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Abstract.

Objective. The effect of task load on performance is investigated by simultaneously collecting multi-modal physiological data
and participant response data. Periodic response to a questionnaire is also obtained. The goal is to determine combinations
of modalities that best serve as predictors of task performance.
Approach. A group of participants performed a computer-based visual search task mimicking postal code sorting. A

five-digit number had to be assigned to one of six different non-overlapping numeric ranges. Trials were presented in blocks
of progressively increasing task difficulty. The participants’ responses were collected simultaneously with 32 channels of
electroencephalography (EEG) data, eye-tracking data, and Galvanic Skin Response (GSR) data. The NASA Task-Load-
Index self-reporting instrument was administered at discrete time points in the experiment.
Main results. Low beta frequency EEG waves (12.5-18 Hz) were more prominent as cognitive task load increased, with

most activity in frontal and parietal regions. These were accompanied by more frequent eye blinks and increased pupillary
dilation. Blink duration correlated strongly with task performance. Phasic components of the GSR signal were related to
cognitive workload, whereas tonic components indicated a more general state of arousal. Subjective data (NASA TLX)
as reported by the participants showed an increase in frustration and mental workload. Based on one-way ANOVA, EEG
and GSR provided the most reliable correlation to perceived workload level and were the most informative measures (taken
together) for performance prediction.
Significance. Numerous modalities come into play during task-related activity. Many of these modalities can provide

information on task performance when appropriately grouped. This study suggests that while EEG is a good predictor
of task performance, additional modalities such as GSR increase the likelihood of more accurate predictions. Further, in
controlled laboratory conditions, the most informative or minimum number of modalities can be isolated for monitoring in
real work environments.

Keywords: Electroencephalography, EEG, galvanic skin response, GSR, eye-tracking, multi-modal data fusion, task
loading, task difficulty, cognitive load.

Preprint, under review.

1. Introduction

An objective method for determining the effect of task
load on performance is useful particularly when such
information is required in real-time as when the load
changes quickly (Coyne et al., 2009; Chen et al., 2012;
Hancock et al., 2013). However, the effects of task
loading are inherently multi-dimensional and go beyond
cognitive and mental effort (Young et al., 2015) or physical
effort (Borg, 1990). For example demands may be
temporal and perceptual, with effects that lead to fatigue,
frustration, or boredom (Szalma et al., 2004; Epps, 2018).
Measuring task load along these dimensions, particularly
when internal mental and physical states are not
readily accessible or observable, makes for a challenging
problem. Measurements usually fall into three broad
categories. Behavioral measurements such as various
types of eye movement (de Greef et al., 2009) or gross
motor behaviors (Boxtel and Jesserun, 1993), subjective
measures including self-reporting scales such as the multi-
dimensional SWAT (Reid and Nygren, 1988) and NASA
Task Load Index questionnaires (Hart and Staveland,
1988), and objective physiological measurements which

capture a signal that potentially scales or correlates with
task loading (Chen et al., 2012; Lean and Shan, 2012;
Young et al., 2015; Charles and Nixon, 2019). Among the
last are measures such as electroencephalography (EEG),
electromyography (EMG), electrocardiography (ECG),
galvanic skin response (GSR), inertial measurements, and
speech (Chen et al., 2012). The advantage of physiological
measurements lies in their objectivity and, in recent years,
in the low-cost and ease of deployment of body-worn
sensors.

Many studies have measured task loading using
a limited number of physiological signals such as eye
movement, or EEG, or GSR in an attempt to measure
task loading along one or few dimensions (Smallwood
and Schooler, 2006; Feng et al., 2013; Lean and Shan,
2012; Charles and Nixon, 2019). However, few studies
have combined modalities so that estimation error can
be reduced while classification accuracy can be increased
(Chen et al., 2012). In an early attempt by Kittler et al.
(1998) multimodal data fusion helped to disambiguate
data from single modalities, resulting in higher precision
and greater reliability. Similarly, Lazzeri et al. (2014)
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reported the advantage of combining behavioral and
psycho-physiological responses in a case study involving
robots used in affective communication.

The relation between task load and performance
has been extensively studied. For example, Kim
(2005) focused on the discrepancy between expected
(objective) and experienced (subjective) difficulty. In
a collective intelligence regime, Wagner and Suh (2013)
found that tasks of medium-range difficulty are suited
best for expertise transfer and collective judgments.
Adler and Benbunan-Fich (2015) investigated the effect
of multitasking with varying subjective difficulty on
performance. They found that when the primary task
was considered difficult, subjects who were forced to
multitask had significantly reduced performance, whereas
in the case of an easy primary task, the forced subjects
even experienced a performance boost compared to non-
multitaskers. Horvath et al. (2006) found that task
difficulty was positively correlated with the level of interest
an individual had in the task and goal orientation. In
practical situations, where subjective and/or objective
measures of difficulty may be absent, it remains to find
neurophysiological quantities with predictive power for
task difficulty.

In the following sections, we present results from
an experiment where cognitive task load is gradually
varied. The task performance and objective measures
obtained simultaneously from EEG, GSR, and eye gaze
patterns, are linked with subjective measures of perceived
levels of task loading reported by the NASA TLX
questionnaire. An earlier report details preliminary
findings (Ramachandran et al., 2017).

2. Methods

All human subject experiments were conducted at
the Advanced Digital Sciences Center (Singapore) and
approved by the National University of Singapore (IRB
NUS B-15-038). Written informed consent was obtained
from all participants.

2.1. Participants

A cohort of healthy human subjects (6M/2F, 24-55
years old) was selected to participate in the study.
Participants engaged in a computer task simulating a
numerical postal code sorting task while they were
monitored through non-invasive, physiological techniques
(i.e., objective measurements). Participants were also
asked to respond to an electronic questionnaire at selected
intervals (i.e., subjective measurements). All participants
had normal or corrected-to-normal vision and participated
voluntarily in the experiment.

2.2. Measurements

Participant testing was carried out in a large office
room with 80 lux illumination and background sound
level of about 60 dB SPL. During the task, scalp-
based electroencephalography (EEG) data, galvanic skin
response (GSR, i.e., electrodermal activity), and eye
movements were recorded, along with a video recording
of the participant performing the task (see further below
for details on the sensors and instrumentation).
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Figure 1: Equipment and data-flow schematic for the multi-modal
experiment.

