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Abstract 91 

Restrictive cardiomyopathies are a diverse group of myocardial diseases with a wide range 92 

of aetiologies, including familial, genetic and acquired diseases and ranging from very rare 93 

to relatively frequent cardiac disorders. In all these diseases, imaging techniques play a 94 

central role. Advanced imaging techniques provide important novel data on the diagnostic 95 

and prognostic assessment of restrictive cardiomyopathies. This EACVI consensus 96 

document provides comprehensive information for the appropriateness of all non-invasive 97 

imaging techniques for the diagnosis, prognostic evaluation, and management of patients 98 

with RCM.  99 

 100 

Key words: echocardiography; cardiac magnetic resonance; computed tomography; 101 

nuclear imaging; cardiomyopathies; restrictive cardiomyopathies 102 

 103 

 104 



Table of Contents 105 

 106 

1. Introduction  107 

2. Definition and classification of RCM 108 

3. Pathophysiology of RCM and clinical presentation 109 

4. Imaging modalities in RCM:  110 

1 - Echocardiography  111 

2 - Cardiovascular magnetic resonance (CMR) 112 

3 - Cardiac computed tomography (CT) 113 

4 – Nuclear imaging 114 

5. Main forms of RCM and value of imaging techniques: 115 

1 – Apparently idiopathic RCM 116 

2 – Cardiac amyloidosis  117 

3 – Other causes of familial/genetic RCM 118 

Hemochromatosis 119 

Fabry cardiomyopathy 120 

Glycogen storage disease 121 

Pseudoxanthoma elasticum 122 

4 - Non familial/non-genetic RCM: Inflammatory cardiomyopathies with a restrictive 123 
hemodynamic component:  124 

Cardiac Sarcoidosis 125 

Systemic sclerosis 126 

5 - Non familial/non genetic RCM: Radiation therapy and cancer drug therapy induced RCM:  127 

Cardiac toxicity of radiation therapy 128 

Cancer drug induced RCM 129 

6 – Endomyocardial RCMs  130 

Endomyocardial fibrosis 131 

Hypereosinophilic syndrome 132 

Carcinoid heart disease 133 

Drug-induced endomyocardial fibrosis 134 
 135 
 136 

6. Differential diagnosis between RCM and other cardiac diseases 137 

Differential diagnosis between RCM and constrictive pericarditis 138 

Differential diagnosis or association between RCM and other myocardial diseases 139 

 140 

7. Conclusion and future directions 141 

 142 



1. Introduction  143 

Restrictive cardiomyopathies (RCM) are a diverse group of myocardial diseases with a wide 144 

range of aetiologies, including familial, genetic and acquired diseases and ranging from very 145 

rare to relatively frequent cardiac disorders. This diversity is also reflected in the 146 

inconsistent classification of RCM across guidelines (1-3) and even in the term “restrictive”, 147 

which is a functional characterization, unlike the morphological definition of the three other 148 

main types of cardiomyopathies, i.e. hypertrophic, arrhythmogenic right ventricular or 149 

dilated cardiomyopathies (4).  150 

Independently of the underlying cause, the pathophysiology and clinical presentation, the 151 

initial phenotypic diagnosis of RCM requires imaging techniques. Many advances have 152 

occurred in the last decade in the diagnostic and prognostic assessment of RCM. This EACVI 153 

consensus document provides comprehensive information for the appropriateness of all 154 

non-invasive imaging techniques for the diagnosis, prognostic evaluation, and management 155 

of patients with RCM.  156 

This article was written in close collaboration between the European Association of 157 

Cardiovascular Imaging (EACVI) and the Working Group (WG) on Myocardial and Pericardial 158 

diseases of the European Society of Cardiology (ESC). The types of RCM covered in this 159 

document are those included in the classification system proposed by the WG on Myocardial 160 

and Pericardial diseases (1) as well as some non-sarcomeric hypertrophic cardiomyopathies 161 

with a restrictive physiology that in previous classifications were included in the RCM 162 

category, e.g. cardiac amyloidosis. 163 

 164 

2. Definition and classification of RCM  165 

RCM is the least common type of the cardiomyopathies, defined as myocardial disorders in 166 

which the heart muscle is structurally and functionally abnormal in the absence of coronary 167 

artery disease, arterial systemic hypertension, valvular disease or congenital heart disease 168 

sufficient to cause the observed myocardial abnormality (1). 169 

According to the historical World Health Organization (WHO) (2) and the updated definition 170 

proposed by the ESC WG on Myocardial and Pericardial Diseases in 2008 (1), each 171 

cardiomyopathy type is described by its clinical presentation. This approach is 172 

recommended firstly because it is the starting point in everyday clinical practice, and 173 

secondly because knowledge of aetiologies is still evolving, thus at present an aetiological 174 

classification would not be conclusive. 175 



RCM is defined by restrictive ventricular physiology in the presence of normal or reduced 176 

diastolic volumes, with normal or near-normal left ventricular (LV) systolic function, and 177 

normal or near-normal wall thickness (1-5). Increased interstitial fibrosis may be present. 178 

