistream audio-lip modality is fused with the
(A @ F) combination by RWS rule, that is A & F @& ALms,
the performance significantly improves over all SNR range
except for the clean condition. This performance improvement
is expected as the multistream audio-lip modality sustains fairly
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Fig. 4. Average EER performances over different SNR levels for varying values of « factor: (a) with the RWS rule and (b) with the adaptive cascade rule.

TABLE III
SPEAKER IDENTIFICATION RESULTS: EQUAL ERROR RATES FOR PRODUCT
AND RWS RULES AT VARYING NOISE LEVELS

EER (%)

Source Noise Level (dB SNR)

Modality clean [ 25 T20J IS T 10 [ 7 ] 5
A +F 1.9 20 | 26 | 3.8 6.6 8.5 11.9
A DF 0.5 1.0 1.1 1.2 3.2 5.2 8.2
A +L 8.0 82 | 87 | 93 | 11.6 | 16.8 | 22.5
A oL 5.6 6.0 | 72 |1 92 | 114 | 167 | 22.1
A + AL 7.3 75 | 74| 7.8 | 103 | 149 | 16.4
A ® AL 5.0 52 | 60 [ 69 8.9 13.1 15.9
A + ALms 6.1 64 | 6.4 | 7.1 9.9 155 | 18.2]
A ® ALms 4.6 47 | 54 | 63 8.7 136 | 17.1
F + ALms 5.8 59 | 59 [ 58 6.5 6.7 6.9
F ® ALms 2.9 30|32 (34| 36 3.8 3.9
A +F + ALms 1.1 1.1 1.1 |13 1.7 2.8 4.3
A ® F ® ALms 0.7 07 [ 0.7 | 1.0 1.4 22 3.5

robust performance, which is partially uncorrelated from the
audio-only performance under noisy conditions.

B. Performance of the Adaptive Classifier Cascade

Classifier cascade sets a reliability order for each modality.
The reliability ordering of the modalities could be set a priori
or modality reliability could adaptively be estimated using the
proposed reliability measure in (11). When the proposed relia-
bility measure is used, an optimal ~ factor should be extracted
that best fits the adaptive cascade rule. In order to set such a &
factor, some selected modalities are combined with the adap-
tive cascade rule at varying acoustical noise levels with a set
of possible « factors. The average equal-error-rate curve over
different SNR levels and over classifier cascades of various se-
lected modality combinations is plotted in Fig. 4(b) for varying
values of x factor. The optimal factor is measured as k = 1.25
from Fig. 4(b). This x value weights the reliability measure al-
most equally for accept and reject decisions.

Decision fusion results are presented in Table IV, where the
product, the max and the adaptive cascade rules are evaluated.
The first three rows compare respectively the max, the nonadap-
tive cascade and the adaptive cascade rules by combining audio,
face and audio-lip streams. The performance of the adaptive
cascade clearly outperforms both the max and the nonadaptive
(fixed reliability ordered) cascade rules, and achieves 1.4% and
6.3% EER rates at clean and 5-dB SNR conditions, respectively.

Our reliability measure is a function of the difference be-
tween the best and the second best likelihood scores as well

TABLE 1V
SPEAKER IDENTIFICATION RESULTS: EQUAL ERROR RATES FOR DIFFERENT
DECISION FUSION TECHNIQUES AT VARYING NOISE LEVELS

EER (%)

Source Noise Level (dB SNR)