A schematic of the experimental setup is shown
in Figure 1. EEG data were collected using a 32-
channel ASALab system (ANT Neuro) with a 32-channel
EEG cap (Waveguard) which utilizes the 5 percent
electrode placement system (an extension of the 10/20
and 10/10 systems). Raw EEG data along with
GSR data were sampled at 2.5 kHz. Eye movements
were monitored for both eyes independently using an
eye-tracking system (SMI REDn Scientific eyetracker,
SensoMotoric Instruments GmbH) with a sampling rate
of 30 Hz, controlled by SMI Experiment Center software.
Participant responses were collected using a 7-button
response pad (Cedrus RB730, Cedrus Corp). GSR,
eye-movement data, and participant response data were
synchronized with EEG data capture. A digital
webcam (Logitech C920) was used for videography of
the participant during the task, but the video data were
not analyzed and are not presented here. Stimulus
presentation and response registration (through the
response pad) was controlled by SuperLab (Cedrus Corp).
Participants were also required to complete an electronic
questionnaire that implemented the NASA Task Load
Index (NASA-TLX) (Hart and Staveland, 1988). The
NASA-TLX self-reporting instrument is a set of questions
targeted at mental workload, physical workload, temporal
workload, performance, effort, and frustration. The
ratings provided by the subjects are subjective, and used
to compare and correlate with the objective physiological
measurements.

2.3. Task and Stimulus

Tasks involved the visual sorting of five-digit numbers
as they appeared on a computer screen. The numbers
resembled the postal codes used in the United States
(Figure 2). Participants were asked to match a randomly
generated postal code (shown in red in the middle of the
screen) to its corresponding range (shown on the left of the
screen). There were a total of six ranges, each identified by
a color that corresponded to the colors of the buttons on
the Cedrus response box. The correct range was indicated
by pressing the corresponding color-coded button. A
pie-chart marking the progress of the experiment was
displayed on the right of the screen. The number of correct
responses and number of remaining trials were provided
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as feedback to the participants. Participants were guided
to perform their tasks by sequential instructions shown
on the screen, and to provide their responses as required
during stimulus presentation. EEG, GSR, and eye-
movements were monitored continuously. Stimulus and
responses along with other events were time-stamped.

Figure 2: Screenshot with stimuli presented to the participant in
one trial.

2.4. Experiment Design

A sequential series of tasks was designed to induce
increasing levels of task difficulty by manipulating
three binary-valued variables: Color (C), Numerical
arrangement of the six ranges (N), and Time (T). The
CNT triplet of binary values yields 8 possible values, each
constituting a block. In each block, numeric “postal”
codes were presented 40 times without repetition. Within
a block, C = 0 if the color of each range is held constant
across trials; C = 1 if the color for each range is randomly
shuffled for every trial. N = 0 if the arrangement of the
range labels on the screen does not change across trials,
whereas N = 1 if the range labels are scrambled every
trial. T = 0 if the allotted response-time is kept constant
(at 7 seconds) and T = 1 if the allotted response-time
is variable (chosen randomly from the interval 2-7 seconds
with uniform probability). We hypothesize that when task
conditions are changed (i.e., when C, T, or N are 1) the
task load increases. Thus, the easiest task is CTN = 000
(the first block in the sequence of tasks, labeled CTN000),
and the most difficult is CTN = 111 (the last block in the
sequence of tasks, labeled CTN111). The last block was
repeated (CTN111A), resulting in 9 blocks and 360 trials
in total. The time sequence of the trials is depicted in
Figure 3.

The task flow is interrupted at several time points
in between blocks. At time points A-D (see Figure 3),
the participant is asked electronically to respond to the
NASA-TLX questionnaire (responses are time-stamped).
At time point B, the tasks are interrupted and the
participant is required to watch a video (of a randomly
selected advertisement) for 30 seconds. Between time
points C and D, the blocks CTN111 and CTN111A
are separated in time by the appearance of a ”Blue
screen of death” (or BSOD, a PC error message) for 10

Figure 3: Protocol depicting the time sequence of the experiment.

seconds. These two events were hypothesized to cause a
subjective and objective increase in task load in the block
immediately following the event.

2.5. Grouping of Data

The blocks CTN000 to CTN111, with a repeat CTN111A,
can be tested for across-block differences in task difficulty.
However, it is possible that some combinations of the
blocks may have similar levels of difficulty. Therefore, to
improve the discrimination of task difficulty, we grouped
together blocks based on properties that are assumed to
be shared. While many such groupings are possible, we
decided on eight groups shown in Table 1. These are:

• Rows 1-4: Groupings considering single variables C,
T, N, or the temporal flow of the experiment. Row
4 (Temporal Flow) is the most fine-grained grouping
retaining all 8 possible values.

• Rows 5-8: Groupings considering the hypothetical
difficulty of the task. Row 5 groups the interaction
of the C and N variable (which differentiates blocks
in which visual search was required to solve the
task, i.e. C = 1 ∨ N = 1, from blocks with
steady legends). Row 6, Hypothetical Difficulty,
groups the modulation of task difficulty by the binary
task variables. Row 7, # Variables (number of
variables) groups blocks which have the same number
of manipulations of C, T, and N. Row 8, <2 Variables,
groups manipulated variables together to reflect the
participant’s adaptation to the task. Here, groups
that are 0 and 1 in row 7 are grouped as 0, group 2
in row 7 is now group 1, and group 3 is 2.

Finally, a post-hoc grouping of the individual performance
was done (not shown in Table 1). Based on the
standardized intra-subject performance z, blocks were
classified into one of the three classes low (z < −0.6),
medium (−0.6 < z < 0.6), high performance (z > 0.6).