RCM constitutes a heterogeneous group of heart muscle diseases with various causes (Table 179 

1) that may be classified according to very different criteria.  180 

According to the main pathophysiological mechanism, RCM may be subclassified into 181 

infiltrative or storage diseases (e.g. amyloidosis and glycogen storage disease); obliterative 182 

or endomyocardial diseases (e.g. endomyocardial fibrosis, related or not to 183 

hypereosinophilia). 184 

The WHO classification system was based on the distinction between primary and secondary 185 

myocardial disorders (2). Primary cardiomyopathies were defined as either not caused by an 186 

identifiable agent, e.g. idiopathic, or related to a primary myocardial cause. Secondary 187 

diseases were related to systemic disorders affecting the myocardium with a 188 

pathophysiological process starting outside of, e.g. unspecific to the myocardium. The 189 

American Heart Association (AHA) proposed a slightly different classification system in 190 

which the term “primary” was used to describe diseases in which the heart is the sole or 191 

predominantly involved organ whereas “secondary” is used to describe diseases in which 192 

myocardial dysfunction is part of a systemic disorder (3).  193 

However, the challenge of distinguishing primary and secondary disorders is illustrated by 194 

the fact that many diseases classified as primary cardiomyopathies (e.g. glycogen storage 195 

disease, mitochondrial cytopathies) in the AHA classification can be associated with major 196 

extra-cardiac manifestations. Conversely, pathology in many of the diseases classified as 197 

secondary cardiomyopathies can predominantly (or exclusively) involve the heart (e.g. 198 

endomyocardial fibrosis or Fabry disease cardiac variant). In addition, the term of primary 199 

cardiomyopathy as an idiopathic condition is no longer appropriate in a large group of 200 

patients since genetics has identified mutations in various genes such as sarcomeric causes. 201 

Therefore, the ESC WG on Myocardial & Pericardial Diseases proposed in 2008 to abandon 202 

the distinction between primary and secondary causes (1). 203 

As an alternative to this classification, the ESC Working Group on Myocardial and 204 

Pericardial Diseases proposed to subclassify RCM and other cardiomyopathies into (i) 205 

familial or genetic causes and (ii) non-familial/non-genetic causes, because of the recent 206 

and increasing knowledge about genetic causes of cardiomyopathies. This is especially 207 

illustrated in RCM related to cardiac amyloidosis that may be acquired (amyloidosis AL or 208 

senile amyloidosis) or genetically determined (transthyretin and other genes mutations) and 209 



be included in the nonsarcomeric hypertrophic cardiomyopathies as well as in the RCM (1). 210 

The latter ESC classification will be used in this position paper. 211 

 212 

3. Pathophysiology of RCM and clinical presentation  213 

Restrictive physiology is characterized by a pattern of LV filling in which increased stiffness 214 

of the myocardium causes a precipitously rise of LV pressure with only small increases in 215 

volume. On cardiac catheterization, this phenomenon is characterized by a dip-and-plateau 216 

contour of early diastolic pressure traces. The standard echocardiographic features of 217 

‘restrictive’ filling are described in chapter 4.1 218 

Similarly, Some patients with a restrictive physiology may have significantly increased wall 219 

thickness such as patients with cardiac amyloidosis. RCM should be differentiated from 220 

constrictive pericarditis (6, 7). (see chapter 5). 221 

 222 

4. Imaging modalities in RCM:  223 

1 - Echocardiography  224 

Echocardiography plays a key role for the recognition of RCM. The echocardiographic 225 

diagnosis requires to differentiate RCM from constrictive pericarditis. 226 

RCM are usually characterized by normal or small LV cavity size (< 40mL/m2) with preserved 227 

LV ejection fraction, bi-atrial enlargement, and diastolic dysfunction (5).  228 

Assessment of LV diastolic function and filling pressures is of utmost value in RCM. In the 229 

recent joint American Society of Echocardiography (ASE) / EACVI recommendations for the 230 

evaluation of diastolic function by echocardiography (8), the four recommended variables to 231 

diagnose LV diastolic dysfunction and their abnormal cut-off values are annular e’ velocity 232 

(septal e’ <7 cm/s, lateral e’ <10 cm/s), average E/e’ ratio >14, LA maximum volume index 233 

>34 ml/m2, and peak TR velocity >2.8 m/s (figure 1). Other valuable parameters to identify 234 

the presence of elevated LV filling pressures are the ratio of pulmonary vein peak systolic to 235 

peak diastolic velocity, or systolic time velocity integral to diastolic time velocity integral <1, 236 

and the changes in E/A ratio with Valsalva manoeuver. The restrictive filling is considered 237 

reversible if the change of E/A ratio during Valsalva is ≥0.5 and fixed if it is <0.5 (more 238 

severe form).  239 

The diagnosis of RCM does not equal the presence of restrictive physiology. Patients with 240 

true RCM may present with a grade I diastolic dysfunction and move progressively to grade 241 



