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Abstract: Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the 
United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be 
detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer 
tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these 
imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid 
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Introduction

Cardiovascular disease (CVD) is the leading cause of death 
globally, with nearly 18 million deaths annually (1). In the 
US alone, approximately 700,000 people die each year—
the equivalent of 1 in 4 people dying every 36 seconds 
(2,3). CVD’s leading cause is atherosclerosis, now thought 
to be contributed by arterial inflammation (4,5). There are 
several risk factors for CVD and atherosclerosis, including 
hypertension, hyperlipidemia, diabetes, obesity, smoking, 
and a sedentary lifestyle (6,7). The process of atherosclerosis 
is characterized by excessive plaque deposits in the arterial 
wall (8). In the case of an unstable plaque, the associated 
fibrous cap breaks, causing a form of thrombosis (9). The 
thrombosis leads to embolism, which, in turn, causes a 
blockage in blood flow resulting in a stroke or myocardial 
infarction (10).

The plaque, which forms over time, can be detected using 
imaging modalities like magnetic resonance (MR), computer 
tomography (CT), and ultrasound (US) (11). Ordinarily, it 
can be challenging to determine the nature of plaque. Its 
various components—formed at different stages during its 
maturation—are spatially distributed in the arterial walls. 
Thus, the contrast visible in standard imaging does not 
clearly differentiate between components (12,13). This can 
be due to (I) partial volume effect in magnetic resonance 
imaging (MRI) (14) or (II) varying Hausdorff values in 
plaque regions with different components in CT (15),  
and (III) attenuation of echoes reflected by the plaque during 

US causing acoustic shadowing from calcification (16).  
Despite these challenges, imaging modalities can still 
offer clues about the different components of the plaque, 
tapped by the software-based advanced characterization and 
classification techniques (17-19).

This study aims to better understand the physics of 
each modality and its interpretation capabilities (20,21). 
Further, we explore how the detection algorithms detect 
and characterize and classify plaque tissue components, the 
so-called tissue characterization and classification of the 
carotid artery (TCCCA). This narrative review’s secondary 
objective is to understand the clinical requirements for a 
reliable, accurate, fast, and user-friendly TCCCA based on 
Artificial Intelligence (AI).

Several attempts have been made to perform tissue 
characterization and classification on carotid artery plaque 
(17,22). However, no in-depth reports have summarized 
advanced artificial intelligence (AI) methods for this 
application. TCCCA algorithms have changed over time 
to adapt to new technological developments (21,23), such 
as machine learning (24,25) and deep learning (26-30) in 
MR (31,32), CT, and US (33-40). Plaque characterization 
utilizing AI-based methods can assist in clinical decisions 
such as when to consider revascularization (41,42).

Search strategy 

For this review, we followed the search strategy as shown 

endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume 
effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) 
attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) 
methods have become an indispensable part of healthcare and their applications to the non-invasive imaging 
technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine 
learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link 
between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to 
characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on 
signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path 
for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. 
Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most.
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in Figure 1. We used three repositories to retrieve all 
relevant articles related to carotid classification and 
characterization. Among the repositories, Knimbus is a 
digital library that contains well-known repositories like 
JSTOR, Oxford, Science Direct, Springer, Ebsco, and 
IEEE. We searched for “ultrasound carotid classification”, 
“ultrasound carotid characterization”, “MRI carotid 
classification”, “MRI carotid characterization”, “CT carotid 
classification”, “CT carotid characterization”, “PET carotid 
classification”, “PET carotid characterization”, “IVUS 
carotid classification” and “IVUS carotid characterization”. 
After applying advanced filters such as publication year (as 
a range), article type, age, journal, and relevance, we found 
4,829 articles in the PubMed repository, 211 in IEEE, 
and 56,868 in Knimbus. Using exclusion criteria—that 
publications must be current within ten years and specific 

to carotid tissue classification and characterization—
and further filtering by title, abstract, and relevance, we 
arrived at 1,253, 125, and 1,523 articles, respectively. After 
duplicates were removed, our final tally was 229 articles. 
Although we did not employ systematic review and meta-
analysis (SRMA) methods, our search strategy was very 
similar.

Search by imaging modality

We computed the distribution of articles by modality, and 
Figure 2A describes the articles’ classification accordingly. 
We found that 60% dealt with US imaging techniques. US 
imaging is widely available, convenient, radiation-free, and 
low cost; thus, this technology’s usage was more common 
and more likely to appear in the publication. Ultrasound 
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Figure 1 Search strategy showing inclusion and exclusion criteria.
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imaging is the most commonly used imaging technique 
for applying AI methods (94.59%), followed by CT (30%) 
(43,44) (yellow color) and MRI (35%) (45) (brown color).

Search by AI-models

Figure 2B shows the distribution of the AI-models applied 
for TCCCA. Specifically, these constituted manual 
analysis (MA), statistical analysis (SA), machine learning 
(ML), deep learning (DL), and reinforcement learning 
(RL). We found that 70% of the articles used MA. 
Machine learning (54%) is a very common AI method in 
TCCCA (46). ML techniques have been used for various 
applications, including classifying tissue from the liver 
(47,48), thyroids (49), skin (50), plaque (19,51,52), and 
arrhythmia classification (53). ML is an older AI technique 
and requires manual interaction to extract features. Our 
search showed that the DL models had not been used often 
in TCCCA, as it is relatively new to medical imaging (54). 
Some of the key publications related to DL for medical 
imaging in stroke imaging are (26,55-58). RL represents 1% 
of all articles and one of the upcoming fields in AI-based 
diagnosis tools.

Atherosclerosis disease and plaque formation 

Plaque development involves the engagement and transfer 
of smooth muscle cells (SMCs) from the media layer to the 
intima layer. These SMCs in the media layer move into 
the intima layer and form the bulk of the cellular auxiliary 
matrix known as the plaque creation process. These SMCs 
from the media layer may also enter the surface and create 
a layer called the fibrous cap (59), which has an elastic 
property that prevents it from cracking. However, the 
likelihood of developing a fracture also increases as this 

layer stiffens (60). Inflammatory cells break down SMCs 
to reinforce and stabilize the cap. The cap’s stiffness index 
determines the probability of plaque breakup. Thus, 
determining stiffness in a stroke risk assessment is critical. 
This is connected to differentiating hard tissues from soft 
tissues (19,25,61-63).

Effect of plaque formation in blood vessels

The pressure of developing plaque creates tension in the 
artery, which, over time, reduces the force-bearing capability 
of the fibrous cap. Figure 3 illustrates the plaque formation. 
The human carotid atherosclerotic plaque has properties 
such as fibrous pads, lipids, intra-plaque hemorrhage and 
thrombus, that shows non-linear conduct (64). 

Arterial stiffness

The rupturing of this plaque then results in thrombosis or 
clot formation that leads to acute morbid events. Plaque 
formation initially begins with the deposition of small 
lipid and fatty materials in the intima, which can grow into 
complex plaque structures over time (65). The advanced 
plaque has a heterogeneous composition, with a lipid center, 
calcification, and fibrous deposits of the connective tissue (66). 