In the single-modality analysis we used the data
from individual modalities (GSR, EEG, Eye-tracking) and
searched for significant differences between the groups
using one-way ANOVA. We tested for H0: µ1 = µ2 ·

·· = µi against H1 where there are at least 2 groups
of means. In case ANOVA results revealed significance,
post-hoc Tukeys Honest Significant Difference (HSD) tests
(multiple comparison test between all combinations of
groups) were conducted.
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Table 1: Grouping of blocks, based on combinations of the
C, T, and N variables, to reduce the number of manipulated
variables. Each row depicts a group of blocks. Groupings depend
on the manipulation of the 3 binary variables, temporal flow, or
hypothetical task difficulty.

Row Grouping 000 001 100 010 101 011 110 111
1 Color (C) 0 0 1 0 1 0 1 1
2 Time (T) 0 0 0 1 0 1 1 1
3 Postal Code (N) 0 1 0 0 1 1 0 1
4 Temporal Flow 1 2 3 4 5 6 7 8
5 C+N 0 1 1 0 1 1 1 1
6 Hypo. Diff. 0 1 1 2 2 3 3 4
7 # Variables 0 1 1 1 2 2 2 3
8 <2 Variables 0 0 0 0 1 1 1 2

3. Data Processing

Software. All data were analyzed using Matlab (The
MathWorks, Inc). EEG data were analyzed using
EEGLAB (Delorme and Makeig, 2004), GSR data with
Ledalab (Benedek and Kaernbach, 2010a,b); both are
open-source toolboxes for Matlab. Eye-tracking data
were processed by SMI BeGaze, integrated with the SMI
Experiment Center and analyzed in Matlab.

Eye Tracking. Data were averaged within each block of
trials, and then standardized across all blocks within each
participant.

Galvanic Skin Response (GSR). GSR data were analyzed
in terms of phasic and tonic skin conductance components
(in µS) after pre-processing (down-sampling to 10 Hz,
filtering with a 4th-order IIR filter having cutoff frequency
2 Hz, smoothing with moving average window of 100
samples, and segmenting data using the event triggers
generated by the recording system). GSR feature values
were calculated for every subject and condition as a mean
response of all trials, and converted to standardized scores.

Eye Tracking. Data were averaged within each block of
trials, and then standardized across all blocks within each
participant.

Electroencephalography (EEG). EEG data were acquired
at 2500 Hz from 32 electrodes. The following preprocess-
ing pipeline was applied to the raw data, based on the
detrending procedure suggested by Cohen (2014).
1. Removal of Line Noise: A notch filter was applied
in order to remove the 50 Hz frequency component and its
harmonics up to 250 Hz.

2. Epoching: To facilitate the study of task-related
changes, the continuous data were cut into time segments
surrounding the events. The epochs were defined within
a time window of [−1.5;+1.5] seconds from the onset at
time 0 (the appearance of the postal code on the screen).

3. Channel rejection of electrodes that showed artifacts
or a mean channel power over three standard deviations
from the mean among all channels. This resulted in the
rejection of the electrodes Fp, FPz and Fp2 due to eye
blink contamination, and M1 and T7 due to the presence
of EMG artifacts, leaving 27 electrodes.

4. Spatial filter: Application of a common average re-
moval (CAR) spatial filter was chosen as an alternative
to other spatial filters that improve resolution to localized
sources, due to the spread nature of the measured EEG
response.

5. Filtering: Application of a 4th-order finite impulse re-
sponse (FIR) bandpass filter, preserving a frequency band
from 0.5 to 80 Hz.

6. Rejection of epochs containing an abnormally larger
power in comparison to other epochs, a linear drift in the
signal or movement artifacts.

7. ICA for artifact rejection: Applying the logistic in-
fomax ICA decomposition (Bell and Sejnowski, 1995) on
the epoched data as an artifact removal method in order
to reject components that were likely to be caused by blink
artifacts (strong frontal activation, steep power spectrum)
and/or muscular activity (spatially localized activity, high
power above 20 Hz).

8. Normalization: A baseline referencing of each data
epoch on a time window of [−1.5;−0.1] seconds from stim-
ulus onset was chosen with a window of the same length
as the epochs (±1.5 seconds) to compute the Welch power
spectral density (PSD) (Welch, 1967). This choice is based
on the PCA decomposition of the PSD data, which showed
that this normalization approach resulted in the largest
proportion of variance (71%) being explained by the first
three components.

9. Feature extraction: The EEG features were ex-
tracted in the frequency domain via PSD with Welch’s
overlapped segment averaging estimator. This computes a
modified periodogram for each segment window and then
averages these estimates to produce the estimate of the
PSD. As opposed to the standard periodogram, it reduces
noise with the trade-off of having lower frequency resolu-
tion. Its Hamming window further prevents ripple effects
at window extremities. For this method, the epochs were
divided into sliding windows of 500ms with an overlap of
50% between each other, as suggested by Zhang et al.
(2014). The PSD was calculated inside a range of 0.5 to
45 Hz, taking 30 equally distributed frequency bins.

The initial feature extraction step results in 810
features (30 frequency bins for 27 electrodes). Such
a large number of features creates a computationally
expensive classification problem. Furthermore, it results
in estimation errors due to reduced sample size (for each
feature). Thus, we resort to dimension reduction so as
to increase the sample size and estimation accuracy, as
follows.

1. Grouping of frequency bins into frequency
bands: The mean of the PSD was calculated for the
frequency bins in the following 8 bands: Delta (0.5-
3.5 Hz), Theta (3.5-7.5 Hz), Alpha (7.5-12.5 Hz), low-
Beta (12.5-18 Hz), mid-Beta (18-24 Hz), high-Beta (24-
30 Hz), low-Gamma (30-37.5 Hz), and Gamma (37.5-45
Hz), resulting in 216 features (one value per band and
electrode).

2. Preselection of electrodes: Features were sorted
by the Fisher Score, which ranks the features so as to
maximize the distances between data points from different
groups and minimizes the distances between data points
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in the same class. It is defined as:

F (xj) =

∑c

k=1
nk(µ

j
k − µj)2

(σj)2
, (1)

where µ
j
k and σ

j
k are the mean and standard deviation of

the kth group or class respectively, corresponding to the
jth feature; µj and σj the mean and standard deviation
of the whole data set corresponding to the jth feature, nk

the size of the kth class and (σj)2 =
∑c

k=1
nk(σ

j
k)

2.