II or III diastolic dysfunction, with worsening of their disease. The advanced stages of RCM 242 

are characterized by typical restrictive physiology with a mitral inflow E/A ratio > 2.5, DT 243 

of E velocity <150 ms, IVRT < 50 ms, decreased septal and lateral e’ velocities ( 3-4 cm/s), 244 

E/e’ ratio > 14, as well as a markedly  increased LA volume index (> 50 ml/m2)(8), this 245 

advanced restrictive pattern being associated with the worst prognosis (9). Wall thickness 246 

is usually normal.  247 

Some specific features may also help differentiate secondary RCM, including several 248 

systemic conditions (diabetic cardiomyopathy, scleroderma, endomyocardial fibrosis, 249 

radiation, chemotherapy, carcinoid heart disease, metastatic cancers), from apparently 250 

idiopathic RCM (see chapter 5).  Ultrasonic tissue characterisation with integrated 251 

backscatter has been used to assess myocardial texture, but is non-specific (10, 11). Finally, 252 

2D deformation imaging is useful for the assessment of LV longitudinal dysfunction, which 253 

is frequently impaired in most forms of RCM (12) (see chapter 5), and may help 254 

differentiating RCM form constrictive pericarditis (13) 255 

 256 

2 - Cardiovascular magnetic resonance (CMR) 257 

CMR imaging can contribute importantly to the diagnosis of RCM and the differential 258 

diagnosis from pericardial constriction [14]. The CMR methods most commonly used for the 259 

assessment of RCM include static (black blood) images, cine and contrast enhanced imaging 260 

as well as parametric mapping.  261 

Static images are used to delineate cardiac, pericardial and vascular morphology. T1 and 262 

T2 weighted black blood images are sensitive to different tissue characteristics and provide 263 

complementary information. T1 weighted images show high signal from fat, as may for 264 

example be seen in Fabry’s disease, while T2 weighted short tau inversion recovery (STIR) 265 

images show high signal in myocardial oedema, for example in acute sarcoidosis. 266 

CMR allows accurate volumetric assessment of the heart and can accurately measure 267 

chamber size and function [15].  Typical cine CMR images are averaged over several heart 268 

beats to maximize image quality and temporal resolution, but real-time imaging can also be 269 

performed to demonstrate the typical septal shift during respiratory maneuvers and identify 270 

restrictive physiology [16]. Velocity encoded CMR in standardized imaging planes 271 

perpendicular to the atrio-ventricular heart valves is used to demonstrate the typical 272 

restrictive filling patterns of accentuated early filling and absent or reduced late filling [17].  273 
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A unique feature of CMR of relevance to the imaging of RCM is tissue characterization with 274 

late gadolinium enhancement (LGE). Following intravenous administration gadolinium 275 

based contrast agents are retained preferentially in tissues with an expanded extracellular 276 

space, such as fibrosis, scar or infiltration. Characteristic patterns of contrast enhancement 277 

can be observed in several of the RCMs, contributing to the differential diagnosis of Fabry 278 

disease, amyloidosis, endomyocardial fibrosis and sarcoidosis (Figure 2). In many of these 279 

conditions, the presence of LGE also has important prognostic relevance [18-20]. Finally, 280 

parametric mapping methods have increasing applications in RCM and allow quantitative 281 

measurement of tissue characteristics. T2*-weighted CMR is now the method of choice to 282 

detect and quantify myocardial iron content in iron deposition cardiomyopathy and to guide 283 

appropriate therapy [21]. A low myocardial T2* value in this context is currently considered 284 

the most powerful marker of adverse outcome [22]. More recently, T1 mapping has been 285 

used to quantify the extent of myocardial inflammation and fibrosis. Native T1 relaxation 286 

times, as measured with T1 mapping without the need for contrast agent administration, 287 

are altered in several conditions including amyloidosis and may have incremental value over 288 

LGE imaging [23]. The combination of native and post contrast T1 mapping allows an 289 

estimation of the myocardial extracellular volume (ECV) fraction, which in amyloidosis can 290 

even show differences in subtypes of the disease [24]. T1 mapping may also be useful in 291 

iron overload instead of the more established T2* mapping [25]. 292 

 293 

3 - Cardiac computed tomography (CT) 294 

The key advantage of computed tomography (CT) is its high-spatial resolution and the 295 

anatomical detail it provides. However the associated radiation exposure largely limits this 296 

modality to static imaging, precluding dynamic analyses of left ventricular haemodynamics, 297 

filling or relaxation. Nevertheless CT is well suited to identifying the anatomic features of 298 

impaired cardiac filling that characterize RCM. These include dilatation of the atria, 299 

coronary sinus and inferior vena cava and the presence of pulmonary congestion and pleural 300 

effusions. These features are also observed in a range of other conditions and the 301 

predominant role of CT with respect to RCM is in the exclusion of these alternative 302 

diagnoses. In particular, CT is well suited to detecting the thickening and calcification of 303 

the pericardium most commonly associated with constrictive pericarditis (26). Similarly CT 304 

allows assessment of extra-cardiac involvement in systemic conditions such as sarcoidosis 305 

