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Abstract—Surveillance is one of the most promising applica-
tions for wireless sensor networks, stimulated by a confluence of
simultaneous advances in key disciplines: computer vision, image
sensors, embedded computing, energy harvesting, and sensor
networks. However, computer vision typically requires notable
amounts of computing performance, a considerable memory foot-
print and high power consumption. Thus, wireless smart cameras
pose a challenge to current hardware capabilities in terms of
low-power consumption and high imaging performance. For this
reason, wireless surveillance systems still require considerable
amount of research in different areas such as mote architec-
tures, video processing algorithms, power management, energy
harvesting and distributed engine. In this paper, we introduce a
multimodal wireless smart camera equipped with a pyroelectric
infrared sensor and solar energy harvester. The aim of this work
is to achieve the following goals: 1) combining local processing,
low power hardware design, power management and energy
harvesting to develop a low-power, low-cost, power-aware, and
self-sustainable wireless video sensor node for video processing
on board; 2) develop an energy efficient smart camera with high
accuracy abandoned/removed object detection capability. The
efficiency of our approach is demonstrated by experimental results
in terms of power consumption and video processing accuracy as
well as in terms of self-sustainability. Finally, simulation results
show how perpetual work can be achieved in an outdoor scenario
within a typical video surveillance application dealing with aban-
doned/removed object detection.

Index Terms—Embedded smart camera, energy efficient, in-

frared sensor, multimodal video surveillance system, wireless

sensor network.

I. INTRODUCTION

R ECENT advances in micro-electromechanical systems,

embedded computing, and low-power radio communica-

tion technology have sparked the advent ofmassively distributed

wireless sensor networks (WSNs). The WSNs consist of large
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number of low-cost, low-power sensor nodes, which collect and

disseminate environmental data. These sensor nodes are aimed

at working within several scenarios, including surveillance,

target acquisition, situation awareness, and chemical, biolog-

ical, radiological, and nuclear early warning. To support these

capabilities, it is now necessary to develop new architectures

and design concepts that offer multimodal sensing without

sacrificing the attractive low size, weight, and power capability

offered by the conventional motes. The key advantage of WSNs

is the ability to bridge the gap between physical and logicalworld

by collecting and sending useful information to devices that have

the computational resources to process it. WSNs, appropriately

applied to dangerous tasks, can greatly decrease their risk, or

even avoid the need of manpower for safety control.

Within this context, applications that exploit low-power

video wireless networks (LP-VWN) consisting of networks

of low-cost video sensors connected by low-rate wireless

channels and constrained by low-power budget, have gained

increasing attention [1]. In fact, a huge number of applications

in surveillance, health care, environmental monitoring, and

entertainment find interest in LP-VWN. Typical applications

are in the domain of object detection, recognition, and tracking

and a very challenging task is designing distributed video sys-

tems within the tight power budget typical of mobile devices

and wireless sensor networks. These tasks could be performed

after the acquisition of a continuous video stream on a power

unconstrained base station. However, this approach would be

extremely energy and bandwidth inefficient, difficult to imple-

ment on stand-alone mobile embedded systems and ultimately

not scalable in a network. Clearly, nothing should be done from

the point of view of data transmission if the target object/event

is not detected. Even in presence of the target object/event, only

some very limited amount of information may be transmitted,

such as the number of interest objects, their size, position, tra-

jectory, etc. In terms of computing power, using smart cameras

reduces the processing load of the central processing units by

means of the execution of low-level image processing tasks

within the camera platform and before data transmission to

the host system. This way, the amount of data needing to be

transmitted is radically reduced since, instead of sending the

whole image contents to the host system, only some specific,

postprocessed information is sent. Furthermore, transmitted

data is more pertinent than the raw pixel flow, meaning that

received data can be promptly used by the central processing

units, without the need for running time-consuming tasks.

Energy is one of the scarcest resources in wireless sensor

networks. This key issue is more critical for power hungry

applications such as video processing. To enhance vision

2156-3357/$31.00 © 2013 IEEE
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sensor networks, two successful strategies can be adopted:

1) exploiting alternative power sources, which increase the

autonomy of the nodes; 2) exploring multi-modal sensor

integration, which can save on-board power consumption.

Recently, several researchers have proposed alternative power

sources and energy harvesting techniques to replenish energy

buffers like batteries or super capacitors by extracting and con-

verting power from the surrounding environments [18]–[20].

Energy harvesting technologies are used to collect energy from

ambient sources. An energy harvesting device converts this

energy into electric energy which is stored in the energy storage

device of the sensor node. In particular, photovoltaic (PV)

harvesters appear as the most promising for enabling perpetual

operation of WSNs [2], [3].