3. ANOVA tests of the remaining electrodes:
The trials were grouped into classes depending on the
# Variables grouping (Table 1, row 7). Next, we selected
the electrodes that were represented in the 100 features
with the highest Fisher score. The final set of electrodes
and frequency bands were determined from the results of
the ANOVA test for each pre-selected electrode in each
frequency band. For each location group (see Table 2), the
electrode with the most significant ANOVA tests for the
previously described grouping was chosen, so as to have a
uniform distribution of the tested areas. The selection of
the frequency bands for analysis was based on the same
criterion.

This approach resulted in the selection of the
following 7 electrodes: FC1, FC6, CP1, C4, Cz, F4, POz.
The 6 most significant frequency bands were Alpha, low-
Beta, mid-Beta, high-Beta, low-Gamma, and Gamma,
resulting in 42 EEG features for the posterior analysis.

Table 2: Electrodes in spatial proximity were grouped into 7
location groups. From every group, one electrode (in bold) was
picked for posterior analysis.

Location
Group

Electrode
Number

Electrode Names

A 5, 9, 10, 15 F3, FC5, FC1, C3
B 7, 11, 12, 17 F4, FC2, FC6, C4
C 15, 20, 21, 25 C3, CP5, CP1, P3
D 17, 22, 23, 27 C4, CP2, CP6, P4
E 10, 11, 16, 21,

22
FC1, FC2, Cz, CP1, CP2

F 5, 6, 7 F3, Fz, F4
G 29, 30, 31, 32 POz, O1, Oz, O2

4. Results

4.1. Behavioural Responses

Figure 4 shows the fraction of correct responses as a
function of the nine blocks (the permutations of the values
taken by the variables C, T, and N, hereafter referred
to as CTN blocks to distinguish them from other blocks
depicted in Table 1). The blocks are arranged along the
abscissa in their temporal order of presentation. The
proportion of correctly sorted postal codes degrades over
time (i.e., blocks), with a clear separation of the first 5
blocks from the last 4. As hypothetical task difficulty
increases, the rate of correct answers declines.

For each CTN block, Figure 5 depicts the average
response time of correct and incorrect responses. Across
all blocks, incorrect responses were quicker (smaller
response times) than correct responses.

Figure 6 shows the z-scores for error (inverse of the
performance) and response time as a function of increasing
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Figure 4: Fraction of correct responses averaged across participants
for each block, where C, T, and N assume binary values (CTN111A
is a repeat of CTN111). The responses are arranged in the sequential
order of presentation. Bars represent 95% confidence intervals, the
dashed red line indicates performance at chance level (16.67%).
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Figure 5: Average response time for both correct and incorrect
responses. Error bars represent 95% confidence intervals. Quicker
responses were more likely to be incorrect.

number of manipulated variables C, T, and N (Table 1,
row 7, # Variables). Blocks are grouped together if they
have the same number of manipulated variables. The
assumption is that the level of task difficulty increases
as more variables are manipulated (i.e., going from left
to right along the abscissa). Multiple comparison of all
difficulty pairs (0 vs. 1, 1 vs. 2, 2 vs. 3) yields statistically
significant differences. Response time on the other hand
does not vary significantly across groups, and is almost
uncorrelated (r = −0.07) with task performance.

4.2. NASA TLX Questionnaire

At various points in time throughout the experiment
(denoted A, B, C and D in Figure 3) participants
were asked to provide a self-assessment of the perceived
level of workload based on the NASA TLX instrument.
This psychometric assessment comprises six aspects,
namely performance, effort, frustration, as well as mental,
physical, and temporal workload. For each of these
aspects, ratings were collected on a 7-point Likert scale,
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Figure 6: Interval plot of z-scores for error (blue, inverse of
the performance), and response time (green), as a function of
hypothetical task difficulty.

from 1 (very low) to 7 (very high). The grand averages of
individual ratings are depicted in Figure 7. All six aspects
had the lowest scores at the first time point (easiest task)
and increased thereafter, albeit at different rates.
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Figure 7: NASA Task Load Index ratings (self-assessment) were
collected 4 times during the experiment (A-D). Each data point is the
grand average of the ratings across participants. Error bars depict
confidence intervals.

4.3. EEG

Figure 8 shows representative EEG images of the most
active regions on the scalp for a set of 6 groupings.
Activity was most prevalent in central and parietal regions
of the right hemisphere and strongest for the initially
assumed grouping of task difficulty (Table 1, row 6,
Hypothetical Difficulty ; Figure 8, bottom row, center) –
the only grouping in which a tendency for symmetric
activity could be revealed. Activity in frontocentral
regions (particularly electrode FC6) underlies modulation
by task performance.

In the following, we outline the results of the ANOVA
tests for the selected electrodes, frequency bands and
groupings.

Grouping by Temporal Flow : This group is depicted

in row 4, Table 1, and reflects the chronological flow of
time along with a gradual increase in task difficulty. One-
way ANOVA test results for significant response are shown
in Table 3. Although the power in the low-Beta band for
FC6 was itself not significant, the low-Beta band had the
most significant response when viewed across the selected
electrodes, whereas FC6 had the most significant response
across frequency bands.

Table 3: One-way ANOVA test of EEG signal power in various
frequency bands and electrodes when grouped according to Temporal
Flow (CTN blocks 1 to 8, see row 4, Table 1). Significant p-values
are highlighted in red (p < 0.001) and pink (0.001 < p < 0.05).

Low Mid High Low
Electrode Alpha Beta Beta Beta Gamma Gamma

10/FC1 0.83 3E-3 0.04 0.20 0.53 0.13
12/FC6 0.07 0.09 0.03 0.01 0.01 0.01
21/CP1 0.20 2E-4 0.09 0.11 0.07 0.03
17/C4 0.01 0.04 0.09 0.05 0.04 0.02
16/Cz 0.77 0.01 0.04 0.32 0.49 0.21
7/F4 0.27 0.05 0.09 0.30 0.26 0.33

29/POz 0.23 6E-4 0.17 0.27 0.57 0.21

Grouping by Time (T): This group is depicted in row
2, Table 1 and reflects the manipulation of time. One-way
ANOVA test results for significant response are shown in
Table 4. Responses were most significant in the three Beta
bands (especially low-Beta) across most electrodes, and for
the FC6 electrode across all frequency bands. In all cases
the PSD features increased in their standardized scores
with the change from T = 0 to T = 1.