(e.g. pulmonary nodules, pulmonary fibrosis and lymphadenopathy) or amyloidosis (e.g. 306 

inhomogeneous hepatomegaly, diffuse lung parenchymal involvement, small kidneys) 307 

further aiding in the differential diagnosis.  308 
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When other imaging modalities are not available, CT may be useful in evaluation of patients 309 

with RCM, owing to its ability to measure LV wall thickness and mass, detect regional wall 310 

thickening (27), regions of replacement fibrosis (27, 28), and measure myocardial 311 

extracellular volume fraction by equilibrium contrast-enhanced CT to assess diffuse fibrosis 312 

(29). These advances may increase the clinical utility of CT in the future clinical assessment 313 

of patients with RCM, particularly when echocardiography and CMR are non-diagnostic or 314 

contraindicated. 315 

 316 

4 – Nuclear imaging 317 

Nuclear imaging modalities have a potential clinical role in two forms of RCM: amyloidosis 318 

and sarcoidosis (see chapters 5.2 and 5.4). Nuclear imaging modalities have the advantage 319 

of specific targeted molecular imaging. Positron emission tomography (PET) has the 320 

technical advantages of high spatial resolution, robust built-in attenuation correction, 321 

quantitative analysis, and low patient radiation exposure, whereas single photon emission 322 

computed tomography (SPECT) has the advantage of a robust, cheaper and well validated 323 

camera system 324 

There are increasing data on the role of nuclear tracers with SPECT and more recently with 325 

PET for early identification and differential diagnosis of cardiac amyloidosis, particularly 326 

transthyretin-related amyloidosis (ATTR) 327 

Radiolabelled SPECT phosphate derivatives, initially developed as bone-seeking tracers, 328 

were noted to localize to amyloid deposits using [99mTc]-diphosphanate (30). In clinical 329 

practice, the most used SPECT tracers are: 99mTc-DPD mainly in Europe and Asia and 330 

99mTc-PYP in the United States. Their main advantage is avid uptake by ATTR and minimal 331 

uptake with the light-chain (AL) amyloidosis subtype, providing one of the best non-invasive 332 

ways to differentiate these subtypes of cardiac amyloidosis. (31, 32) 333 

The imaging technique is simple. Briefly, after administering 740 MBq of 99mTc-DPD, or or 334 

[99mTc]-HDP (32, 33), or of 99mTc-PYP (34) intravenously, a whole-body scan is performed 335 

3 hours or 1 h later (anterior and posterior projections). If there is active uptake in the heart, 336 

chest SPECT is performed. The analysis is performed by semi-quantitative visual scoring of 337 

the cardiac as compared to the bone uptake (scores from 0 to 3) and by computing the ratio, 338 

after correction for background counts, of the mean counts in the heart region over the 339 

mean counts in the contralateral chest ( H/CL ratio). 340 
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Other nuclear imaging approaches have been recently proposed for the diagnosis and 341 

prognostic stratification of patients with suspected amyloidosis. (31) PET imaging using new 342 

amyloid tracers like the [11C]-labeled Pittsburgh Compound B (PiB) or [18F]-florbetapir is 343 

promising and under early clinical investigation. The use of neuronal imaging by [123-I]-344 

MIBG SPECT has been suggested for early recognition of cardiac involvement and prognostic 345 

stratification of individuals with TTR mutation (34) 346 

The inflammatory nature of cardiac sarcoidosis renders PET useful for its diagnosis, as 347 

[18F]FDG accumulates in inflammatory cells in the heart. FDG is preferred in combination 348 

with a perfusion tracer to improve specificity, due to better match/mismatch pattern 349 

recognition. Unlike in CMR, there is no distinct pattern of FDG uptake that is 350 

pathognomonic for cardiac sarcoidosis, though focal or focal on diffuse uptake is suggestive 351 

of the disorder.(35) At present, [18F]FDG-PET appears to be more sensitive but less specific 352 

than CMR (36) and its use seems most appropriate in patients who have contraindications 353 

to CMR, inconclusive findings on CMR or where CMR is not available also to monitor 354 

response to therapy. The development of FDG PET/MR techniques offers the ability to 355 

assess LV wall function, the pattern of myocardial injury and disease activity in a single 356 

scan (37) (figure 3 ) 357 

 358 

In summary, several imaging techniques are available in the evaluation of RCM, all of which 359 

have both advantages and limitations. Table 2 summarizes the value of different imaging 360 

modalities in various forms of RCM. Although non-invasive techniques are sufficient in most 361 

cases, final histologic diagnosis may sometimes be necessary, and may be obtained by 362 

biopsies specimens from the heart (endomyocardial biopsies [EMB]) or other organs. Figure 4 363 

illustrates by histology and immunohistology different disease entities of RCM which will be 364 

discussed in the following chapters. 365 

 366 

 367 

 368 

 369 

 370 
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5. Main forms of RCM and value of imaging techniques: 371 