Cause of arterial stiffness due to atherosclerosis 

The top layer of atherosclerotic plaque, which includes 
SMCs, is cellular fibrosis. The elasticity of the SMCs 
determines the amount of force the arterial wall can 
withstand. The SMCs inside of the vascular walls 
contribute to vascular rigidity (67). During the replication 
process, removing the SMCs present in an artery prevents 
atherosclerotic plaque development. During the replication 
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process, the reduction or removal of the SMCs present in an 
artery prevents atherosclerotic plaque development. During 
the replication process, the small number of SMCs present in 
an artery prevents atherosclerotic plaque development. The 
small number of SMCs present in an advanced atheroma 
splits into deoxyribonucleic acid (DNA), which results in 
programmed cell death, or apoptosis. As the artery grows, 
inflammatory cytokines induce apoptosis, helping the SMCs 
to adapt. The accumulation of SMCs may be a product of 
cell death and replication, causing arterial stiffness (68). 
Previous research has suggested that increased stiffness may 
also be caused by changes in the collagen ratio to elastin in 
the arterial media’s extracellular matrix (69). An example of 
different pathological components is shown in Figure 4.

Physics of multimodality imaging for carotid 

plaque acquisition 

This section presents the different imaging modalities used 

for carotid plaque imaging (20).

Magnetic resonance imaging for carotid plaque

The MRI contains four components: (I) a magnetic coil, 
(II) a gradient coil, (III) a radio frequency (RF) coil, 
and (IV) a shim coil (70). A set of magnet coils made of 
superconducting metal-alloy produce powerful magnetic 
fields when a current passes through it. It also generates 
negligible heat, which is subsequently cooled by cryogenic 
helium. There are three concentric gradient coils located 
at the primary magnet coil. These gradient coils change 
the magnetic field’s direction along the x, y, and z-axes. 
RF coils are mounted concentric to the main magnetic 
field and serve as antennae to send RF energy to the 
tissue and receive the induced RF signals generated by the 
tissue (71). The MRI requires the aid of a homogenous 
magnetic field to localize the region of interest. Shim 
coils were used to homogenously adjust the magnetic 
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Figure 3 Stages of plaque formation and rupture. (A) Healthy artery, (B) LDL penetration via intima layer, (C) dislodging of SMC, and (D) 
wall rupture (courtesy of AtheroPoint, Roseville, CA, USA). SMC, smooth muscle cell.
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field by controlling it via the computer. The human body 
contains 80% water. Thus, when a patient lies in the 
bore of the MRI machine, the hydrogen atoms in the  
tissue align themselves with the magnetic field of the 
MRI machine. The resultant MR signals are localized 
and construct an image using gradient field magnets. 
Inhomogeneity correction in MRI for carotids can 
be adapted (72). Figure 5A shows the MRI machine 
representation. 

Computed tomography imaging for carotid plaque

CT imaging gives the ROI of tissue without the need 
to superimpose on the adjacent structure (73). It uses an 
X-ray radiation attenuation coefficient (AC) when imaging 
organs. AC was calculated as the density of the X-ray beam 
attenuated by the tissue. The CT machine mainly consists 
of an X-ray tube with slip-ring technology and a detector. 
The detector continuously rotates around the patient 
during the diagnosis. This technology is called Helical CT, 

Normal Wall Neovessels

Calcified Plaque Intraplaque Hemorrhage

A B

C D

Figure 4 Pathological images were depicting different components of plaque. (A) Healthy wall, (B) neovessels, (C) calcified plaque, and (D) 
intraplaque hemorrhage (courtesy of Dr. Luca Saba, U of Cagliari, Italy).

A B C

Figure 5 Imagining machines of (A) MRI, (B) CT, and (C) carotid ultrasound scanning using a linear probe (MRI/CT images-courtesy of 
Dr. Luca Saba, Italy, and US image, courtesy of AtheroPoint, CA, USA). MRI, magnetic resonance imaging; CT, computed tomography.



Annals of Translational Medicine, Vol 9, No 14 July 2021 Page 7 of 32

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(14):1206 | http://dx.doi.org/10.21037/atm-20-7676

which has replaced the conventional CT (step and shoot) 
acquisition technique. The images acquired via CT are 
three-dimensional and allow multiplanar reconstruction. In 
a CT machine, the “pitch” parameter indicates the quality 
of the image acquired. If the pitch is less than one, then the 
acquired image is considered high-quality and oversampled, 
but increases the patient’s radiation exposure. Typically, the 
pitch value should be between 1 and 1.5 (74).

The thickness of the image slice depends on the X-ray 
collimator. The longer the collimator is exposed, the thicker 
the slice. However, the amount of radiation exposure 
increases and fails to planner reconstruction. Multiple 
detector array CT scanners overcome this problem. These 
scanners contain multiple detector arrays, and the collimator 
spacing is quite wide. Thus, it improves the imaging 
quality and slice thickness. Dual-source CT scanners have 
recently been developed, containing dual X-ray sources and 
detectors; these detectors are perpendicular to each other 
and rotate around the patient body. This setup cuts the 
acquisition time in half while still producing high-quality 
images. 

A study was conducted recently that compares the image 
quality and radiation dose delivered to patients during 
computed tomography (CT) angiography (CTA) of the 
supra-aortic arteries using two single-source (SS) and two 
dual-energy (DE) CT scanners (75). Figure 5B illustrates 
a typical CT machine. Several types of energy levels are 
sometimes considered for the optimization of carotid plaque 
characterization (76). 

Several applications for carotid plaque characterization 
and microbleeds were shown in CT (77,78). Semi-automated 
wall measurements were computed in CT. Baradaran et al. (79) 
recently showed the calcium volume measurement using 74 
CT. Saba et al. (80) showed that the color scale instead of the 
conventional grayscale improves the diagnostic confidence, 
accuracy, and inter-observer agreement of the readers, 
particularly junior ones, in the diagnosis of internal carotid 
artery dissection on non-contrast CT.

Ultrasound imaging for carotid plaque

Ultrasound machines have a duplex scanner and a 
transducer with a linear broadband width of 4–7 MHz 
(multifrequency) and a resolution of 20 pixels/mm. 
Ultrasounds operate on the principle of the piezoelectric 
effect (81). The machine contains a transducer, a CPU, and 
a monitor. The transducer contains piezoelectric crystals, 
which act as the senders and receivers of ultrasound signals. 

The piezoelectric crystals generate sound waves when a 
current flows through them, and they generate a voltage 
when they receive a vibration (ultrasonic wave) (5). When 
the ultrasound waves fall on the ROI tissue, the tissue 
reflects the ultrasonic waves (echo), the transducer catches 
the reflected signals. It then constructs and displays an 
image in the monitor based on these signals. 

Some prerequisites are necessary for successful image 
normalization. The following prerequisites were carried out 
in this study: (I) dynamic range was adopted. (II) Frames 
were averaged. (III) The time gain compensation curve that 
was sloping through the tissues was positioned vertically 
through the vessel’s lumen because the ultrasound beam 
was not attenuated when it passed through the blood. 
This was done to ensure that the adventitia of the anterior 
and posterior walls had similar brightness. (IV) The gain 
was adjusted. (V) Post-processing was done using a linear 
transfer curve. (VI) The ultrasound beam was maintained 
at an angle of 90 degrees to the arterial wall. (VII) The 
minimum depth was used to ensure that the plaque 
occupied a large part of the image. (VIII) The probe was 
adjusted so that the adventitia adjacent to the plaque was 
visible as a hyperechoic band used for normalization. The 
ultrasound machine at AtheropointTM is shown in Figure 5C.