Grouping by Hypothetical Difficulty : This group is
depicted in row 6, Table 1, and reflects increasing task
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Figure 8: EEG topoplots depicting for how many participants a
certain channel showed a significant response (p < 0.05) based on
the indicated groupings.

Table 4: Grouping by Time (T) (see row 2, Table 1). Description
follows Table 3.

Low Mid High Low
Electrode Alpha Beta Beta Beta Gamma Gamma

10/FC1 0.82 9E-4 0.09 0.25 0.52 0.31
12/FC6 5E-3 8E-4 4E-3 0.02 0.02 6E-3
21/CP1 0.08 8E-4 4E-3 0.01 0.19 0.15
17/C4 0.01 2E-3 0.02 0.04 0.12 0.08
16/Cz 0.16 4E-4 2E-3 0.02 0.16 0.20
7/F4 0.31 2E-3 0.01 0.04 0.06 0.08

29/POz 0.11 8E-4 0.01 0.07 0.23 0.17
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Table 5: Grouping by Hypothetical Difficulty (see row 6, Table 1).
Description follows Table 3.

Low Mid High Low
Electrode Alpha Beta Beta Beta Gamma Gamma

10/FC1 0.88 0.01 0.27 0.13 0.22 0.04
12/FC6 7E-3 0.03 4E-3 5E-4 1E-3 4E-4
21/CP1 0.09 2E-5 0.02 0.01 0.01 4E-3
17/C4 2E-3 8E-3 0.01 7E-3 8E-3 2E-3
16/Cz 0.68 9E-4 0.01 0.12 0.19 0.07
7/F4 0.74 0.06 0.03 0.06 0.13 0.14

29/POz 0.43 4E-3 0.12 0.07 0.22 0.06

difficulty as variables (C, T, N) are manipulated, with
additional weight given to the manipulation of the time
(T) variable. One-way ANOVA test results for significant
response are shown in Table 5. One-way ANOVA tests
of the remaining groupings (rows 1, 3, 5, 7, and 8 in
Table 1) did not reveal any significant responses over the
range of electrodes or frequency bands and are therefore
not presented here. To obtain Figure 9, the error rates
of all participants in all blocks were standardized per
subject and then correlated with the PSD of a particular
channel at a specific frequency band. Consistently across
the presented electrodes and frequency bands (excluding
alpha), increased error rate was accompanied by increased
PSD values.

Alpha Low Beta Mid Beta High Beta Gamma 1 Gamma 2

FC1

FC6

C4

CP1

C4

F4

POz
-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 9: Pearson correlation coefficient of the seven preselected
electrodes with the individual error rates. Correlations are shown
for each frequency band individually.

EEG Asymmetry Index. The EEG asymmetry index
quantifies hemispherical imbalances of cortical activity
and was calculated to investigate the apparent greater
responsiveness of the FC6 electrode compared to its
contralateral equivalent (FC5):

A.I. := log

(

PSDright

PSDleft

)

= log

(

PSDFC6

PSDFC5

)

(2)

ANOVA tests of the asymmetry index on the change
between conditions of low and high workload revealed
significances for all tested groupings, in particular for the
# Variables grouping (p < 0.005). Figure 10 depicts the
increase in asymmetry index for levels of higher difficulty.
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Figure 10: The EEG-asymmetry index of the electrodes FC6
and FC5 reveals an increase in fronto-central regions of the right
hemisphere as a function of cognitive load.

4.4. Galvanic Skin Response

The Galvanic Skin Response (GSR) is usually decomposed
into two components: i) the tonic response (slow changes
in the GSR signal with time-scales ranging from seconds to
minutes), also called Skin Conductance Level (SCL), and
ii) the phasic response (rapid changes in the GSR signal
with time-scale up to seconds), named Skin Conductance
Response (SCR). Results of one-way ANOVA tests are
shown in Table 6, for four groups taken from Table 1 (rows
2, 5, 6, and 7). Due to the high correlation between various
SCR- and SCL-related features (the full list of tested
features is available in the Appendix), only the results
for mean amplitude of both components are presented.

Table 6: p-values of one-way ANOVA for representative GSR
features across selected groupings. Pink indicates 0.001 < p < 0.05,
and red indicates p < 0.001.

Grouping SCR amplitude SCL amplitude

Time (T) 0.02 0.59
C+N 0.05 0.65

Hypo. Diff. 9E-5 0.06
# Variables 7E-5 0.02

4.5. Eye Tracking Data

Of the eleven eye-tracking features tested (see Appendix
for a complete list), we focus on fixation duration,
fixation positions, blink duration, and pupil diameter,
which were found to be correlated with task difficulty
and cognitive load, and can potentially determine blocks
where performance exceeds chance level. There were no
significant findings for distance to the screen, ratio and
duration of saccades.

Fixation Duration: Average duration of fixations in our
data showed an 11% reduction in fixation (p < 3e−7)
in the blocks that required visual search for solving the
task (C+N grouping). Although the participants had to
solve the same sorting task in principle, they fixated much
longer on a position on the screen if visual search was not
required. Thus, a task requiring visual search involves
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shorter fixation durations than the same task without
visual search.

Fixation Positions: Fixations of gaze on the screen were
analysed in detail by generating heatmaps so as to
visualize the areas of visual interest (see Figure 11). In

Figure 11: Position of most frequent fixations (thresholded) for the
first block (top) and last block (bottom). Heatmaps show averages
across all participants.

general, participants rarely read the names of the colors
(shown on the extreme left of the screen), but perceived
the color button peripherally while fixating on the lower
bound of the postal code range (the upper bound was
mostly ignored). Next, fixations on the rightmost digits
of the 5-digit postal code diminished over time, since
participants realized their irrelevance for the decision
(both for the current postal code (red) shown in the
center of the screen, and the legend shown to the left of
the screen). Furthermore, fixation positions were more
scattered in later blocks, potentially indicating a less goal-
oriented behavior in more difficult tasks.