1 – Apparently idiopathic RCM 372 

Apparently idiopathic RCM may be caused by mutations in sarcomeric disease genes and 373 

may even coexist with hypertrophic cardiomyopathy in the same family (38-40) and may 374 

require EMB (to exclude cardiac amyloidosis), family screening and genetic investigations. 375 

Most affected individuals have severe signs and symptoms of heart failure. Several studies 376 

have reported that 66–100% die or receive a cardiac transplant within a few years of 377 

diagnosis. 378 

The echocardiographic diagnosis is one of restrictive physiology and mostly preserved LV 379 

ejection fraction. Typically, idiopathic RCM is characterised by diastolic dysfunction with 380 

apparently preserved systolic function, dilated atria, and the absence of ventricular 381 

hypertrophy or dilatation (figure 5 and videos 1 and 2). Longitudinal function may be 382 

decreased; the right ventricle may be involved but there is no “pathognomonic” 383 

echocardiographic pattern of apparently idiopathic RCM. CMR with LGE may facilitate the 384 

diagnosis of infiltrative myocardial disease, and is thus particularly useful for ruling out a 385 

particular cause of RCM (41).  386 

 387 

2 – Cardiac amyloidosis  388 

Cardiac amyloidosis (CA) is one of the most frequent causes of RCM and may be 389 

genetic/familial (ATTR) or non-genetic non-familial (AL/ prealbumin, senile).  390 

The diagnosis requires awareness, expertise and a high level of clinical suspicion, with 391 

integration between clinical, electrocardiographic and echocardiographic data. The 392 

“mismatch” between the presence of LV hypertrophy (LVH) in echocardiography and its 393 

absence on the ECG (no LVH, absolute or relative low-voltage QRS) is suggestive of cardiac 394 

amyloidosis and is often the first disease “red flag” (42, 43). Typical echocardiographic 395 

findings in cardiac amyloidosis patients include (figure 6a) a non-dilated LV with moderate 396 

concentric LVH and a ‘granular sparkling’ appearance of the myocardial texture, valvular 397 

thickening (mainly the A-V valves), biatrial dilatation, right ventricular free wall 398 

hypertrophy, inter atrial septum infiltration (loss of physiological echo drop-out) and mild 399 

pericardial effusion (44). In the early stages of the disease, cardiac amyloidosis may present 400 

as asymmetrical septal hypertrophy, sometimes with LV outflow tract obstruction and can 401 

then be wrongly diagnosed as hypertrophic cardiomyopathy (HCM). The presence of intra-402 
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atrial thrombus also seems to be relatively frequent in patients with cardiac amyloidosis, 403 

even in sinus rhythm (45). 404 

Patients often show (figure 6b) advanced diastolic dysfunction (grade II or III) and increased 405 

LV filling pressures. The classical transmitral restrictive pattern may only be seen at 406 

advanced disease stages. The typical tissue Doppler imaging (TDI) pattern of cardiac 407 

amyloidosis, with low systolic (s’) and diastolic  (e’, a’) myocardial velocities. Of note, E/e’ 408 

ratio is usually abnormally increased even in the presence of LV abnormal relaxation pattern 409 

(diastolic dysfunction grade I) (46). 410 

 LV systolic dysfunction is also a common finding in this disease. In early stages, despite 411 

preserved LV ejection fraction, longitudinal function is abnormal (abnormal long axis 412 

systolic velocities (s’) and strain) (figure 7a) as well as myocardial contraction fraction, a 413 

recently described systolic parameter (47).  414 

2D speckle-tracing echocardiography (2D-STE) is important, as many systolic strain 415 

parameters (longitudinal, circumferential, radial) are abnormal in cardiac amyloidosis, 416 

particularly in the longitudinal axis, typically with prominent involvement of LV basal 417 

segments and apical sparing (48) (figure 7b), reflecting the predominant deposition of 418 

amyloid in basal segments. The combination of a prominent reduction of longitudinal strain 419 

in LV basal segments with increased E/e’ ratio suggests cardiac amyloidosis in early stages 420 

(49).  421 

Multiple echocardiographic parameters have been associated with adverse outcomes in 422 

cardiac amyloidosis, including M- mode and 2D data (maximal wall thickness, LV fractional 423 

shortening and LV ejection fraction, right ventricle dilatation), blood pool Doppler data 424 

(restrictive filling pattern, myocardial performance index, Tissue Doppler derived data 425 