The MRI cross-sectional scans of the carotid plaque are 
shown in Figure 6A (82). The CT cross-sectional scans of 
the carotid plaque are shown in Figure 6B (83). Figure 6C  

presents the plaque acquisition demonstrate in the US (40).  
Figure  7  p rov ide s  a  compar i son  o f  in t r ap l aque 
hemorrhage (IPH) in a male patient’s CTA and MRI and 
histopathology (74).

Other modalities, like molecular imaging positron 
emission tomography (PET), can also study plaque  
biology (85) and find the sequential stages of inflammation 
in atherosclerosis. Intra-vascular ultrasounds yield promising 
results for understanding vulnerable carotid features. Also, 
IVUS was perceived as one of the best imaging technique for 
studying carotid (86).

Challenges in plaque classification/characterization and 
making a case for AI

The biggest challenge in plaque characterization is the 
fuzziness in the walls’ intimal-media region, immaterial of 
the imaging modality. This causes validations in contrast; 
for example, in ultrasound, symptomatic plaques are hyper-
echoic (bright), having a high-lipid core, low calcium, and 
are vulnerable, unlike asymptomatic plaque, which is hypo-
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echoic, having poor lipid core, stable, and appears dark in 
ultrasound scans. Thus, characterizing this plaque with the 
naked eye is unreliable and subject to error and has inter-
observer variability (87,88). 

With the help of computer vision techniques and artificial 
intelligence, however, we can identify the plaque (89,90), 
in spite of variations and fuzziness in pixel distribution to 
be non-linear (91). Such images require machines with 
greater learning capabilities. Recent advancements in 
machine learning techniques offer precisely this; now, 
plaques can be identified, classified, and characterized 

using the “handcrafted” feature (19,38,40,52,61,62,92-99). 
These methods achieve the objective but lack reliability and 
stability due to variation in the features and performance of 
different AI models. Deep learning technology, meanwhile, 
can fill in the gaps using automatic feature extraction 
(55,100) through a convolutional neural network (CNN) 
that allows us to characterize plaques (55).

Artificial intelligence architectures

The nature of AI architecture design has gradually evolved 

A1 B1A2 A3 B2 C2C1

C3 C4

C6C5

A4 A5 A6

Figure 6 Carotid plaque scans from (A) MRI scans of ICAP; the yellow arrow represents intraplaque hemorrhage (A1) hyperintense on 
T1-wt MRI, (A2) hypointense on TOF, (A3) hyperintense on T1-wt MRI after contrast medium injection in sagittal, and (A4) axial view, 
(A5, A6); the red area represents the intraplaque hemorrhage in the axial section of T1-wt MRI. (B) [courtesy of (82)], (B) CT scans of the 
ICAP; the white arrow represents the plaque developed (B1) axial, and (B2) sagittal scan [courtesy of (83)]. (B) US scans of ICAP, (C1, C2) 
represent the symptomatic plaque images, (C3, C4) corresponding color Doppler images, and (C5, C6) delineated plaques (40) (courtesy of 
AtheroPoint, Roseville, CA, USA) [Permitted to reproduce Figure (A) and (B)]. MRI, magnetic resonance imaging; ICAP, internal carotid 
artery plaque.

A B C

Figure 7 Comparison of the IPH visualization in (A) CTA, (B) MRA, and (C) the histopathology section; the white arrow represents IPH 
[source (84), Permitted to reproduce]. IPH, intraplaque hemorrhage; CTA, computed tomography angiography; MRA, magnetic resonance 
angiography.
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over time, starting from manual methods and signal 
processing methods and eventually leading to learning 
methods (so-called AI models). Thus, we have divided this 
section into AI architectures by modality for TCCCA.

Manual, semi-automated, and statistical models using 

MR, CT, and the US

Several authors have used manual and statistical methods 
for TCCCA (101-108). In van Ingersleben et al. (109), 
the radiologist characterized the carotid plaque at the 
bifurcation by identifying calcium, lipid deposits, and 
fibrous plaques, based on ex-vivo imaging. Using MRI, Yuan 
et al. (32) showed the importance of carotid MR imaging 
and evaluated the plaque morphology and its composition 
rather than lumen stenosis. Chu et al. (110) showed that 
carotid lesion characterization requires the quantitative 
measurement of the carotid artery wall thickness. The 
authors followed the AHA guideline for characterization 
of the carotid lesions, namely type I-II, considered as 
near-normal wall thickness without calcification; type III, 
considered as diffuse wall thickening or small eccentric 
plaque without calcification; type IV-V, considered as a 
plaque with a lipid-rich necrotic core surrounded by fibrous 
tissue with possible calcification; type VI, considered as a 
complex plaque with a possible surface defect, hemorrhage, 
or thrombus; type VII, considered as calcified plaque; and 
type VIII, fibrotic plaque without a lipid core and with 
possible small calcifications. In MRI, Zhao et al. (111) 
showed the role of high-risk plaque (HRP), defined as 
plaques having luminal surface disruption or a lipid-rich 
necrotic core occupying >40% of the wall, or intraplaque 
hemorrhage compared to stenosis in 1,047 recruited 
subjects. The authors demonstrated that HRP using carotid 
MRI was 1.5x greater than stenosis of ≥50%. These surface 
characteristics that originated from the composition had a 
greater stroke risk, unlike the lumen constriction.

In CT, Wintermark et al. (112) showed a CT-based degree 
of stenosis (DoS) by comparing a semi-automated method 
against a neuroradiologist’s visual assessment using Kappa 
statistics (so-called gold standard), yielding an agreement 
of 0.918 (P<0.001). Further, Chien et al. (113) conducted a 
cross-sectional study in which the authors characterized the 
CTA plaque by correlating the symptoms (or risk factors). 
These symptoms included hypertension, age, and carotid 
bruit. Univariate and multivariate analyses were performed, 
demonstrating the P value close to 0.0. Wintermark  
et al. (114) conducted a cross-sectional study to explore the 

CT-based features of carotid plaque (namely lumen area, wall 
volume, number of calcium clusters, fibrous cap thickness, 
number of lipid clusters, and the location of the largest 
lipid clusters) against the two types of strokes (acute carotid 
stroke patients and non-acute carotid stroke patients). The 
Causative Classification System identified the gold standard 
for Ischemic Stroke with the help of a neuroradiologist. 
After undergoing TCCCA of the CT carotid wall, acute 
carotid stroke patients demonstrated a significantly greater 
difference between the CA wall ipsilateral’s appearance to the 
side of their infarct (OR >1.0 with P=0.0) when compared 
against the non-acute carotid stroke patients. Li et al. (115) 
characterized several CT carotid wall-based features, namely, 
(I) maximum plaque height (MPH), (II) soft plaque, and 
(III) carotid arterial stenosis (DoS) and associated with 10-
year atherosclerotic cardiovascular disease (ASCVD) (into 
two groups having a cut-off of 7.5%), thereby showing 
concordance results but not perfect overlap.