On the application side, the main focus of this work is on

video surveillance, processing images directly on board, only

when required. So this approach is completely orthogonal to

the CCTV approach which sends out or record a huge amount of

video data that is then processed offline. Specifically, our goal is

to develop a video surveillance system that, through the analysis

of image data acquired from the video sensor, performs auto-

matic and reliable detection of abandoned and removed objects

in the monitored scene. Due to the on-board video processing

is possible automatically detect if some object is abandoned of

removed from the monitored field of view and give alarms via

wireless radio. Typical scenarios for the proposed system are,

e.g., detection of unattended packages in a railway station or in

an airport, or real-time traffic monitoring and surveillance [4],

[6] as well as detection of stolen objects in a museum [5]. In par-

ticular, automatic abandoned object detection in small public in-

door environments, such as toilets and lavatories, is particularly

suited to the characteristics of the proposed device (low-cost,

low-power, limited spatial sensor scope). Several approaches

have recently addressed this specific task [4]–[15], [16], typi-

cally relying on off-the-shelf computing platforms such as per-

sonal computers or wired/wireless commercial cameras. How-

ever, these systems are typically power hungry, thus not suit-

able to work within wireless sensor network applications, where

power consumption is a critical issue. In fact, the design of

such video analysis algorithms on a smart camera character-

ized by low power consumption, low processing capability, and

small size is challenging due to the limited amount of avail-

able resources. It is worth pointing out that none of the pre-

viously mentioned approaches is based on a similar embedded

architecture. Moreover, we believe that combining local pro-

cessing, low power consumption, and power management, en-

ergy harvesting, self suitability, and distributed intelligence is

a key challenge to make video surveillance based on wireless

sensor networks a reality. Thanks to these features the LP-VWN

can compete or improve PC-based and commercial USB/LAN

cameras video systems and applications.

In this paper, we present a multi-modal video surveillance

system based on a complementary metal–oxide–semiconductor

(CMOS) video sensor and a pyroelectric (“passive”) infrared

(PIR) sensor characterized by low power consumption and low

cost to be used as a node in a WSN. Moreover, the node is

equipped with a solar panel that we later show to enable per-

petual operation. We propose a solution integrated into a stand-

alone camera with embedded video processing capabilities and

wireless communication. The proposed application relies on an

advanced video analysis framework that, based on the same

low-cost and low-power architecture, is able to detect events

such as abandoned or removed objects. The PIR sensor is inte-

grated with the video processing module, since it appropriately

triggers the video analysis module based on the absence/pres-

ence of people in the scene. This provides two main benefits.

The first one concerns the robustness of the video analysis algo-

rithm, since, as it will be shown more in details in the following,

it helps reducing false positives due to occlusions or moving

objects. The second one concerns power consumption: by lim-

iting the activity of the video analysis module when this is not

needed, there is a notable reduction of the overall power con-

sumption of the system, as shown in [17]. In fact, in the afore-

mentioned scenario of detection of abandoned/removed objects

with a camera sensor network, most of the time the surveyed

area is empty and the network should no longer monitor con-

tinuously the scene because there is nothing to detect. When an

event is detected by the PIR, the network can be switched on

and begin video processing once again. Although the camera is

low power, it can last only few hours in continuous mode, how-

ever thanks to the energy management policy that uses a sleep

and wake-up strategy for energy conservation together with a

PV harvester, the video node can work perpetually in the pro-

posed scenario (with 50 events per hour).

The remainder of the paper is organized as follows. Related

work is discussed in Section II, while in Section III we present

the system architecture focusing on the constraints of energy

budget, memory and computational capability offered by an

ARM-based solution. Section IV describes the image pro-

cessing algorithm used for the detection of abandoned/removed

objects, discussing the constraints met and the implementation

details developed to deal with this limited platform. Experi-

mental measurements and achieved performance are the focus

of Section V. Finally, Section VI draws conclusions.

II. RELATED WORK

A video sensor node in a wide area sensor network is a node

capable of performing on-board video processing, and com-

municating the information over a self-organizing and fault-

tolerant wireless network. Commercial CCTV and PC-based

surveillance systems are not suitable for wireless sensor net-

work surveillance application, and are orthogonal to our ap-

proach. In fact, the CCTV are not processing the data on line

and are wired for power consumption, while PC-based and com-

mercial cameras rely on high power consumption, which is not

suitable for the WSN. For this reason, this section does not re-

view these kinds of solutions.

Recently, several platforms and commercial cameras with

similar goals have been developed within a sensor [21]–[29].

We can classify these approaches in three categories:

� low-cost nodes with wired interface (e.g., commercial

USB/LAN camera, or the node designed by Corely et al.

at CMU [22]);

� wireless nodes with significant power consumption (e.g.,

commercial wireless LAN or the Panoptes nodes designed

by Feng et al. [25]);
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� application-specific single ultra-low power single chip so-

lution (e.g., the chip designed by Zhang et al. [24]).