(myocardial velocities, long axis velocity gradient, peak  longitudinal systolic basal antero-426 

septal strain > -7.5%) (50) and 2D-STE parameters (GLS, mid-septum systolic longitudinal 427 

strain, apical LS< -14.5%) (51, 52).  428 

CMR is often used after CA is suspected by echocardiography to confirm or refute the 429 

diagnosis, and in experienced hands represents a powerful tool with important diagnostic 430 

and prognostic implications. Cine images may demonstrate typical anatomical features like 431 

thickened LV wall, biatrial enlargement, reduced long-axis shortening, and pleural or 432 

pericardial effusion. The presence of amyloid protein in the myocardial interstitium is 433 

associated with abnormal gadolinium-chelate contrast kinetics and characteristic patterns 434 

of contrast distribution. LGE images typically show circumferential subendocardial contrast 435 

enhancement or bilateral septal subendocardial LGE with dark mid-wall (zebra pattern) 436 
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(Figure 8a) (53, 54), but other patterns of enhancement have also been described. In atypical 437 

cases, other differential diagnoses should be considered such as hypertrophic 438 

cardiomyopathy or Fabry’s disease. Cardiac involvement can extend to the right ventricle 439 

and atrial walls, as potentially detected by LGE. The extent of myocardial LGE correlates 440 

with New York Heart Association functional class, LV wall thickness, lower ECG voltage, 441 

and cardiac biomarkers (troponins, brain natriuretic peptide)(55). With more advanced 442 

disease, amyloid infiltration may be transmural with corresponding global enhancement on 443 

LGE images, which is an independent predictor of poorer outcomes, over stroke volume and 444 

pro-NT brain natriuretic peptide. (56)  445 

 Amyloid deposits increase the longitudinal relaxation time (T1) magnetic property of 446 

the heart. Thus, myocardial non-contrast T1 values are longer in cardiac amyloidosis than 447 

in controls, a finding with higher sensitivity for detecting early subclinical cardiac 448 

involvement than LGE.(57) ECV estimation from pre- and post-contrast T1 mapping has 449 

been used to quantify interstitial amyloid deposition which appears to be more extensive in 450 

transthyretin amyloidosis (TTR) than in immunoglobulin light-chain amyloidosis (AL). (58) 451 

The addition of parametric mapping to standard CMR images is promising to be a powerful 452 

and quantitative diagnostic tool that also allows differential diagnosis from other diseases 453 

with similar phenotypic expression. 454 

Scintigraphy employs molecular-targeted radiolabeled compounds to detect systemic and 455 

organ-specific amyloid deposits. Scintigraphy is a valuable alternative to CMR particularly 456 

for patients with ATTR amyloidosis due to its very high sensitivity. Scintigraphy may also 457 

be used following an inconclusive CMR study, or for phenotyping cardiac amyloidosis (ATTR 458 

vs. AL) or in the differential diagnosis with sarcomeric HCM (59, 60). ). The [99mTc]-labeled 459 

bisphosphonate compounds pyrophosphate (PYP) (60) and 3,3-diphosphono-1,2-460 

propanodicarboxylic acid (DPD)(61) and hydroxydiphosphonate  (HDP) (33) (which are 461 

routinely used as bone scintigraphy agents) bind through unknown mechanisms to amyloid 462 

protein. All have proven very sensitive for detecting cardiac involvement in ATTR amyloidosis 463 

with reported sensitivities up to 100% on late phase planar scintigraphy. Typical uptake 464 

patterns besides cardiac uptake in ATTR amyloidosis include increased soft tissue uptake 465 

(mainly muscular uptake in the gluteal, shoulder, chest and abdominal wall regions) with 466 

obscuring of bone uptake (Figure 8b). However, in AL amyloidosis, cardiac uptake is found 467 

in less than half of patients and is generally less intense (likely due to the lower 468 

concentration of calcium-containing products in AL amyloid). Additionally, AL patients have 469 

generally no muscular [99mTc]-DPD or [99mTc]-HDP uptake while visceral uptake (liver, 470 

spleen) may be more common.  471 



Even if there are not yet large comparative studies, the diagnostic performance of 472 

nuclear imaging for cardiac amyloidosis is established. In general, [99mTc]-DPD can 473 

differentiate subtypes (62) and can be more sensitive than CMR (33) or echocardiography in 474 

diagnosing early disease being an independent prognostic marker (63). In a recent study by 475 

Bokhari et al. (60) using 99mTc-PYP, while patients with AL had some uptake, the visual 476 

score was significantly less than in patients with ATTR, allowing the differentiation between 477 

ATTR and AL amyloidosis with 97% sensitivity and 100% specificity. 478 

Hence, whole body planar DPD and HDP scintigraphy may help to phenotype cardiac 479 

amyloidosis particularly through differentiating ATTR from AL amyloidosis (or from 480 

sarcomeric HCM, where no DPD uptake is seen), which often have overlapping imaging 481 

features on echocardiography and CMR, but very distinct clinical course and prognosis. 482 