In the US, Griffin et al. (116) identified high-risk patients 
by characterizing the carotid plaque in the US using the 
juxtraluminal black area (JBA) as a risk predictor in the 
univariate logistic regression paradigm. The ground truth 
had three classes based on mild, moderate, and severe 
carotid stenosis. SPSS 10.0 was used to compute the 
regression coefficient, followed by the odds ratio (OR). The 
authors demonstrated by changing the cut of JBA >8 mm2  
and GSM <15, they were able to detect identify a high-
risk group of 188 plaques that contained 142 (77%) of 
the 185 symptomatic plaques [odds ratio (OR), 6.7; 95% 
confidence interval (CI), 4.08–10.91, P<0.001], (sensitivity: 
77%; specificity 66%; positive predictive value 75%; 
negative predictive value 68%). In another work, Nicolaides 
et al. (17) demonstrated that a number of baseline 
clinical characteristics and ultrasonic plaque features are 
independent predictors of subsequent ipsilateral cerebral or 
retinal ischemic (CORI) events. The author uses “Plaque 
Texture Analysis Software v3.4” to calculate the risk of the 
individual patient based on the Cox model. In (117), the 
same authors discussed the image acquisition technique 
for 3-D ultrasound image reconstruction from a series 
of 2-D ultrasound scans using “Philip QLAB and Plaque 
Texture Analysis Software v3.4”. The authors extracted 
the GSM, JBA, plaque area, and SGLDM-difference 
entropy (SGLDM-DE) from the 2-D and 3-D images. The 
authors found no linear relationship between 2-D GSM 
and its corresponding 3-D GSM (P=0.24), and there is a 
moderate relation between 2-D JBA and its corresponding 
juxtraluminal black volume (JBV). The authors found that 
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JBA and JBV are higher in symptomatic than asymptomatic 
(P=0.004 and P=0.002). The authors observed a good linear 
relation between 2-D plaque area and 3-D plaque volume. It 
is observed that plaque area is higher in symptomatic plaque 
(P=0.18), but in the plaque, the volume is not showing 
that characteristic (P=1.0). SGLDM-DE is showing a poor 
relationship between 2-D and 3-D. Loizou et al. (118) 
extracted the same texture features from plaque components 
and identified the stroke risk by measuring the statistical 
difference of the symptomatic and asymptomatic cases. The 
authors showed 71 texture features to be different between 

symptomatic and asymptomatic. Jamthikar et al. (119) from 
the AtheroPoint team studied a narrative review on artificial 
intelligence techniques in ultrasound imaging modality 
for tissue classification, characterization, and CVD risk 
assessment.

ML has started to become more prevalent in the field 
of AI, as it provides a way to extract knowledge from 
different covariates of a cohort. This knowledge can be 
utilized to assess the non-linearity between predictors and 
distinguish cardiovascular predictors from cerebrovascular 
predictors. Figure 8 depicts the general architecture of 
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the ML system that consists of offline and online systems. 
The risk stratification was predicted online, as shown in  
Figure 8.

Machine learning for plaque characterization in MRI

Winn et al. (31) characterized 20 carotid fibrous caps in T2-
weighted MRI using four observers (radiologists). The ROI 
was generated by comparing T2-weighted MRI against 
histological images taken from carotid endarterectomy. The 
AUC came out to be 0.75. The authors further characterized 
fibrous cap or rupture, having detection and characterization 
evaluated as 90% and 98%, respectively. Validation of 
3-D ultrasound imaging for plaque vulnerability is crucial 
for clinical viability. Chiu et al. (120) did exactly that by 
registering 3-D segmented carotid ultrasound against 3-D 
MRI using a surface-based image registration algorithm, 
as shown in previously developed methods (121,122). The 
authors demonstrated an average error rate of less than 1 mm 
in the in-vivo study and 0.3 mm in the phantom study. The 
carotid artery geometry requires imaging more than 3 cm in 
length from the collar bone to the jaw. Not always, the plaque 
can be captured in the wall of these arteries. This is because 
CCA bifurcates into ICA and ECA. As a result, some plaque 
is identified, some partially identified, and some are entirely 
missed. Murata et al. (123) designed a motion-sensitized 
driven equilibrium prepared rapid gradient echo (3-D 
MERGE) acquisition protocol to characterize carotid plaque 
using black blood MRI. The authors analyzed 97 subjects 
consisting of 194 carotid arteries (70 men and 27 women, 
mean age 60 years). The authors identified 136 plaques; 68 
(50%) were within, 46 (33.8%) were partially outside, and 22 
(16.2%) were entirely outside of 2-D MRI coverage. Guan 
et al. (124) developed two kinds of segmentation algorithms, 
namely structural SVM (SSVM) and Bayes segmentation, 
to detect the internal wall. The authors compared the two 
segmentation algorithms’ results and demonstrated SSVM 
to be more robust than Bayes. The authors achieved a 
misclassification rate of 16.9% in Bayes and 9.6% in SSVM. 

Zhang et al. (125) assessed the importance of using 
simultaneous non-contrast angiography and intraplaque 
hemorrhage (SNAP) to detect the lipid-rich/necrotic core 
(LRNC) from among 1,436 scans obtained by 3T MRI 
and 3-D SNAP sequence. The authors compared the 
classification accuracies of manually segmented plaques 
with plaques segmented by SNAP. The accuracies of NB, 
SVM, RF, gradient boosting decision tree (GBDT), and 
ANN were higher than 88% when the manually segmented 

plaque was used. However, when SNAP was used, the same 
classifiers achieved higher than 78% accuracy (P<0.0001). 
Studies (126) have been conducted for the registration 
of MRI volumes using a different protocol for plaque 
characterization.

Machine learning for plaque characterization in CT

Zhu et al. (127) investigated CT Angiogram (CTA) 
for quantitative features to predict 10 years’ worth of 
atherosclerotic cardiovascular disease (ASCVD) risk using 
117 CTA scans. The authors built two semi-automated 
linear regression models with continuous and dichotomous 
features. The models yielded ASCVD risk scores of 
18.87%±13.26% and 18.39%±11.6% (P<0.0001), and the 
mean biases between observed ASCVD and predicted 
ASCVDs were −1.954%±10.88% and −1.466%±12.04%, 
respectively. The most accurate prediction for the ischemic 
stroke depends on the optimal spatial coverage of the 
carotid plaque. Arora et al. (128) studied the optimal 
coverage area required to distinguish between stroke 
and non-stroke patients. The authors found that 20 mm 
coverage on each side of the carotid bifurcation offers 
optimal results. Further, the authors used a CT-automated 
classification algorithm, multivariate, and univariate analysis 
on different components of plaque obtained from 136 
patients. 

He et al. (129) used optical coherence tomography 
(OCT) to quantitatively assess the plaque vulnerability of 
31 patients based on ex-vivo carotid plaques. The authors 
accurately classified the fibrous, calcified, and lipid core 
components of plaque by extracting texture features and 
pixel-wise features using an RF classifier. Accuracies of 
80%, 62%, and 83.1% were achieved with sensitivity and 
specificity (%) combinations of (80.5, 91.2), (64.7, 90.7), and 
(87.5, 80.2). Acharya et al. (92) classified CT carotid artery 
images from 20 patients as symptomatic and asymptomatic 
by extracting LBP features and wavelet features with 
SVM. Their classifications were 88% accurate. Further, 
they characterized the plaque using the Atheromatic index 
(AtheroPoint, CA, USA), as shown in Figure 9A.

Machine learning for plaque characterization in the US

Most studies carried out within the ML framework have used 
ultrasounds for TCCCA. Such studies are typically divided 
into two parts: one based on grayscale information and another 
based on non-grayscale information (so-called point-based 
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information). Several ML methods have been tried on various 
organs such as thyroid gland (130-132), liver (47,48,133), 
ovarian (134-137), carotid plaque characterization (98,138), 
coronary (139,140), stroke risk (19,52,141), lung tissue 
characterization (142).