Being wired, the nodes in the first category obviously do not

satisfy the basic requirement of being wireless, thus usually

these cameras send the data to a remote host to be processed,

although novel commercial cameras have the possibility to do

it on-board they still send the results bymeans of a wire. Instead,

nodes in the second category consume roughly more power

than a typical first generation wireless sensor node and for this

reason they are not suitable for wireless sensor network which

should work for several months. Finally, single-chip solutions

have extremely low-power consumption, but they are neither

programmable nor configurable in field. One important common

point among current video wireless nodes belonging to the first

and second category is that the digital signal processing sub-

system is the main power bottleneck. This is due to the fact that

the high data rate of CMOS image sensor imposes the selection

of fast processors and memories with high power consumption.

Hence, the main open challenge in this area is to synergistically

develop algorithms and architectures for energy-efficient image

processing without giving up the flexibility of in-field configu-

ration.

The academic literature provides more similar approaches in

terms of low-power cameras and wireless sensor application.

In [30] sensor nodes equipped with PIR, acoustic and mag-

netic sensors have been deployed in order to achieve adjustable

sensitivity, stealthiness and effectiveness in a distributed mili-

tary surveillance applications. To balance privacy and security

in surveillance applications, networks of infrared sensors (IR)

and cameras are employed also in [31]. Cameras are used in

public areas while networks of IR detectors are deployed in pri-

vate areas. The system processes the data from IR sensors in

order to detect an event of interest in the private area to iden-

tify the author by correlation with the images grabbed in the

public area. Energy conservation through limiting the sensing

to a small part of the network was also considered in [32]–[35].

In [32], the activation pattern is swept across the network. Both

schemes assume a simple topology and do not handle sensing

holes due to the sleeping time of the sensors. In fact in this pre-

vious work the sleeping time is fixed and the sensor could sleep

also when it is need have data acquisition. In [33], the activation

pattern follows a user-defined path through the sensor network

as a sentry. In [36], a sleep/wakeup strategy in solar-powered

wireless sensor is presented. Our work incorporates many sim-

ilar ideas to the ones mentioned above however in contrast to

the other works we present a combination of video sensor with

other low-cost and low-level sensors, which are used mainly

for triggering the camera at the right time and not to promote

a reduction of the system energy requirements. In fact the PIR

sensor can be used as an ultra low power wake-up trigger to re-

duce the power consumption when the video processing is not

needed. Moreover, data from PIR sensors can be used from the

application to understand when the best moment for starting an

image acquisition occurs. This will bring both a reduction of

false positives and a reduction of the number of frame being

processed, thus also a reduction of power consumption. Finally,

we equipped the node with a solar panel to recharge the batteries

and achieve perpetual work.

Fig. 1. Multisensor layer (MSL) includes both camera sensor and the PIR
sensor; processing unit (PU) is the core of the node and include an ARM9
microcontroller with SRAM. Wireless communication unit (WCU) provides
the interface with a Bluetooth or Zigbee wireless board.

III. SYSTEM ARCHITECTURE

Fig. 1 shows the smart camera structure. A smart camera is a

camera that can do on-board processing instead of transmitting

all video data to a central controller. The choice of a smart

camera is motivated by the notably reduced power consumption

required by processing on-board compared to a solution relying

on transmitting raw data through a wireless interface. The wire-

less smart camera consists of a camera sensor, an embedded

processor (ARM9 STR912 from STM), a CMOS video sensor

(VS6624 from STM), a pyroelectric infrared sensor used as

trigger and a wireless communication module, being supported

through a suitable interface which can host either a ZigBee or

Bluetooth compliant transceiver. The whole system is designed

to achieve low power consumption. Each device provides a

power saving mode to reduce consumption when not in use.

The smart camera is connected to a host (gateway or central

PC) to send alarms or relevant image content; moreover it can

receive wireless messages from the host so as to modify its

settings.

A. Processing Core

Choosing the suitable target hardware for a smart camera pro-

cessor is an important issue. Due to the very large amount of

data involved in image processing and computer vision tasks

and the aforementioned constraints on power consumption, we

have chosen an STR912F microprocessor from STMicroelec-

tronics. It is based on an ARM966E 16/32-bit RISC architecture

working up to 96 MHz operating frequency. On the chip there

are 96 KB SRAM and several interfaces including Ethernet,

USB, I2C, and UART. Since one main goal of the system is low

power operation, most of the peripheral interfaces have been
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disabled in our design. One of the major features of this MPSoC

is the configurable and flexible power management control that

allows the user choosing the best power option that fits the cur-

rent application. Thanks to this feature, power consumption can

be dynamically managed by firmware and hardware to match

the system requirements adjusting the operating frequency or

changing the processor state. STR912F supports three global

power control modes: run, idle, and sleep. The typical current

consumption for this microcontroller is about 1.7 mA/MHz in

Run mode and only a few mA in sleep mode, which is an at-

tracting feature for wireless sensor network design where the

power consumption is a main constraint. To capture images

from the camera and processing data for image classification we

employ a high-speed logic interface provided from STR912F.