Modality clean [ 25 J20 [15 J10 ] 7 ] 5
A *F x ALms 1.8 [18]26 14964 ]70] 90
A °F - ALms 23 |22 125133 [53] 74126
A *F ¢ ALms 14 [ 15117119 ]25]39] 63
A*F 08 |08 ]08 [15[26]45] 79
My=(AeFoALms) || 07 [ 07|07 | 10| 14 |22 ] 35
M =(AoF) 0.5 1.0 11123252 82
M, = (F @ ALms) 29 [ 3032 [34[36]38] 39
MyoM oMo A®F | 04 [06] 06| 10] 16| 19| 26
Mo* A *F 03 [ 03]04 05 [12]21] 45
Moo M, *AF 02 [ 02103041121/ 43
Moo MysMyeAeF 02 [02]03[06]| 10|16 23

as the best likelihood itself. If a modality stream is well sep-
arated for true and imposter claims, it yields a better EER
performance and also a better estimation for the proposed
reliability measure. Hence, when the single stream modalities
are adaptively cascaded, the individual streams that have the
best EER performances are expected to yield the best cascade
performance. This tendency is expected since better estimation
of the modality reliability yields better cascade performance as
can also be observed from the decision fusion results that are
presented in Table IV. The adaptive cascade of audio, face, and
multistream audio-lip (A e F ¢ ALms) versus audio and face
cascade (A e F) is investigated and the corresponding EER
results are presented in the third and fourth rows, respectively.
The audio/face cascade is found to perform significantly better
than the audio/face/audio-lip cascade, especially under high
SNR conditions. This result is also as expected in view of
the individual EER performances of audio, face and multi-
stream audio-lip modalities displayed in Table II, where the
multistream audio-lip modality has significantly poorer EER
performance among the three unimodal streams over 10-dB
SNR level, that also yields a poor estimation of the reliability
of the ALms stream.

The analysis of the adaptive cascade performance of audio,
face and audio-lip modalities reveals an important finding, that
one should not include a stream with a poor EER performance
to the cascade rule since it also yields a poor reliability esti-
mation. This finding leads us to examine the RWS modality
combinations, as defined in Section III-C, that have better EER
performances than the unimodal streams; the reliability estima-
tion of these combinations are expected to be better than the
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unimodal reliability estimates. Three such combined modalities
are considered by fusing audio, face and multistream audio-lip
modalities in different combinations using RWS rule, specifi-
cally (A@F® ALms), (A®F) and (F & ALms). The EER
performances of these three combined modalities are given in
Table IV. Once these combined modalities are adaptively cas-
caded with relatively reliable unimodal streams, i.e., audio and
face, a further performance gain is achieved. This performance
gain is an indicator of robust reliability estimates for each single
or combined modality included in the adaptive cascade.

The best EER performances, i.e. 0.2% at clean conditions
and 2.3% at 5-dB SNR, are obtained with the adaptive classi-
fier cascade including five different modality combinations; at
each decision instant, only the three most reliable of these com-
binations are actually used in the decision mechanism as de-
scribed in Section III-C. One can also consider the same set of
modalities (single or combined) in a possible RWS-only rule
fusion scheme, as presented in the eighth row of Table IV. The
eighth row performances indicate that in this case RWS fusion
does slightly better than the individual RWS combinations, but
still the overall performance gain is not as good as the adaptive
cascade fusion. Hence, one can suggest to use the RWS rule
for combining unimodal classifiers to create stronger modality
combinations that can further be fused using adaptive cascade
rule to boost the overall performance.

VI. CONCLUSIONS

We have presented a multimodal (audio-lip-face) open-set
speaker identification system that aims at robust performance
under adverse environmental conditions. The proposed adap-
tive cascade rule outperforms traditional fusion schemes such
as the product rule and the max rule. Since the performance of
the adaptive cascade rule depends on the effectiveness of the
employed reliability measure, a novel modality reliability es-
timation scheme that performs successfully under both accept
and reject scenarios has also been proposed. This measure, that
is based on the likelihood ratio scores, differentiates the best
likelihood ratio score from the rest of the scores, creating a rela-
tive assessment on the reliability of each modality. We have also
analytically shown that the proposed adaptive cascade rule out-
performs the hard-level max rule and soft-level weighted sum-
mation rule, provided that the employed reliability measure is
effective enough in assessment of classifier decisions.