3-D carotid plaque characterization was tried by Seabra  
et al. (143) mainly to overcome the weakness due to 
subjectivity with data acquisition and operator-dependent 
selection. In their characterization model, the authors applied 
a labeling procedure using graph cuts, which allow them to 
identify, locate, and quantify vulnerable plaque. The authors 
tested their method on five patients who had undergone 2-D 
ultrasound scans and validated their synthetic data method. 
The same authors in (33) proposed a Bayesian technique for 
estimating the volume inside plaque by removing speckle 
noise in the ROI. The authors compared the proposed 
method with a gold standard, and the quantified volumes 
P40 (40% hypoechogenic voxels) were 56.76 and 50.62 mm3, 

respectively, while GSM <32 were 49.31 and 44.29 mm3, 
respectively. The author’s assessment of ecomorphology is 
shown in Figure 9.

Seabra et al. (144) proposed a classification model using 
an ML classification technique (Adaboost) and tested 
it on 146 US scans using leave one patient out cross-
validation protocol (LOPO CV). The authors extracted the 
texture features fused with clinical information, achieving 
an accuracy rate of 99.2% and 100% sensitivity. Afonso  
et al. (145) developed a computer-aided diagnosis tool for 
measuring plaque rupture risk using an activity index and 
an enhanced activity index (EAI). The authors were able to 
characterize the plaque echogenicity using the EAI.

Christodoulou et al. (97) classified 330 carotid ultrasound 
scans (CUS) as symptomatic and asymptomatic using 
a self-organizing map (SOM) and k-nearest neighbor 
through which they extracted texture features spatial gray 
level dependence matrix (SGLDM), gray level difference 

Mean <32 Median <32

Std deviationP40 <43%

100 :120

80 :100

60 :80

40 :60

0 :40
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Figure 9 Local assessment of plaque echo-morphology, in terms of (A,B,C) hypoechogenicity and (D) heterogeneity [Source (33), Permitted 
for reproduction].



Annals of Translational Medicine, Vol 9, No 14 July 2021 Page 13 of 32

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(14):1206 | http://dx.doi.org/10.21037/atm-20-7676

statistics (GLDS). With the help of first-order statistics, 
the researchers achieved a 70% diagnostic yield (DY). The 
author (25) extracted ten different Law texture energy 
features and fractal dimension features from CUS. The 
author then fed these features into SOM and k-NN for 
classification, achieving 73.1% and 68.8% accuracy rates, 
respectively. Loizou et al. (146) proposed a classification 
model to investigate the texture feature variability obtained 
from 120 longitudinal ultrasound videos in M-mode during 
the cardiac cycle. The authors automatically segmented 
the plaque using a snake algorithm. Further, the authors 
classified it as either systolic or diastolic using SVM with 
texture features, achieving 100% accuracy and a ROC of 
1.0. Doonan et al. (147) studied the correlation between the 
texture and echo density features of plaque based on 104 
bilateral US scans. The authors extracted the features using 
commercial “plaque texture analysis software” and PCA. 
The correlation between these two types of features was 

between 0.211 and 0.641 (P<0.0001). 
Our group had implemented several carotid characterization 

techniques in the machine learning framework. Acharya 

et al. (40) proposed a classification technique based on 346 
US scans in which texture, LBP, and Law’s Texture Energy 
(LTE) features were extracted using SVM. The authors 
achieved an accuracy of 83%, a sensitivity of 84.4%, and a 
specificity of 79.7%. In this study (93), the authors extracted 
texture-based features from 99 US scans and fed them into 
SVM using RBF kernel. This method achieved an accuracy 
of 91.7%, a 97% sensitivity, and a specificity of 80%. The 
authors then characterized the plaque using an asymptomatic 
carotid index. In this study (94), the authors extracted discrete 
wavelet transform features and texture features. They then fed 
the features into SVM with a polynomial kernel of order 2, 
achieving 83.7% accuracy, a sensitivity of 80%, and a specificity 
of 86.4%. Molinari et al. (95) proposed a data mining 
framework for classifying symptomatic and asymptomatic 
plaque using bi-dimensional empirical mode decomposition 
and entropy features. They achieved an accuracy of 91.43%. 
The researchers also studied the relationship between coronary 
plaque and carotid IMT (139,148). Table 1 lists the reviewed 
literature regarding ML techniques for TCCCA.

Deep learning strategies using MRI, CT, and the US

Deep learning (DL) methods have changed the paradigm of 
AI. They have accelerated the application of AI techniques 
in medical imaging owing to the flexible and reliable 
strategies associated with them. A significant drawback 
of the ML model was solved by using automatic feature 
extraction via convolution neural networks (CNN). In 
the DL model, all acquired grayscale images are fed into 
the convolution layers. This process is followed by max-
pooling/average pooling layers for automatic feature 
extraction. These extracted features are subsequently fed 
into a fully connected network for classification and risk 
assessment. The global architecture of a DL system is 
shown in Figure 10A. DL models learn complex patterns 
from input training images and then use these patterns 
to predict target labels. There are several models besides 
CNN that are popular in medical imaging. Some of these 
are the U-Net, Autoencoders, recurrent neural networks 
(RNNs), long short-term memory (LSTM), Region-
based Convolutional Neural Networks (R-CNN), and 
Mask R-CNN. U-Net (a combination of encoders and 
decoders) plays an important role in the segmentation and 
classification processes (55,161-163). Figure 10B shows the 

Table 1 The literature on TCCCA using ML techniques

SN# ML model Modality References

1 SVM US (19,34-40,61,94-96,146,149-151)

2 KNN US (13,40,95,97,98,152)

3 Adaboost US (61)

4 UAI US (145,153)

5 PNN US (34,37,40,95,149)

6 Adaboost US (144,154)

7 SOM US (97,152,155)

8 ANN US (35,156-158)

9 NB US (35)

10 LR US (36)

11 LDA US (95)

12 QDA US (95)

13 DT US (95)

14 RF MRI (159)

15 CT (129)

16 DT, NB, RF, 

 LR, NN

CT (160)

17 SVM CT (92)

TCCCA, tissue characterization and classification of the carotid 

artery; ML, machine learning; US, ultrasound; MRI, magnetic 

resonance imaging; CT, computed tomography.
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architecture of U-Net. The encoders compress the image, 
and the decoders do the opposite. RNN is typically used 
when time series or historical clinical data are essential (164). 
Meanwhile, LSTM is useful when the input data is present 
within the time sequence (165). Finally, RCNN and Mask 
R-CNN are used for segmentation (166).

Figure 10C represents a conventional convolution neural 
network with a convolution layer followed by a max-
pooling layer. Figure 10D depicts an LSTM recurrent 
neural network. It consists of three gates. The forget gate 
removes information that is no longer useful in the cell 
state, the input gate provides additional information that 
is required for the cell state. The output gate extracts all 
useful information from the current cell state.

Demirer et al. (167) developed a GUI-based toolbox using 
a deep neural network (DNN) for 2-D/3-D segmentation 

and classification and integration with third-party scripting 
languages. The researchers used this tool to annotate 
1,843 arteries and 294 coronary CTA atherosclerotic 
plaques in 23 days. This GUI used NoSQL as its database, 
while TensoFlows was used for DNN. In other work, Lee  
et al. (168) developed a DL model and used it to classify 
6,556-lumen images of OCT scans using CNN. The authors 
achieved sensitivity and specificity rates of 84.8% and 91.4% 
(fibrolipidic) and 97.8% and 95.7% (fibrocalcific).