B. CMOS Image Sensor

To achieve low power consumption we chose the VS6624

CMOS imager from STMicroelectronics as the video device.

The image sensor provides full SXGA (1280 1024) resolution

at 15 frames per second, or VGA (640 480) resolution at 30

frames per second. A very important feature is the power con-

sumption, which is just 120 mWwhen active (2.8 V and 12Mhz

frequency), while it goes down to 23 mW when it switches to

standby. The CMOS camera can be programmed and controlled

via internal registers using I C serial interface. It supports sev-

eral output formats, however most video processing algorithms

use grayscale image, thus we adopt 8-bit grayscale images with

YCbCr 4:0:0 format. Although it supports SXGA resolution,

due to limited size of the internal SRAM only little parts of

the images can be processed, typically 160 120 pixels, but the

node can use external RAM extending the memory capability.

This resolution is enough to perform our image processing al-

gorithm, and to save time and energy for storing and processing

data.

C. Pyroelectric Infrared Sensors

Pyroelectricity is the electrical response of a polar, dielectric

material (crystal, ceramic, or polymer) to a change in its tem-

perature. The basic model of a pyroelectric element is a planar

capacitor whose charge changes according to ,

where is the area of the element, is the pyroelectric coeffi-

cient of the material, and is the temperature [37]. Using elec-

trodes, this charge can be detected as a current flowing through

an external circuit such that [38]. The inci-

dent radiation causes the change in temperature of an absorbing

structure that is designed to maximize the at the required

wavelength.

Commercial PIR detectors typically include two sensitive el-

ements placed in series with opposite polarization (Fig. 2). Such

a configuration makes the sensor immune to slow changes in

background temperature. PIR sensors are used in conjunction

with Fresnel lenses. The aim of the lenses is both to shape the

field of view of the detector and modulate incident radiation by

optically dividing the area to be protected into a number of sep-

arate cones. PIR sensors are largely used in modern alarm sys-

tems to detect presence of people and provide a simple, but reli-

able, digital presence/absence signal, being reliable and having

low prices and low power consumption.

Fig. 2. Typical commercial PIR sensor. Two sensitive elements are placed
in series with opposite polarization in order to gain background temperature
immunity.

TABLE I
CHARACTERISTIC OF MURATA IRA E710 PIR DETECTOR

PIR sensor conditioning circuits: Although the PIR analog

output is theoretically more informative for the following video

analysis stage, in this work we built the circuit to have a dig-

ital output, given its increased robustness. The detector used for

our smart camera is Murata IRA E710, which presents the char-

acteristic shown in Table I and the adopted Fresnel lenses are

IML-0635 from Murata. The bias output voltage is and

the output signal of the sensor needs to be amplified several hun-

dreds of times and filtered in order to be processed by a digital

system. Thus we built a two-stage amplifier which achieves a

total amplification of about 1500 times and filters the signal be-

tween 0, 5, and 12 Hz.

In addition to the amplifier, we designed a trigger with

adjustable threshold. The schematic of the circuit is presented

in Fig. 3. As long as the PIR output does not exceed lower and

upper thresholds set by the two resistors R1 and R2, and the

value of the digital potentiometer, the trigger signal is kept at

by the pull-up resistor. Passing one of the two thresholds,

an OPAMP pulls the trigger signal to GND; generating an

interrupt for the microcontroller of the smart camera. Using

an identical resistance for R1 and R2, the two thresholds are

symmetrical to , and their reciprocal distance increases

with the resistance of the digital potentiometer. In this manner

we can program dynamically and run time the sensitivity of

the wake-up signal for the camera according to the constraints

placed by the status of the system. The C interface of the

STR912F is connected to the digital potentiometer to dynami-

cally change the threshold of the trigger. It is thus possible to

increase or decrease the characteristics of the field of view of

the PIR sensor.
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Fig. 3. Schematics for trigger generation using PIR output signal. C interface
is used to adapt the sensitivity of digital output (trigger output) of the PIR sensor.
The PIR output is analog signal of the PIR. The comparators and the diodes
generate the digital output.

D. Wireless Transceiver

The smart camera hardware and software interface is built to

host different wireless standards used in the wireless sensor net-

work community, such as ZigBee and Bluetooth or proprietary

protocols. However, in this work we use WT12 from Bluegiga,

a highly integrated Bluetooth module, containing all the neces-

sary elements from Bluetooth radio to the antenna. Performance

andmeasurements discussed in this paper henceforth refer to the

version with Bluetooth capability.