In order to quantify this visually inferred tendency, we
trained a simple multi-layer perceptron (MLP) to predict
the position of the next fixation point based solely on
the position of the current fixation point. Assuming
that a frustrated subject would be more likely to get
distracted from the task and randomly perform saccades
while viewing the screen, we hypothesized that for blocks
with worse performance the classification accuracy of the
MLP would diminish. The classification was based on
a discretization of the screen into bins of equal size,
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Figure 12: A blockwise comparison of task performance with
blink duration and fixation position predictability revealed high
correlations (r = 0.57 and r = 0.59) and a weaker, negative
correlation with pupil diameter (r = −0.4). Thus, participants had
less structured fixation trajectories in blocks of lower performance.

and the fixation positions of all agents were used as
training data. As hypothesized, higher predictability
of the fixation positions in one block (the accuracy of
the MLP) was accompanied by better performance. A
blockwise comparison of (standardized) network accuracy
and performance revealed a high correlation, supporting
our assumption that more random or unexpected fixations
occurred in more challenging blocks (r = 0.59, see
Figure 12). In other words, a more structured, goal-
oriented behavior in blocks with better performance could
be inferred from the data. A hypothesis test comparing
the predictability of fixation positions in blocks above and
below average performance was significant (p < 4e−5).

Blink Duration: Blink duration is thought to be a
reliable measurement of drowsiness. Our data shows
positive correlation between blink duration and task
performance (r = 0.57, see Figure 12). For our
data, the ANOVA test allows distinctions based on
the individual performance, i.e., between blocks with
satisfactory performance (standardized score > 0.5) and
those with poor performance (standardized score < −0.5,
post-hoc Tukeys HSD test: p = 0.001), and medium
performance (p = 0.03).

Pupillometry: Since pupil diameter is mostly sensitive
to variation in illumination rather than cognitive states
(Dehais et al., 2008), we conservatively removed the 10
seconds of data following the inter-block pauses that were
interrupted by distractions (see Figure 3). The remaining
measurements indicate an increase in pupil diameter with
task difficulty (r = 0.63, p < 0.02), confirming previous
findings.

4.6. Multimodal Analysis

Multimodal analysis attempts to quantify the amount
of information carried by the features of the previously
examined modalities and determines which physiological
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Table 7: Linear Regression models were computed from the features of individual modalities (top 3 rows) and various combinations.
Model quality was assessed by RMSE and adjusted R2. The full model outperforms all others. For a legend of the feature indices, see the
Appendix.

Modalities Details RMSE R2 Adj. R2 p-value # Features

GSR Stepwise 0.81 0.32 0.28 1E-04 4 GSR: 1,2,5,15
ET Stepwise 0.79 0.36 0.30 9E-05 5 ET: 3,4,8,10,11
EEG Stepwise 0.56 0.74 0.65 8E-09 16 EEG: 1-4,6,10,14-17,20,26-28,31,34

GSR+ET Pre-selected 0.72 0.51 0.43 8E-06 9
GSR+ET Step+Pre 0.72 0.49 0.42 3E-06 7 GSR: 1,2 ET: 3,4,8,10,11
EEG+ET Pre-selected 0.55 0.78 0.66 1E-07 21
EEG+ET Step+Pre 0.55 0.73 0.66 6E-10 13 EEG: 1-4,6,10,14,17,26,27,34 ET: 4,11
EEG+GSR Pre-selected 0.50 0.81 0.72 2E-09 20
EEG+GSR Step+Pre 0.51 0.79 0.71 2E-10 13 EEG: 1-4,6,10,14-17,26,27,31,34 GSR: 1,2

ALL Pre-selected 0.52 0.80 0.72 1E-07 25
ALL Step+Pre 0.50 0.80 0.72 2E-10 16 EEG: 1-4,6,10,14-17,26,27,31,34 ET: 4 GSR: 1,2

measures are reliable. For example, do we gain additional
information from eyetracking data in combination with
EEG?

Perhaps the most direct method is to employ a
multimodal model that iteratively adds independent
variables from the pool of features based on some
optimization criterion. From the various regression models
we chose a linear model (implemented in Matlab via fitlm
and step) due to its simplicity and interpretability (it can
quantify the relevance for performance prediction for each
of the physiological measurements and their individual
features).

First, linear regression models were computed for all
three modalities (EEG, GSR, and ET, i.e., eye-tracking)
separately (top 3 rows in Table 7). Models started with
all features and improved stepwise by adding or removing
terms based on the p-value of an F-test as an optimization
criterion.

For combinations of modalities, the features selected
on the single-modality models were used (pre-selected)
before the same optimization technique was executed
(step+pre). For model comparison, root mean squared
error (RMSE), the adjusted R2 (i.e. the squared
correlation coefficient weighted by the number of features
used in the model) and the mentioned p-value of the model
vs. a constant model (guessing the mean) were considered.
Since RMSE is a scale-dependent parameter, all variables
were normalized. The constant model yielded an RMSE
of 0.935.

The results in Table 7 suggest that EEG data
is by far the most informative to infer about task
performance, compared with eyetracking and GSR data.
Even combining the latter two modalities yields worse
results than EEG alone. Within the single-modality
models, the most discriminant features of the ANOVA
analysis (e.g. blink duration in eyetracking) had the
highest coefficients (in absolute terms) in the linear
model. As expected, the EEG models were dominated by
features of the low Beta band, in particular fronto-central
electrodes (compare Figure 9). Importantly, the full model
(taking into consideration all modalities) outperforms
all others, although the EEG+GSR model comes very
close. A repetition of model fitting with a 10-fold cross
validation, conducted in an attempt to obtain a more
robust estimate of model quality, yields nearly the same

values as in Table 7.

5. Discussion

5.1. Behavioural Responses

We noticed a clear degradation in percent-correct
responses with increase in time (Figure 4), while there was
also a concomitant increase in hypothesized task difficulty.
This may suggest that (1) task difficulty indeed increases
with time, and (2) that a joint manipulation of the time
variable and at least one of the legend variables (C,
N) severely hampers sorting performance. Presumably,
performance was subject to online learning processes, as
indicated by the increases between block pairs (CTN001,
CTN100), (CTN011, CTN110) and (CTN111, CTN111A)
where the alteration in task difficulty was minimal or
absent.