Lekadir et al. (169) proposed a CNN model that 
classifies plaque components into lipid core, fibrous cap, 
and calcified tissue. The authors did this by extracting 
90,000 patches from 50 in vivo CUS. The authors achieved 
a correlation coefficient of 0.90 between automatic 
measurement and expert measurement (see Figure 11 for 
a visual representation of CNN classification). Skandha  
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et al. (55) categorized 346 CUS scans as either symptomatic 
or asymptomatic using optimized deep CNN. They also 
characterized plaque higher features using mean feature 
strength (MFS) and bispectrum. The authors achieved 
an accuracy of 95.66% and an AUC of 0.956 (P<0.0001). 
Research on the use of DL in TCCCA is still emerging 
(170); other researchers have used DL to investigate the chest 
(29,171), coronary (172), liver (28), IMT wall (173,174) of 
patients, as well as lumen characterization (26) and carotid 
risk measurement in diabetic patients (30,56) and Rheumatoid 
arthritis (175) in arthritic patients in particular.

Transfer learning model in MR, CT, and the US

DL is a rapidly growing technology, but it has a minor 
drawback (i.e., the high-performance hardware requirements 
for and availability. This issue is resolved by the transfer 
learning technique, i.e., by using a DL model that has been 
pre-trained for natural images. The weights are transferred 

to the current target model by the researcher. Then, the 
researcher can train the FCN for target label prediction (27), 
thus avoiding the problem associated with the availability of 
high-quality computational devices. The global architecture 
of the TL system is shown in Figure 12.

Reinforcement learning (RL)

RL is a unique AI technique that enables a model to learn 
complex patterns using trial-and-error methods based on 
its own experience (176). Figure 13 presents an architectural 
view of reinforcement learning.

AI similarities and differences between MR, CT, and US

While we have seen that AI models independently operate 
for TCCCA using MR, CT, and US, but it is necessary 
to study the differences and similarities. Table 2 shows the 
difference between MR, CT, and US for TCCCA using AI. 
We distinguish the three modalities using the three prominent 
AI models, namely, ML, DL, and TL. These AI models are 
divided into different blocks, such as segmentation, feature 
extraction, classification, and performance metrics. The 
corresponding references are also attached for ready reference. 
Table 3 shows the similarities between the modalities when it 
comes to AI models. The differences and similarities are self-
described and explanatory. We, therefore, will not elaborate in 
detail here.
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Table 2 Difference between MR, CT, and US for TCCCA using AI

MRI CT US 2-D/3-D

ML (123-125,159,177-179) (92,129,160) (25,35-40,52,61,62,93-98,139,144,145,149,150), (153,156-158,180-185)

Segmentation: Bayes 

Clustering, Structural 

Support Vector Machines, 

Manual, SNAP, 3-D 

Hybrid Segmentation, 3-D 

MARGE

Segmentation: automatic Segmentation: Manual, Simple Linear Iterative clustering, RealAdaboost, 

Bayesian

Extracted Features: 

Surface disruption 

features, SIFT, 

Morphological, Intensity 

Features of IR, Intensity 

features of reference 

acquisition (REF),  

TOF-MRA and BBMRI, 

histological

Extracted Features: Texture 

features and relative 

position of pixels, LBP and 

wavelet transform, Texture 

features 

Extracted Features: Multiresolution Features, Bi-dimensional empirical 

mode decomposition, and entropy features, texture features, automatic, 

Rayleigh Mixture Model, Histogram, Texture, Morphological, Monogenic, 

Wavelet energies, co-occurrence matrix, 1
st
 order statistics, Multilevel 

binary morphological, second-order statistics spatial gray level dependence 

matrices, ACRS Clinical, discrete wavelet and higher-order spectra, 2-D 

DWT, Degree of stenosis, DWT with Averaging. Envelop Radio-Frequency, 

statistical features, fractal dimension, laws texture energy, Fourier power 

spectrum, Spatial Based Plaque Feature, 3-D Plaque Feature Extraction, 

Neighbourhood Gray Tone Difference Matrix, Quadratic Programming 

Feature Selection, Minimal Redundancy Maximal Relevance, Mutual 

Information Quotient, Spectral Conditional Mutual Information, Cramer’s V 

test, neighborhood gray-tone difference matrix, 3-D Fractal Dimension

Classification: RF, t-test 

and logistic regression, 

SSVM, NB, SVM, RF, 

GBDT, ANN, KNN, SVM, 

DT, 

Classification: RF, SVM 

RBF, DT, NB, LR, NN

Classification: SVM and Probabilistic Neural Network, SVM RBF, SVM 

Polynomial, linear, LibSVM, DT, AtheroRisk, Adaboost, self-organizing map, 

KNN, ANN, 3-D Blanket, SVM with 3-DUS

Performance metrics: AUC 

Ranges: 0.95; ACC ranges 

(%): 87, 88, 76, 87.5, 90 

Misclassification Rate (%): 

9.6

Performance Metrics: ACC 

Ranges (%): 83.1, 88, 69

Performance Metrics: AUC Ranges: 0.649, 0.732, 0.905; ACC Ranges (%): 

85, 91.43, 82.4, 83.5, 73.7, 77.18, 76, 91.7, 83.7, 90.66, 83.7, 99.2, 73.1, 

73.72, 68.8, 69.3, 81.82, 80.38, 81

DL (186,187) (29,188) (55,161,162)

Segmentation: U-NET, 

DeepMAD

morphological active 

contours with the iterative 

framework, 3-D Level set, 

Automatic

Segmentation: LVO Segmentation: U-Net, Dilated U-Net, 3-D U-Net

Extracted Features: 

Morphological features

Extracted Features: 

Automatic

Extracted Features: Automatic

Classification: DeepMAD Classification: 

DeepSymNet, Faster 

R-CNN

Classification: Optimized CNN, Dynamic CNN

Performance Metrics: ACC 

Ranges (%): 

 99.1, 92.6, 89.16

Performance Metrics: AUC 

Ranges: 0.88,  

ACC Ranges (%): 83

Performance Metrics: ACC Ranges (%): 95.66, Dice Coefficient Ranges: 

96.6, 84

Table 2 (continued)
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Carotid artery disease and its link to coronary 

artery disease

Since CVD covers both stroke and myocardial infarction, 
it is therefore important to look at the AI trends for CVD 
prediction using carotid ultrasound. Accurate cardiovascular 
event predictions are necessary since it saves the lives of 
patients. This section shows how we can use the plaque 
deposited in the carotid artery to predict cardiovascular 
events (so-called myocardial infarction). This not only 
reduces the costs of invasive coronary artery disease 
screening but also offers a non-invasive imaging option for 
predicting cardiovascular events early. This subsection is 
divided into three parts. Part A presents the genetic makeup 
of atherosclerosis disease in the carotid artery vs. the 
coronary artery. This is accompanied by the visualization of 

plaque using non-invasive carotid imaging. Part B presents 
scientific evidence gathered from several studies that have 
linked plaque in the carotid artery with coronary stenosis. 
Finally, part C discusses the use of novel multiclass AI 
techniques for predicting coronary artery risk based on 
carotid plaque levels detected via ultrasound.