E. The Energy Harvesting Unit

Energy harvesting is a low cost and effective operation, in

term of energy harnessed, device size, and efficiency. One of the

primary issues that need to be tackled is minimizing the power

consumed by the harvester itself. The less the power required by

the circuit, the faster the growth of the harvested energy in the

accumulator. Solar harvesting is mainly used for sensor nodes

deployed outdoor and several circuits have been proposed to

increase the autonomy of embedded systems. The I–V charac-

teristic of a PV module is given by the following equation:

(1)

where is the generated current, is the reverse saturation

current, is the electronic charge, is a dimensional factor,

is the Boltzmann constant, the temperature in degree Kelvin,

and the series resistance of the cell. The internal shunt re-

sistance is neglected in this model. The plot of the PV module

adopted in our solar harvester is shown in Fig. 4.

For our smart camera we used the SOLAREX MSX-005F

solar cell, which presents the characteristics shown in Table II.

Furthermore we used a COTS boost converter and the Maxim ic

MAX1551 to recharge a 2000 mA/h Li-Ion battery. To increase

the energy efficiency of solar harvester the smart camera uses

the device developed and modeled in [40]–[42] which includes

a maximum power point tracking (MPPT) algorithm and can

perform high efficiency around 90%. Furthermore, we used a

COTS boost converter and the Maxim IC max1551 to recharge

a 2000 mA/h Li-Ion battery.

Fig. 4. Characteristic of the photovoltaic module.

TABLE II
CHARACTERISTIC OF SOLAREX MSX-005F SOLAR CELL

IV. VIDEO ANALYSIS ALGORITHM

As described, the primary goal of the proposed wireless

sensor node is to check for “abandoned/removed object” events

in the monitored scene as soon as the status of the system goes

from “presence of motion” to “absence of motion.” We have

already explained how the use of the PIR sensor allows for

sensing the presence of movements in the monitored scene so

as to detect the occurrence of this specific event. Hence, we pro-

pose here a video analysis algorithm aimed at performing the

abandoned/removed object detection suited to the traits of our

system. Overall, this algorithm first detects stationary changes

in each frame acquired by the video sensor, then classifies the

detected changes between either “removed” or “abandoned.”

Due to the constraints linked to the low-power and embedded

traits of our platform, the camera does not acquire a video se-

quence, and instead it only captures a snapshot of the current

scene, which is then compared with the previous frame (i.e., the

one that was acquired before the last motion took place). This

requires a small memory footprint, compatible with the RAM

memory available aboard the platform, and allows for reducing

the transfer time between the memory and the processor. In ad-

dition, it is worth pointing out that, due to the aforementioned

reasons, all stages of the proposed video analysis algorithm have

to be particularly efficient to deal with the adopted low-fre-

quency processor, and need to avoid the use of floating point in-

structions given the absence of a floating point unit (FPU)within

the architecture.

Several recent approaches are present in literature for the task

of motion detection in video sequences [43]–[45]. Differently
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Fig. 5. Flow diagram of the proposed video analysis algorithm.

from their case though, here the video analysis is more chal-

lenging due to the absence of a full set of frames to be processed.

In particular, it is hard to determine the detected changes only

based on the single acquired snapshot. Nevertheless, a working

assumption brought in by the joint use of the PIR sensor and

the camera that simplifies the video analysis task is represented

by the fact that all visible changes appearing in the scene in ab-

sence of movements can be considered stationary changes, thus

possible instances of removed or abandoned objects.

The proposed video analysis algorithm is based on three

stages. During the first stage, the current image is compared to

the stored one in a background subtraction manner yielding a

change mask aimed at highlighting visible changes in the scene

appearance. Following this step, an image processing stage

analyzes the change mask to filter changes due to the presence

of nuisances in the data. In particular, this step relies on labeling

the connected components of the image [or region-of-interest

(ROI)] and eliminating those whose area is below a given

threshold. Finally, a higher-level vision algorithm performs a

blob analysis aimed at classifying each ROI between aban-

doned and removed object. Fig. 5 shows a flow diagram of the

algorithm.

A. Background Subtraction

The first stage of the video analysis algorithm aims at ob-

taining a change mask highlighting the visible changes (i.e.,

changes in pixel intensity) between the current frame and

the previously acquired one In our approach we adopt a

typical background subtraction algorithm, by interpreting the

frame as the current scene background, since referred to the

appearance of the scene previously to the last occurred motion.

Hence, we compare each pixel at coordinates ( ) in with

its homologous on by means of a function aimed at mea-

suring the similarity between the two image points. In our case,

since a static camera is adopted, homologous pixels have iden-

tical image coordinates

(2)

The standard and simplest approach would simply compute

this similarity as a function of the absolute difference of the

two pixel intensities. Although simple, this approach is partic-

ularly sensitive to the nuisances typically present in image data

under real working conditions such as e.g., camera noise and

light changes. This would easily lead to misinterpreting nui-

sances as structural changes, yielding an abundance of false pos-

itives in the change mask. Therefore, we adopt a more robust

approach that relies on taking into account all pixel intensities

belonging to a given local support of the point at coordinates

on and . In particular, we compare the two squared

pixel windows of size and centered at coordinates ( ) on

the two frames by means of the normalized cross-correlation

(NCC) [46]