Moreover, a recent comparison of [99mTc]-DPD scintigraphy and LGE showed that despite 483 

a general good agreement between both techniques, LGE may sometimes underestimate 484 

cardiac amyloid burden (33). Finally, myocardial tracer uptake on scintigraphy is correlated 485 

with disease severity (measured by circulating troponin and LV wall mass), and has been 486 

shown to be a powerful prognostic determinant of outcome in ATTR cardiac amyloidosis (32, 487 

63).  488 

Recent investigations found that bone scintigraphy enables the diagnosis of cardiac ATTR 489 

amyloidosis to be made reliably without the need for histology in patients who do not have 490 

a monoclonal gammapathy. (64). The algorithm proposed (figure 9) that cardiac ATTR 491 

amyloidosis can be reliably diagnosed in the absence of histology provided an 492 

echocardiogram or CMR is suggestive of amyloidosis, cardiac uptake is present on 493 

scintigraphy and there is absence of a detectable monoclonal gammapathy. Histological 494 

confirmation and typing of amyloid should be sought in all cases of suspected cardiac 495 

amyloidosis in which these criteria are not met. 496 

In summary, all these imaging techniques are useful and give additional 497 

information, including echocardiography, nuclear techniques, CMR (table 3 (65), but 498 

also EMB and genetic testing, to differentiate ATTR mutant from wild type. Figure 499 

10 illustrates the value of multimodality imaging in a patient with cardiac 500 

amyloidosis.  501 

 502 

 503 

 504 
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3 – Other causes of familial/genetic RCM 505 

Hemochromatosis 506 

Iron overload cardiomyopathy (IOC) results from iron accumulation in the myocardium 507 

mainly because of genetic disorders of iron metabolism (primary hemochromatosis) or 508 

multiple transfusions (such as in thalassemia or myelodysplastic syndromes).   509 

In the early stages, myocardial iron overload (MIO) causes diastolic LV dysfunction (66). If 510 

no effective iron chelation is instituted in time, the majority of patients develops LV 511 

dilatation and reduced LV ejection fraction (EF) (dilated phenotype) (67). In a minority of 512 

cases with severe MIO, restrictive LV dysfunction can lead to pulmonary hypertension, right 513 

ventricular dilatation, and right-sided heart failure with preserved LVEF (restrictive 514 

phenotype) (68). 515 

Echocardiography is a useful modality in the follow-up of iron-loaded patients. A 516 

pseudonormalized pattern of transmitral inflow is frequently encountered and may be 517 

unmasked by tissue Doppler (69). LV diastolic dysfunction and reduced EF may both be 518 

masked by an anemia-induced high cardiac output state in hematologic patients. There are 519 

few data relating diastolic function to outcome in hemochromatosis (70).  520 

However, due to the lower accuracy in quantifying biventricular systolic function  and the 521 

lack of parameters able to predict MIO reliably, echocardiography is only the second-line 522 

imaging method after CMR (71, 72).  523 

The method of choice for assessing IOC is CMR, which allows tissue characterization 524 

including quantification of MIO. The paramagnetic effect of iron-loaded myocardium affects 525 

T1, T2 and T2* relaxation times which can be used to calculate MIO. The best validated 526 

method for quantifying MIO is T2* mapping. T2* values correlate closely with hepatic and 527 

myocardial iron content and correlate better with LV dilatation and LV dysfunction than 528 

serum ferritin or liver iron concentration. A T2* value of < 20 ms at 1.5 Tesla, typically 529 

measured in the interventricular septum, is used as a conservative cut-off for segmental 530 

and global heart iron overload and patients with the lowest T2* values have the highest risk 531 

of developing arrhythmia and heart failure. T2* CMR has revolutionized IOC management 532 

with the death rate in patients with Thalassemia falling dramatically in countries where T2* 533 

CMR has been adopted. In the assessment of IOC, the first cardiac T2* assessment should 534 

be performed as early as possible and the effectiveness of iron chelation (73) and reversal of 535 

MIO can be reliably guided by follow up scans (74). A multislice approach can detect the 536 

uneven distribution of MIO, allowing early identification of patients at risk of cardiac 537 

complications (75).  538 
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T2* is dependent on field strength and sensitive to field inhomogeneity. T2 and T1 mapping 539 

techniques offer some advantages over T2* and have been compared with standard methods, 540 

with initial studies showing close correlation with T2*. 541 

In patients where the diagnosis is unclear, a multiparametric CMR approach that evaluates 542 

cardiac function, myocardial fibrosis and edema may allow further clarification of the 543 

underlying mechanisms leading to the LV dysfunction (76).  544 

 545 

In summary, cardiac involvement is frequent in hemochromatosis. CMR is the main 546 

imaging technique for diagnosis and follow-up of cardiac hemochromatosis, 547 

allowing both reliable measurement of LV and RV dimension and function and tissue 548 

characterization including quantification of MIO. 549 

 550 

Fabry cardiomyopathy 551 

Cardiac involvement is very common and is the most frequent cause of death not only in 552 

hemizygote males but also in female heterozygote carriers with α-Gal A deficiency, with a 553 