A: atherosclerotic components and genetic makeup in 

carotid and coronary arteries

Atherosclerosis is a systemic condition. It has been well-
established that plaque seen in the coronary artery has the 
same set of components as plaque in the carotid artery, 
especially in the bulb or bifurcation region (190). Several 
studies have cited the presence of plaque components such 

Table 2 (continued)

MRI CT US 2-D/3-D

TL (189) (55)

Segmentation: Automatic <NF> Segmentation: Manual

Extracted Features: 23 

different morphological

<NF> Extracted Features: Automatic

Classification: Linear 

Discriminate Classification

<NF> Classification: VGG16

Performance Metrics:

 ACC Ranges (%):90

<NF> Performance Metrics: ACC Ranges (%):83.33

MR, magnetic resonance; CT, computed tomography; US, ultrasound; TCCCA, tissue characterization and classification of the carotid 

artery; AI, artificial intelligence; IR, inversion recovery; BBMRI, black blood MRI; LBP, local binary patterns.

Table 3 The similarity between MR, CT, and US for TCCCA using AI

 All the segmentation and classification was attempted on 2-D slices without considering the 3-D spatial information

 All the modalities have implemented segmentation of the wall as its first step

 The centreline algorithm was adapted to extract the orthogonal slices to the blood flow for all three modalities

 All the modalities have attempted tissue characterization

 ML has been attempted on all the three modalities for TCCCA

 SVM, RF, and DT are the common ML classifiers adapted by three modalities

 DL has been attempted on all the three modalities for TCCCA

 U-Net is the most common architecture used in the DL framework for all three modalities.

 CNN is the most popular architecture tried for all modalities

 TL is the least adopted among all the architectures

 Accuracy and AUC are the common performance metrics for all the three modalities

MR, magnetic resonance; CT, computed tomography; US, ultrasound; TCCCA, tissue characterization and classification of the carotid 

artery; AI, artificial intelligence.
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as lipid, fibrosis, fibrin, and calcium in both the arteries 
(I) via IVUS or CT (in the coronary artery) (191) and (II) 
via MR/CT/BUS (in the carotid artery) (5,106,125,192). 
An example of the link between the plaque burden in the 
carotid and coronary arteries can be seen in Figure 14. This 
similarity of plaque composition has been validated by 
several pathology studies (193-195).

B: the relationship between carotid and coronary artery 

disease 

Several studies have verified that carotid artery plaque 
measurements are directly related to coronary artery 
disease and cardiovascular disease risk (5,196-198). 
Clinical trials (199) have revealed that carotid IMT is a 
useful surrogate marker for coronary vascular disease. 
Further, in (196), the authors used cIMT for carotid and 
coronary arteries while using an ultrasound framework. 
The authors in (200) showed maximum plaque height 
(MPH) as a measure to evaluate the coronary artery disease 
risk. Further, authors in (201-203) showed the carotid 
bulb’s use to assess coronary artery disease risk. Table 4  
depicts the correlation between carotid-to-coronary and 

clearly establishes the validity of estimating the risk of 
CVD, MI, or CVE based on carotid plaque levels. 

C: AI framework for prediction of coronary artery disease 

based on the carotid artery

Several studies have been carried out to predict carotid 
and coronary artery disease risk in the ML framework 
(151,212,213). Recently, an ML-based strategy was developed 
for determining the risk of coronary artery disease using the 
carotid artery as a gold standard (139,214,215). ML was also 
applied to identify coronary artery disease patients using the 
greyscale features of left ventricle ultrasound scans (216). 

In recent research, intravascular neovascularization 
(IPN) (206) was used to detect plaque in carotid arteries. 
The observations were then used to predict coronary artery 
disease based on univariate logistic regression. The authors 
in (217) extended the role of IPN, along with carotid B-mode 
ultrasound (CBUS) and office-based biomarkers (OBBM), 
in the ML framework to predict coronary artery disease. 
The ML method provided superior coronary artery disease 
risk assessments, as it was able to differentiate between the 
non-linearity between risk factors (predictors) and the gold 
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Figure 14 Carotid and coronary arteries representation of (A) and (B) visuals, (C) and (D) ultrasound scans of carotid and coronary arteries 
with calcium components, and (E) a cross-section of the plaque representing blood flow disruption due to calcium deposition along artery 
walls [courtesy of AtheroPoint™, CA, USA, source: (140), permitted for reproduction].
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standard (CVE). These strategies can also be applied to 
carotid plaque data while using coronary angiography score 
(CAS) as the gold standard. Such an automated system is 
likely to become a prominent CAD detection system in the 

future. Further, the team (55) published the DL strategy for 
stroke risk prediction using the gold standard as carotid risk 
labels, which can be extended to coronary risk prediction if 
the gold standard was taken from the coronary artery. 

Table 4 Studies are showing the relationship between carotid plaque and coronary arteries

SN Ref Relationship between carotid vs. coronary arteries Technique Performance metrics

1 (204) Irregularities in IMT and its effect on the CoVD Root mean square error, multiple 

logistic regression

Odds ratio: 5.43 (P=0.003)

2 (205) An increase in the thickness of the IMT affects the CoVD Discriminant analysis and mean IMT Sensitivity: 65%

Specificity: 80%

3 (206) Effect of carotid plaque vulnerability on coronary artery 

disease using IPN

The Kaplan-Meier analysis IPN score >1.25, P=0.004

4 (207) Atherosclerosis risk factor and calcium score of  

middle-age men in the femoral and carotid arteries 

improves the CVD risk prediction in coronary

Femoral odds ratio, carotid odds 

ration

AUC: 0.665 to 0.719

5 (208) AI and IVUS based framework for measuring the 

coronary risk assessment from the cIMT and validated 

relation between two arteries

SVM with RBF, poly order 1, 2, 3, 

and linear

ACC (%): 94.95 AUC: 

0.95

6 (209) Correlation between cIMT (without and with bulb) and 

coronary SYNTAX score

SYNTAX score, polyline distance 

method

cIMT error: 

0.0099±0.00988 mm; 

AUC: 0.69, 0.67

7 (201) Automated 3-D ultrasound-based carotid plaque 

quantification is a useful screening tool for CAD

Stacked-contour method & 

16-segment model

Sensitivity (%) 98.0, 93.9

8 (200) An increase of cIMT thickness and plaque measurements 

are indicative of the presence of epicardial coronary 

stenosis

Mean far distal carotid intima-media 

thickness, maximum plaque height, 

total plaque area

An optimal threshold 

value of cIMT thickness of  

0.82 mm

Plaque height of 1.54 mm

Plaque area: 25.6 mm
2 

9 (210) Pre-operative coronary angiography before CEA Kaplan-Meier analysis Survival analysis at six 

years by Kaplan-Meier 

estimates was 95.6

10 (211) Effect of calcium score on coronary artery over carotid 

wall plaque

Cox proportional hazards models, 

C-statistics

Coronary vascular 

disease Hazard ratio: 

1.78, P<0.001 

Carotid vascular disease 

Hazard ratio 2.09, 

P<0.001

11 (203) Left main coronary artery atherosclerosis is related to 

maximum common cIMT by measuring with carotid 

ultrasonography

Plaque area P<0.05

12 (202) Contralateral carotid artery stenosis and high-intensity 

carotid plaque on T1 weighted MRI predicts the CoVD

Clinical, multivariate logistic analysis Odds ratio: 5.7 (P<0.01)

CoVD, coronary vascular disease; IPN, intraplaque neovascularization; CAD, coronary artery disease; CEA, carotid endarterectomy.
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Critical discussion

Image acquisition, normalization, and automated 
segmentation/manual delineation

In CT, the Hounsfield Unit (HU) value plays an important 
role in carotid plaque characterization (218). Saba et al. (219)  
recently studied the correlation between the carotid 
computed tomography (CT) Hounsfield unit (HU)-based 
plaque attenuation values measured using dual-energy CT 
(DECT) scanner and brain leukoaraiosis (LA). The study 
showed an association between HU attenuation of the 
carotid artery plaques and the LA volume at low keV energy 
levels.