(3)

where the numerator is the dot product between and

(4)

and the two terms at the denominator represent the norms

of and , respectively

(5)

(6)

The use of the NCC is advantageous on one side since it is

invariant to linear photometric transformations between the two

corresponding windows on and , on the other side because

its computation is still particularly simple and efficient. Since,

as already mentioned, there is no FPU in our target architecture,

to perform the square root and division operations in (3) a fixed-

point square root function for ARM and an integer division have

been implemented. Successively, a threshold is applied on the

NCC score at each pixel location, this yielding the binary change

mask, , which highlights those parts of which have been

subject to a change with respect to

(7)

Other measures do exist that tolerate more general classes of

transformations than the linear, e.g., order preserving transfor-

mations that assume that nuisances cannot change the order be-

tween neighboring intensities. Examples of such approaches in-

clude the rank and census transforms [47], and more recently

[46], [48], [49]. Moreover, very effective methods based on the

order preserving assumption and a probabilistic formulation of

the binary classification problem given by (7) have been pro-

posed [50]–[52]. Although allowing for improved robustness to

typical nuisance factors, these methods are significantly more

expensive under both the computational and memory require-

ment point of view so that they definitely do not match the lim-

ited computational resources available in our architecture.

A typical drawback of background subtraction approaches

relying on a spatial support, such as our NCC-based method,

is that the segmentation of the foreground in the change mask
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becomes less accurate along the borders of the objects. In par-

ticular, there’s a typical fattening effect, i.e., the object appears

bigger since its borders are increased by a number of pixels pro-

portional to . To deal with this effect, a simple binary mor-

phology operator of erosion is applied to the change mask as

many times as the chosen value of . The application of this op-

erator has also the beneficial effect of reducing the presence of

noise in the change mask.

In order to have a refreshed background and to avoid

background subtraction mistakes, the algorithm updates the

background under the following condition: 1) at the end of the

video processing algorithm the current frame becomes the new

background; 2) after a fixed or adaptive (according with the

firmware) time interval of inactivity, the camera wakes up and

updates the background.

B. Labeling

Given the output of the background subtraction stage, a

labeling algorithm is applied to identify the connected compo-

nents present in the binary change mask. This operation allows

for determining the number of separated objects that have been

removed/abandoned in the current frame. More specifically,

we adopt the approach proposed in [53], an efficient labeling

algorithm for binary images which also has low memory

requirements. In particular, the algorithm only requires two

image scans and has a memory complexity of O(1).

Then, a bounding box is computed for each connected

component, representing the squared ROI of that specific

component. The ROI computation only needs one additional

image scan and it has two main advantages. First, it allows

compressing the information concerning the area of the image

that was subject to a change: this is useful since the sensor

only needs to send to the base station the two coordinate pairs

defining the ROI, this allowing less bandwidth usage and

higher transmission speed. Secondly, it allows the application

of a postprocessing step based on the ROI shape aimed at

eliminating spurious connected component originated by noise.

In particular, all ROIs having one side smaller than a predefined

threshold are eliminated from the further processing stage.

C. Blob Analysis

This last stage of the video analysis algorithm aims at clas-

sifying each ROI either as an object abandoned or removed.

The main assumption on which the adopted classification algo-

rithm relies on is that the presence of a foreground object tends

to increase the number of edges in the image around the bor-

ders of the object compared to the background. Hence, if an

object is abandoned on the background, the number of edges

along the borders of the corresponding connected component

on should increase compared to . Conversely, if an ob-

ject is removed, then should display a decreased number of

edges along the borders of the connected component related to

the original position of the object on .

Hence, the approach relies on the estimation of the number

of edges that appear on along the borders of the connected

component we wish to classify (Fig. 6). First of all, we detect all

contour points within the ROI as those points that belong to the

foreground and have at least one of their 8-connected neighbors

Fig. 6. Edge-wise, the presence of foreground objects in the scene which were
not present in the original background model tends to create additional edges
along the border of the object, vice versa, when an object is removed from the
background, border edges will mostly disappear. This is clearly visible by com-
paring the two edge maps shown at the bottom, associated to their respective
frame on top. Upon accurate determination of the object borders (performed in
the previous background subtraction andmorphology stages), the blob detection
step is thus able to robustly classify the object as either abandoned or removed.

set as background. On each contour point at coordinates ( ),

we compute the horizontal and vertical derivatives of

point ( ). Specifically, the derivatives are computed by

means of the Sobel operator, since it provides for a robust and

fast derivative estimation that requires integer operations only.