The perceived level of workload was assessed from
the NASA TLX questionnaire at four time points
(Figure 3) for six aspects, namely performance, effort,
and frustration, and for mental, physical, and temporal
workload (Figure 7). All six aspects had the lowest
scores at the first time point (easiest task) and thereafter
increased, albeit at different rates. This suggests that the
loading of the task had a differential effect on each aspect.
Unfortunately, the sample size was too small for a more in-
depth statistical analysis, so we provide only a qualitative
description of the results.

Physical workload had the lowest scores overall across
all time-points, as the task made almost no physical
demands. However, physical workload scores showed an
increase when two and three (all) variables were changed
but demonstrated larger standard deviations, reflecting
perhaps an inability to appropriately scale the perceived
physical effort (i.e., the noise in the estimate dominates
any significant change in the score). This was also true
for frustration which demonstrated higher scores than
physical workload, but along with perceived effort had
the smallest range among all aspects (going from 3 to 4
across the times points). Frustration scores also had large
standard deviations, and combined with the narrow range
indicate that the increase in task load may not have led
to any real increase in perceived frustration.

The remaining four aspects (performance, effort,
mental workload, and temporal workload) all started at
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scores that were 4 or higher and increased to about
5.5 to 6. Perceived effort increased modestly from
about 4.5 to 5.5, but unlike frustration, started at a
much higher level (time point A in Figure 7) and had
much smaller variability. This indicates a modest, and
perhaps real, increase in perceived effort over time and
task-load. Perceived temporal effort increased sharply
when one variable was changed but thereafter did not
exhibit any change when two variables were changed, and
experienced a small reduction when all variables were
changed. However, this last time point was taken after a
repeat of CTN111, and may be a result of the participant
gaining more practice.

Perceived performance and mental workload had the
largest absolute increase in scores (from about 4 to about
6), with perceived performance increasing steadily across
all time points. Perceived mental workload increased
rapidly from zero to one to two variables, and thereafter
either stayed the same or showed a small decline. The
greatest changes in all aspects, except performance and
effort, was observed when going from zero to two variables.
However, any changes in perceived performance exceeded
that of perceived effort.

5.2. EEG

From the EEG results, we can draw some conclusions
about the tested groupings (which were designed to assess
cognitive load) as follows:

• Least Responsive Frequency Band: Alpha.
The alpha PSD values were not being consistently
attenuated or increased with the difficulty of the
task (see Figure 9). This is somewhat unexpected,
as Smith and Gevins (2005) reported that frontal
midline EEG attenuated alpha activity proportional
to increasing cognitive load during performance of an
n-back working memory task.

• Most responsive electrode: FC6. Our results
are similar to those reported in a recent study
by Adewale and Panoutsos (2019) which reported a
power increase with workload in frontal regions. In
their study, the increase was highest in FC6, next
to AF4 as reported here. Further, Adewale and
Panoutsos (2019) found that this region was also
most responsive in the mid and high beta band, the
same bands as in this study (see Table 5). The
corroboration with the results reported by Adewale
and Panoutsos (2019) suggests that the mid- and
high-beta bands responses from FC6 require further
investigation in task load experiments.

• Most responsive frequency band: Low Beta
(12.5-18 Hz), followed by higher frequency bands.
The responsiveness of the highest frequency compo-
nents is only present when the T variable is considered
to have greater weight in the task difficulty modu-
lation (Hypothetical Difficulty). This is also implic-
itly tested when the variables are grouped by perfor-
mance, as the main effect of the Time (T) variable
was highly significant (p = 2e − 18) in the ANOVA
tests for the error rate.

These findings are in accordance with Berka et al. (2007)
who reported that the discriminative features for their
workload classifier were mostly located in frequency bins

inside the beta and gamma bands. In contrast to
our findings based on monopolar recordings, their study
is based on bipolar derivations, in which the CzPOz
electrode contained the largest number of discriminative
features. In our case, these electrodes were also selected to
provide greatest discrimination among the set of electrodes
(Tables 2–5).

The grouping by Temporal Flow could be the best
approach to test for fatigue, as both time and difficulty
could generate fatigue in the participant. The results from
the grouping by Time (T) on the other hand indicate that
the low Beta band may be useful in predicting detecting
time pressure. A previous report has suggested that
increased low-Beta power is an indicator of cognitive task
demand (Ray and Cole, 1985). Thus, the T variable
could contribute greater weight to cognitive load or task
difficulty than C or N variables.

In the grouping by Hypothetical Difficulty, significant
responses were observed over a wider range of frequencies
and more numbers of electrodes, than were elicited by
grouping according to temporal flow (Table 3) or Time
(Table 4). This group showed greater response among
all difficulty-related groupings, with significant responses
across a wider range of frequency bands (in particular
high-frequency bands) as well as in more parieto-central
electrodes such as C4 and CP1. Similar to grouping
by Time (Table 4), electrode FC6 demonstrated more
significant response across all frequency bands.

We also investigated potential causes of the asym-
metric frontal cortical activity. This has traditionally
been associated with affective valence, specifically that in-
creased positive (negative) affect accompanies increased
left (right) cortical activity (Heller, 1990). However,
Davidson (1992) postulated the approaching-withdrawing
behavior in social situations as giving rise to the asymme-
try; Harmon-Jones and Allen (1997) suggested that trait
approach motivation was related to greater left than right
frontal activity. To tease apart the various causative fac-
tors, Harmon-Jones and Allen (1998) disentangled con-
founds of affective valence and an approach/withdraw be-
havior. They showed that anger, an approach related state
with negative valence, induced greater left cortical activity.
Accordingly, it was later established that anterior asym-
metric activity which favors the left hemisphere is related
to approach motivation irrespective of valence (Harmon-
Jones et al., 2010). We calculated an objective metric, the
asymmetry index, for the alpha band. This band is in-
versely correlated with cerebral metabolism (Cook et al.,
1998) and thus, an increase in the PSD ratio of right com-
pared to the left hemisphere reflects increased left cortical
activity.