In the US, the transducer angle (angle of insonation) 
plays an important role in ultrasound imaging. The angle 
of insonation is equal to the angle of the ultrasound beam 
relative to the tissue of interest (220). Maximizing the 
amplitude of the target’s echo through the transducer 
provides optimal imaging at specular reflector (a 
perpendicular incident beam causes perpendicular 
reflection) per, and amplitude depends on the orientation, 
size, and its surface characteristics. Thus, obtaining the 
specular reflector is essential for imaging in an ultrasound. 

Classification accuracy depends on the normalization 
methods used as well as the intensity levels of the images. 
Normalization is the first step after image acquisition; it is 
a statistical process that compares inappropriate scaling. In 
general, MRI, CT, and US imaging undergo normalization 
to generate more interpretable final images. 

Plaque delineation in the existing works was done manually 
(52,61,62,93,221,222) using a mouse and video card. Medical 
practitioners selected the plaque region in the full scan and 
created a mask over it to cut the plaque of the ROI. This method 
is error-prone and requires practitioners skilled in delineation. 
Using advanced AI, like RCNN and Mask RCNN, may help in 
the automatic segmentation of plaque (223). 

3-D imaging and carotid geometry

Three-dimensional medical imaging is required in order to 
understand an organ’s spatial information. In 3-D MRI, all 
the slices of 2-D MRI are joined from top to bottom using 
advanced computational techniques (224,225). Similarly, in 
CT scans, a series of 2-D scans are mapped to create a 3-D 
visualization. In the US as well, 2-D US scans were mapped 
to a 3-D visualization; however, this visualization carries an 

A

B

C D

Figure 15 Visual 3-D MRI cross-sectional representations of severe stenosis in the right internal artery: (A) axial, (B) sagittal, and 
(D) coronal. (C) represents the 3-D segmentation of lumen, vessel wall, and plaque components, Green: calcification, Yellow: plaque 
components, and Blue: background matrix [courtesy of AtheroPoint™, CA, USA, source: (227), Permitted for reproduction]. MRI, magnetic 
resonance imaging.
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in-depth analysis of the tissue that actually reduces operator 
dependence (184). 3-D imaging offers a more accurate 
diagnosis for advanced atherosclerosis (226). See Figure 15 for 
3-D MRI. Saba et al. (228) showed that the index of asymmetry 
in the carotid artery wall thickness (CAWT) was used as a 
further parameter to stratify the risk of symptoms related to 
the carotid artery.

3-D Optimization

AI techniques must be optimized to achieve more accurate 
predictions and risk assessments. 3-D optimization is a novel 
technique that varies with the hyperparameters of the model; 
variation may exist in the number of features, the layers, the 
nodes, the data size, or the optimal point at which the AI 
model will give the best results (55). Figure 16 depicts the 3-D 
optimization of CNN (courtesy of AtheropointTM). 

Multi-class classification

AI studies on plaque classification have focused on binary 
classification (40,52,55,61,62,93,94) i.e., symptomatic 
(unstable) vs. asymptomatic (stable). However, in reality, this 
classification is more of a spectrum, including symptomatic, 
moderate symptomatic,  weakly symptomatic,  and 
asymptomatic. It is thus a multiclass classification problem. 
Dealing with a problem of this nature demands a great deal 
of data analysis to determine the misclassification ratio (100). 
Our team considered the problem of carotid plaque to be 
one of multiclass classification. Tandel et al. (229) performed 
a multiclass classification (from three classes to six classes) 
when exploring the different stages of brain tumors in 
T2 MRI brain scans using seven AI techniques. Figure 17 

represents the ROC curves and performance metrics of the 
multiclass classification using DL and ML (229). 
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Figure 16  Left: 3-D optimization of DCNN showing CNN layers vs. augmentation vs. accuracy. Right: 3-D bar chart of the optimized 
DCNN (11 CNN layers and 5-fold augmentation). [courtesy of AtheroPoint™, CA, USA, source: (55), Permitted for reproduction]. 
DCNN, deep convolutional neural network; CNN, convolutional neural network.
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Hardware analysis

Advanced AI applications require sophisticated hardware 
(GPUs). We worked on two supercomputers designed 
for deep learning applications—one at Banaras Hindu 
University (BHU) (Param Shivay), in Varanasi, and 
the other at Bennett University (BU), in New Delhi. 
BHU’s supercomputer is a grid computer, while BU’s is a 
standalone machine developed by Nvidia. Training a DL 
model at BHU took 9 seconds per epoch, whereas, at BU, 
that time increased to 18 seconds; the grid computation 
structure at BHU required less training time. BHU 
and BU have the same Nvidia GPUs (i.e., Nvidia DGX 
V100). However, every job at BU is assigned to a single 
GPU because it is a standalone system. Meanwhile, the 
system at BHU has 233 nodes; each job is assigned to 
40 CPU nodes and 2 GPU nodes, meaning jobs can run  
concurrently.

Interface, validation, and extensions

Interfacing AI techniques with real-time data through a 
graphical user interface has the potential to lighten the 
radiologist’s burden of image data curation, annotations, 
segmentation, and risk prediction (167). AI tools such as 
qQuant, ImageJ, and RADSpa can help radiologists access 
and characterize malignancy in tissues.

The probability scores generated by AI models 
can be validated using both ground truth values and 
neovascularization (206). In the latter technique, a score 
is assigned to the plaque depending on the microbubbles 
present; based on this, an inter-plaque neovascularization 
score is calculated and used to predict cardiovascular events. 

Similar work can be done on the coronary, aorta, 
or peripheral arteries and neural organs; numerous AI 
applications exist in the area of tissue classification and 
characterization. Further comparison of carotid plaques 
generated in different geological locations would also yield 
more sophisticated results. 

Conclusion

This  rev iew presented  the  AI-based  model s  for 
multimodality TCCCA. A search strategy was adopted 
using a standardized protocol that adapted inclusion and 
exclusion criteria. The order of AI models in multimodality 
TCCCA was US>CT>MRI> IVUS>PET. Over 95% of 
studies adopted 2-D imaging during the AI model design. 

Typically, the system consists of segmentation, followed by 
classification. Several studies are leaning towards automated 
segmentation of carotid plaque, unlike semi-automated. 
This study classified AI models into five categories: 
manual, statistical, machine learning, deep learning, and 
transfer learning. The order of the number of AI models 
implemented in TCCCA was ML>DL>TL. The ML was 
dominated in the order of SVM>k-NN>ANN, where the 
most prominent feature extracted was the texture. In DL, 
CNN architecture was most adopted for classification and 
U-Net for segmentation. VGG16 was most popular in TL. 
Our observation showed a low number of validations were 
conducted when using AI models. One reason could be the 
lack of publicly available databases. It is expected that AI 
models will dominate the TCCCA industry for the next 
decade.
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