Then, we estimate the magnitude of the gradient at ( ) as

(8)

A threshold, i.e., , is used to classify the contour point as

being or not an edge in . Then, the percentage of contour

points associated with edges, , is computed as the ratio

between the total number of contour points associated with an

edge and the total number of contour points. This percentage

value is then thresholded to yield the final classification of the

ROI

(9)

Ideally, to yield a symmetric behavior of the classification al-

gorithm towards the two classes (i.e., no bias needs to be intro-

duced towards one specific class) the value of should be set

to 0.5. This approach is iterated on all ROIs found on by the

previous stage of the algorithm so as to yield a classification of

all relevant changes over the current frame of the scene.

V. EXPERIMENTAL RESULTS

A. Video Analysis Evaluation

We present here two experiments, referred to as Experiment

1 and 2, aimed at assessing the capability of the proposed algo-

rithm to correctly detect static changes in the monitored scene,

and classify them as either abandoned or removed objects. For

both experiments, the same set of parameter values is used,

which is reported in Table III. As for , the value used is
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TABLE III
PARAMETER USED THROUGHOUT THE PROPOSED EXPERIMENTAL EVALUATION

to allow performing the comparison in (7) using integer oper-

ations: in fact, in our implementation the NCC value at each

pixel is multiplied by (i.e., left-shifted of 10 positions) and

compared with an integer threshold (equal to 1023 in our exper-

iments). Also, all the results concern data that has been wholly

acquired and processed online and onboard the architecture.

Experiment 1 concerns an indoor setup aimed at monitoring

a sector of a hallway in a building. The camera was placed a few

meters away from the wall and switched on. In order to achieve

the best performance, the camera has to be firmly attached to

the wall or placed over a vibration-free surface. In fact, although

the camera is mounted on a mobile device, the image processing

algorithm assumes the presence of a static camera. Meanwhile

several real abandoned/removed object instances were gener-

ated. The processed images were sent directly to a host PC via

Bluetooth. We have analyzed three continuous footages where,

each time the camera was switched on by the PIR sensor, the cur-

rent frame was processed by the proposed algorithm. We have

collected a total of 64 frames, with each frame containing at

times even multiple abandoned/removed objects, for a total of

78 abandoned/removed objects. Also, a subset of frames (i.e.,

11) does not contain any case of object removal/abandon. As

for the background subtraction algorithm, out of 78 ROIs, 77

ROIs have been correctly detected by the algorithm, yielding

only one false negative and four false positives, for a correct

segmentation rate of 98.7%. These 77 ROIs, fed to the classifi-

cation stage, were then correctly classified in 73 cases as aban-

doned/removed object, yielding to a correct classification rate

of 94.8%.

Fig. 7 reports some qualitative examples of correct segmen-

tation and classification yielded by the proposed algorithm on

the dataset of Experiment 1. In the figure, seven examples are

reported (indicated by letters a–f), where for each example the

two frames and the final output of the algorithm are

shown. As for the output, each detected ROI is indicated by a

white bounding box, while the classification result is encoded

as a symbol shown inside each detected bounding box: the “ ”

symbol stands for abandoned object (as if it is added to the

scene) while the “ ” symbol stands for removed object (as if it

is subtracted from the scene). As it can be seen from the figure,

the proposed algorithm is able to achieve correct segmentation

and classification also in presence of very small, partially trans-

parent objects (cases e and f) andwithmultiple ROIs (cases a–f).

Fig. 8 reports some cases where our algorithm produced

wrong results, by showing for each case and the

final output of the algorithm, as previously done in Fig. 7. In

particular, it shows the only false negative (case c) and three

out of the four reported false positives (case b, d, e) yielded

by the background subtraction stage. In addition, it shows two

Fig. 7. Correct segmentation and classification examples yielded by the pro-
posed algorithm on the dataset of Experiment 1.

of the four classification errors produced by the classification

stage (case a–f). As it can be seen, the majority of wrong
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Fig. 8. Examples of errors yielded by the proposed algorithm on the dataset of
Experiment 1. b–e: Errors due to background subtraction: false negative (c) and
false positives (b, d, e). a, f: Classification errors of the Blob Analysis stage.

segmentations are due to splitting of the ROI into two sub-ROIs

(case b–d). The other wrong segmentation (case a) is due to the

Fig. 9. Performance of the proposed video analysis algorithm in different out-
door circumstances: graffiti (a), object abandon (b), object removal (c), illumi-
nation change (d).

too high proximity of the two objects, which are thus merged

into the same ROI. As for classification, apart from the errors

arising due to a wrong segmentation, we can note the error due

to the very small removed object in case f.