An important feature of this work is the use of combined
modalities in the decision fusion scheme. Some modality
combinations, obtained via for instance RWS rule, may achieve
much better EER performances than the single modalities; such
combined modalities can be considered as additional reliable
sources for the adaptive cascade rule. The experimental find-
ings support that the adaptive cascade of the strong modality
combinations together with the reliable unimodal streams can
further boost the overall performance. The speaker identifica-
tion results that have been presented are encouraging for robust
speaker identification systems. The adaptive cascade rule, as
a high performance classifier combining scheme, can also be
used in many other multimodal identification applications.
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APPENDIX
ERROR ANALYSIS FOR THE ADAPTIVE CASCADE RULE

We provide a probabilistic error analysis to compare the per-
formance of the proposed adaptive cascade rule with those of
the conventional max and RWS rules. Suppose that there are PP
unimodal classifiers, that can be combined. Three possible sce-
narios exist: The first case is that all P unimodal classifiers indi-
vidually give the true decision (accept or reject); in this case all
three classifier combining rules, i.e. the max, adaptive cascade
and RWS rules, will each yield the true decision. The second
case is that all unimodal classifiers give individually false deci-
sions. In this case the max rule has no chance to yield the correct
decision. Even though the RWS rule and the adaptive cascade
will most likely fail as well in this case, they still have some
chance to extract the correct decision through multiple modality
combinations. In the third case, at least one of the classifiers
gives the correct decision and one gives a false decision.

In the following, for the sake of simplicity, we will consider
an open-set identification problem with N = 2 and P = 2. The
error analysis involves the estimation of false (or equivalently
true) accept and reject probabilities, and can be generalized to
an (N + 1) class and P modality problem. Let us first assume
that the adaptive cascade rule does not include any RWS classi-
fier combinations and works only on two unimodal classifiers.
Let p17 and po1 denote the best and the second best likelihood
scores of the classifier that gives the true decision. Similarly, p1 g
and por will stand for the likelihood scores of the other classi-
fier that gives a false decision. Thus, for a given fixed likelihood
test threshold 7, if the true decision is an accept decision, then
piT > 7 and it is associated with the correct class, whereas
p1F < T or it is associated with an incorrect class. Let also R,
Rp and C't, Cr denote the respective reliability estimates and
confidence measures of the classifiers.

Consider the max rule given by (9) in Section III-A. The prob-
ability of true accept decision Pyiax(TA) can be written as

PMAx(TA) = P(CT > CF) (23)
and for the RWS rule, we have
Prws(TA) = P(Rrpir + Repar > 7)
X P(Rrpir + Repar > Rrpar + Repir)  (24)

whereas for the cascade rule

Pcasc(TA)
:P(RT >RF) [P(CT>T1) + P(CT<T1)P(CT>CF)]
+P(RT<RF)P(CF <T1)P(CT>CF). (25)

We need to compare the probabilities given by (23), (24), and
(25). For comparison, we fix the threshold 7 for all three rules
as the value that gives the equal error rate for the RWS rule.
Since likelihood estimates are in general very sensitive to
modeling/measurement errors, one of the criteria that a reason-
able reliability measure has to meet can be stated as follows:

P(RT > RF) > P(CT > CF) (26)
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since otherwise incorporating reliability values into a decision
scheme would be of no use. The expression in (25) can now be
viewed as a function of 7; for which two extreme cases can be
observed

P(Rt > Rp),
reasc(™4) = { 16 2 )

An observation that can be deduced from (25) and (27) is that the
true accept probability of the max rule, P(Ct > CF), is alower
bound for Pcasc(TA). It can also be shown that Poasc(TA),
i.e., the expression in (25), takes a local maximum value be-
tween the two extreme values of 77. Thus, with a proper choice
of 7, it is possible to have

if’Tl =0

ifry =1, @D

PCASC(TA) > P(RT > RF) (28)
It is now easy to see that Pcasc(TA) > Pyax(TA), and the
magnitude of the difference between the two true accept proba-
bilities depends on how good the estimate or the measure of the
classifier reliability is as compared to likelihood estimates.