5.3. Galvanic Skin Response

Skin Conductance Level (SCL, tonic response) rises
in anticipation of performing tasks and fluctuates in
the range of seconds to minutes depending upon
the psychological state, hydration, skin dryness, and
autonomic arousal. Evidence has been reported of SCL
concomitant with sensitivity and the general arousal
systems, as well as hippocampal information processing
(Boucsein, 2012). On the other hand, Skin Conductance
Response (SCR, phasic response) is typically associated
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with short-term events induced by discrete environmental
stimuli such as sight, sound, and smell, or modulated by
cognitive processes. Most SCR features were positively
modulated by cognitive workload, whereas some SCL
features tended to encode a rather general state of arousal
– with higher emotional levels at the start and end of the
experiment. The time variable (T) had a more significant
phasic response than tonic response, whereas the group
C+N did not have significant phasic or tonic responses.
Likewise, phasic responses for the Hypothetical difficulty
group demonstrated strongly significant responses whereas
tonic responses were not significant. The # Variables
group was the only group with significant phasic and tonic
responses.

5.4. Eye Tracking Data

Häkkänen et al. (1999) found that bus drivers with
hypersomnia have significantly higher blink duration than
control groups. Morris and Miller (1996) claimed that
blink duration (1) increases with time on task and (2)
correlates with decreased performance. On the other
hand, blink duration is reported to be correlated with
mental activity and effort (Andreassi, 2013; Ikehara and
Crosby, 2005). We hypothesize that in our paradigm, the
negative effects on blink duration induced by cognitive
measures like arousal, mental activity and interest
outweigh the positive effects induced by fatigue, difficulty
and drowsiness.

From a neurophysiological perspective, the pupil
diameter is thought to increase with cognitive workload
(Brookings et al., 1996; Kahneman and Beatty, 1966) and
emotional arousal (Partala and Surakka, 2003), but to
decrease with drowsiness and fatigue (Morad et al., 2000).
Our measurements confirm previous findings. Also, pupil
diameter was negatively correlated with task performance
(r = −0.4), hinting that it may function as an index of
fatigue and drowsiness.

In our experiments, we found that fixation duration
varied significantly whether or not visual search was
performed. Fixation positions were more predictable
in tasks where performance was high. Blink duration
correlated strongly with the participant’s individual
performance, and pupil dilation was positively correlated
with task difficulty.

Eyetracking data were particularly useful to infer
whether visual search was necessary to solve a problem
(fixation duration), but blink duration also turned out
to be predictive of performance. Signal to noise ratio
in fixation positions could be strongly correlated to task
performance. Further, a strong positive relation between
subjectively measured frustration and blink rate (r =
0.71) hints at the relevance of blink rate to quantify mental
states, an observation that has been made very recently
(Yang et al., 2017). Pupil diameter on the other hand
was presumably confounded by the experimental design as
cognitive load, and fatigue acted oppositely to potentially
level out each other. As a consequence, its results have
been found of much less significance than in related work
(McCuaig et al., 2010).

5.5. Multimodal Data

Based on our results, we conclude that EEG was the
best modality to quantify cognitive load and that the
low beta band activity provides the most reliable source
for prediction of task performance. The accuracy of
the multimodal performance prediction model is poorer
than those reported in recent studies which carried out
classification, rather than regression of related quantities
like operator workload (Schultze-Kraft et al., 2016).
However, model selection is ultimately guided by the
nature of the real-world application. Our aim here was
to explore approaches where widely-different physiological
variables can be integrated into statistical modeling.

Although not explored here in detail, the EEG
asymmetry index may offer insights into predicting anger
or frustration. However, a larger sample sample size is
necessary to evaluate the possibility of differentiating these
emotions in approaching and withdrawing situations. Our
study suggests that this may be a promising aspect to
investigate in future work.

6. Conclusions

In this work we investigated gradually increasing cognitive
load and its correlation with several physiological variables
(EEG, eye-tracking, and GSR) along with subjective data
from the NASA TLX workload questionnaire. We aimed
to identify pertinent information relating to cognitive
load, emotional quantities like frustration, and task
performance, as a function of task difficulty.

Low-beta frequency EEG waves (12.5-18 Hz) showed
up more prominently as cognitive task load increased. The
most responsive regions of the surface scalp EEG were
found to be frontal and parietal regions. More frequent
eye blinks and higher pupil dilation were detected as
tasks got more difficult, while blink duration correlated
strongly with task performance. Phasic components
of the GSR signal were related to cognitive workload,
whereas tonic components may encode a general state
of arousal. Subjective data (NASA TLX) showed an
increase in frustration and mental workload as reported
by the participants. Based on one-way ANOVA, EEG
alone, and EEG with GSR, provided the most reliable
correlation to the subjective workload level and were the
most informative measures for performance prediction.

Future investigations should carefully consider
amending the experimental design to disentangle con-
founds of time and difficulty increasing simultaneously
(e.g. by block randomization), thus allowing clearer in-
ference on the dynamics of features driven by otherwise
opposing forces such as pupil diameter.
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7. Appendix

Features used for multimodal analysis:
GSR features: 1: SCR mean frequency, 2: SCR number,
3: SCR mean amplitude, 4: SCR sum of amplitude, 5:
SCR max. amplitude, 6: SCR median, 7: SCR sum of
integral (total sum of AUC), 8: Latency of first SCR after
stimulus, 9: SCR maximum, 10: SCR amplitude, 11: SCL
median slope, 12: SCR onset (median), 13: SCL onset
(mean), 14: SCL and SCR (mean), 15: SCL amplitude,
16: SCR mean integral (mean AUC).
Eyetracking features: 1: Blink rate, 2: Fixation rate,
3: Saccade rate, 4: Blink duration, 5: Fixation duration,
6: Saccade duration, 7: Pupil diameter, 8: Interpupil
distance, 9: Eyegaze distance, 10: POR distance, 11:
Distance to screen.
EEG features: FC1, FC6, CP1, C4, Cz, F4, POz; each
for the frequency bands: low beta, mid beta, high beta,
low gamma and gamma.
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