In Experiment 2, we present a qualitative evaluation of the

proposed algorithm in an outdoor environment under sunny

conditions, which concerns specifically the case of monitoring

a wall from undesired events such as graffiti, stealing or unau-

thorized poststicking. In this case the distance from the wall

was around 5 m in the case (a–c) Figs. 9 and 10 and 7 m in

(d) Figs. 9 and 10. More specifically, and as it is shown in

Figs. 9 and 10, our system has been tested against events such

as graffiti (case a), wall affixtures (case b), object removal [case

c and Fig. 10(d)]. Finally a situation where only illumination

changes occur in the scene is shown in Fig. 9(d). In this test the

camera was left at 1000 in morning and the video processing

were performed 2 h later with different light. As it can be

seen, our algorithm is capable of robustly handling all the
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Fig. 10. Performance of the proposed video analysis algorithm in different out-
door circumstances: object removal (a, b, d), object abandon (c).

aforementioned cases, yielding correct classification also when

the object ROI is particularly small (e.g., case c of both figures

and d Fig. 10, and with each single writings appearing in the

graffiti situation concerning case a) and despite the nonoptimal

illumination conditions (e.g., the notable saturation present in

the data due to the external bright sunlight).

B. Power Consumption Analysis

Table IV shows the power consumption of our prototype. The

table shows how the power consumption of the whole system in

sleepmode is more than 10 times less than that in normalmode.

We estimated that the average time to elaborate one abandoned/

removed object event is about 3 s from the moment when the

detection starts. Moreover, the amount of time required for blob

analysis depends on the number and size of the detected ROIs.

Hence, it will be zero if the system does not detect any blob and

about 100 ms for three ROIs sized 16 16 pixel. Table V shows

the time request from the microcontroller to carry out the entire

TABLE IV
POWER CONSUMPTION OF THE VIDEO SENSOR NODE

TABLE V
ENERGY AND TIME REQUIREMENTS OF THE PERFORMED TASKS

TABLE VI
BATTERY LIFE OF THE VIDEO SENSOR NODE (IN HOURS)

video processing task. To evaluate the benefits provided by our

approach in terms of improvement of battery life we consider

the same systemwithout PIR sensor.More specifically, we com-

pare the two approaches assuming different amounts of random

events (i.e., 50, 100, 300 events per hour) and by estimating

the lifetime of the three scenarios using a full 2000 mAh bat-

tery. In the first simulation the PIR sensor is disconnected and

the system does not know when to switch off/on the camera or

when to turn into sleep mode, so it will work continuously and

the power consumption will be independent from the number

of events. Then, in our approach, and as previously mentioned,

the PIR sensor detects events and wakes up the microcontroller

which waits until the FOV is empty to start the video analysis.

When the video analysis is over the microcontroller turns the

camera off to reduce power consumption. For these simulations

we assume that the amount of time that the microcontroller has

to wait before starting the video analysis is 5 s. To evaluate this

timewe collected observations concerning the number of people

entering our building through the main entrance, and we built a

profile over 10 consecutive days. Successively, we computed

the average time needed for the FOV to be empty again. The

results comparing the life time (in hours) of both systems are

shown in Table VI. From the table it is clear that the proposed

approach allows for a substantial increase of battery life.
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Fig. 11. Simulation of our system with and without PV harvester (50 events/h).

Fig. 12. Solar energy harvested during five consecutive days from our PV panel.

Using the solar panel to harvest the energy, we can obtain

an additional improvement of battery life, achieving perpetual

working in an application scenario with 50 events per hour. A

simulation verifying the performance of the proposed system is

depicted in Fig. 11, where the energy harnessed from the solar

cell powers the sensor node and recharges the battery with the

exceeding events. In our simulations we assume a rate of 50

events per hour representing people walking within the field of

view of the video node. Furthermore we measured the energy

intake from the energy harvester and the solar light intensity

during five days (Fig. 12). All the information was stored in files

used as input to our simulations. Finally the energy level of the

battery at the beginning of the simulation is half its full capacity

(2000 mAh, expressed in Joules). This simulation shows how

the system can work perpetually with a small PV panel. The

node without the energy harvester stops working after approx-

imately 40 h, as it can be seen from Fig. 11. Instead, the node

with the harvester can recharge its battery during the day, the

energy accumulated in the battery being sufficient to keep the

node on during the night.

VI. CONCLUSION

In this work, a self-powered wireless smart camera for run

time video processing has been presented. The proposed ap-

proach have shown that combing advanced hardware/software

solutions makes possible high accuracy and perpetual work in

video processing on wireless sensor network where smart cam-

eras find the most critical constrain in the power consumption.

In fact, energy harvesters provide energy to replenish the bat-

teries, while the combined use of different sensors with het-

erogeneous features allows for a remarkable reduction of the

overall power consumption. We designed the camera for real

time video processing algorithm and an ad-hoc abandoned/re-

moved object using PIR features. Data were presented to eval-

uate the performance of our approach in term of energy con-

sumption, video processing application and accuracy. The ex-

perimental results showed the versatility of the application in

indoor and outdoor scenario and the simulation showed the per-

petual work was achieved in simulation outdoor scenario. Fu-

ture work will include a complete campaign of new experi-

ments in order to analyze better the issue of background changes

and more challenging condition (i.e., direct sun light, shadows).

Moreover they will be directed towards improving the hardware

of the smart camera node, video processing algorithm, and dis-

tributed intelligence.
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