To compare Pcasc(TA) and Prws(TA), first note that

P(Rrpit + Rrper > Rrpar + RrpiF)

= P (Ry(p1it — p21) > Rr(p1F — par))

= P(RTAT > RFAF) 29)
where AT = P1T — P27 and AF = P1F — P2F. When N = 2,
A~ and A become identical to the likelihood score differences
as defined by (10) in Section III-B. Recalling the discussion in
Section III-B, if we have a reliability measure that is better than
AT and Ap, we can write

P(RT > RF) > P(AT > AF) 30)

Hence, P(RT > Rr) > P(RrAr > RpAf). Using this
and comparing (24) and (28), we conclude that Pcasc(TA) >
Prws(TA). The assumption given by (30) can also be regarded
as another criterion that a reasonable reliability measure has to
meet since otherwise the RWS rule would hardly be better than
the conventional product rule, i.e., than the uniformly weighted
summation in log domain.

The same analysis on true reject probabilities, Pyax(TR),
Prws(TR) and Poasc(TR) yields a similar conclusion. In the
reject scenario, the expressions for the max and adaptive cascade
rules remain the same as in (23) and (25). For the RWS rule,
the expression changes slightly, but the value of the expression
remains the same since 7 was set so as to give an equal error
rate such that Prws (TR) = PRws(TA)

For the error analysis, we have not yet incorporated the RWS
combinations into the cascade rule. When the RWS combina-
tions are also included in the decision cascade, Pcasc(TA) is
expected to improve. This improvement becomes critical if we
generalize the analysis to arbitrary NV, i.e. N > 2. In this case,
it becomes difficult to meet the criterion stated in (30) since
At and A of (29) are no longer identical to the likelihood
score differences of (10). Let us now examine how the value of
Pcasc(TA) changes when the RWS combinations are incorpo-
rated. Since P = 2, there is only one possible RWS combination

and Pcasc(TA) can be written as a conditional probability de-
pending on whether the decision of the RWS classifier is true
or not, i.e. in terms of Prys(TA). Following a similar analysis
that led us to (28), one can write the following inequality (with
proper choice of 7 and 79):

Pcasc(TA)> Prws(TA) (1 — P(Rr > Rrws)P(Rr > Ry))
+ (1 = Prws(TA)) P(Rt > Rrws)P(Rr>Rr) (31)

where Rrws denotes the reliability of the RWS combination.
In (31), (1 — P(RF > RRVVS)P(RF > RT)) and P(RT >
Rrws)P(Rt > Ry) are the respective conditional probabili-
ties that a true classifier appears as the foremost classifier in the
cascade. In the former term, one can substitute P(Rrp > Rrws)
by P(Rr > Rr) since Rrws is the reliability of a true classi-
fier by the given condition. Likewise, P(Rt > Rgrws) can be
substituted P(Rt > Rp). Thus, we have

PCASC(TA) > PRVVS<TA) (]. — P2(RF > RT))
+ (1 = Prws(TA)) P2(Rt > Ry). (32)

Looking at (32), we observe that Poasc(TA) > Prws(TA)
whenever the following condition is satisfied
1

5 .
1-P(RTt>R
( P(ngZ;RF)F)) +1

Prws(TA) <

(33)

The above condition is much easier for a good reliability mea-
sure to meet as compared to the condition in (30). Note that
when P(Rt > Rp) = 1, which means that the reliability mea-
sure is perfect, the inequality is always satisfied since the right-
hand side of the inequality becomes 1. Moreover the left-hand
side, which is also dependent on the value of P(Rt > Rp),
is expected to decrease more rapidly than the expression on the
right-hand side as the value of P(Rt > Ry) decreases within
the range of values close to 1.
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