reduction of life expectancy of approximately 20 and 15 years respectively (77). The heart 554 

may be the only organ affected in the classic phenotype of Fabry disease, and this is 555 

designated the “cardiac variant” (78). 556 

Cardiovascular manifestations include renovascular and systemic hypertension, aortic root 557 

dilatation, mitral prolapse and congestive heart failure (79). Fabry cardiomyopathy mainly 558 

consists of progressive LVH, which may cause substantial morbidity and contribute to the 559 

reduced life expectancy of affected patients, both male and female (80, 81). 560 

LVH is a hallmark of Fabry cardiomyopathy (82). In patient populations with HCM, the 561 

prevalence of Fabry disease ranges from 0 to 12%, depending on the patient selection criteria 562 

used, but is close to 1% in the largest series (83). LVH is generally symmetrical, although 563 

asymmetric septal hypertrophy has been described, and the condition can mimic the 564 

phenotypical and clinical features of HCM, including obstructive HCM (84). Typically, the 565 

echocardiogram shows marked increases in wall thickness and ventricular dilatation later 566 

in the disease process. Valve leaflet thickening can be seen, and this produces valve 567 

impairment that usually does not require surgical treatment (85). 568 

Echocardiography using TDI can detect the first signs of myocardial damage in a patient 569 

with Fabry cardiomyopathy and normal cardiac wall thickness (86). Furthermore, TDI 570 

studies have been shown to be useful in detecting cardiac involvement in female carriers 571 



with no systemic manifestations of Fabry disease. A reduction of TDI velocities may 572 

represent the first sign of initial intrinsic myocardial impairment (87). These reduced TDI 573 

velocities in mutation positives without LVH are consistent with the hypothesis that 574 

myocardial dysfunction precedes LVH (88). 575 

CMR with LGE may be useful in the non-invasive recognition of myocardial fibrosis, in the 576 

context of cardiac involvement of Fabry disease (89). The LGE pattern of distribution helps 577 

in the differentiation between HCM and Fabry cardiomyopathy (90). Patients with Fabry 578 

cardiomyopathy typically present with a pattern characterized by the involvement of the 579 

inferolateral basal or mid basal segments (89). Furthermore, the myocardial T2 relaxation 580 

time is prolonged in patients with Fabry disease compared with that in HCM patients, and 581 

its measurement could be complementary to the LGE technique. More recently, native T1 582 

mapping was shown to be the most reliable technique to differentiate Fabry cardiomyopathy 583 

from all the other LVH phenocopies, by demonstrating a low native T1 value of the affected 584 

myocardium (whilst other LGE area of different disease would display a high native T1 585 

values) (90). This important difference is due to the characteristic fatty nature of the 586 

infiltration in Fabry disease. 587 

Finally, for most males with Fabry disease, the diagnosis can be made by measuring 588 

leucocyte and plasma α-Gal activity, while genetic testing is useful in patients with normal 589 

levels of enzyme activity (90). A familial screening should be performed in patients with 590 

Fabry’s disease (figure 11). 591 

 592 

In summary, cardiac involvement is frequent in Fabry disease and is associated with 593 

worse outcome. Imaging techniques, especially TDI and CMR, allow a comprehensive 594 

evaluation of cardiac involvement, even before morphological manifestations such 595 

as hypertrophy develop. 596 

 597 

Glycogen storage disease 598 

Glycogen storage disease is defined as the absence or deficiency of one of the enzymes 599 

responsible for making or breaking down glycogen in the body. The enzyme deficiency 600 

causes either abnormal tissue concentrations of glycogen or incorrectly or abnormally 601 

formed glycogen (91, 92). There are 11 different types of glycogen storage diseases causing 602 

different forms of heart failure. Most well-known are Danon and Pompe diseases (82, 93, 603 

94). 604 



Danon cardiomyopathy is progressive and typically manifests a hypertrophic phenotype, 605 

with preserved LVEF and normal cavity dimensions early in the course of disease, and later 606 

progression to dilated features in 11% to 12% of men (92). Hypertrophic cardiomyopathy is 607 

predominant in male patients, whereas an equal prevalence of hypertrophic and dilated 608 

cardiomyopathy is seen in female patients (93).  609 

Echocardiography demonstrates increased LV mass and wall thickness although LV systolic 610 

function is preserved. Taking into consideration the possible progress to cardiac failure, 611 

serial echocardiograms with attention to LV thickness and mass are important in the care 612 

of these patients (94, 95). Echocardiography is also the standard method to evaluate the 613 

cardiac response to enzyme replacement therapy.  614 

Typical findings in CMR consist of significantly reduced LV global function and increase of 615 

LV end-diastolic and end-systolic volumes. Perfusion defects, mainly subendocardial, are 616 

visible in almost all segments on rest first-pass perfusion images. They may be obvious in 617 

the infero-septal segments and partly transmural in the lateral and anterior walls. LGE 618 

appears to be a rare finding in Pompe disease but when present, is seen in the 619 

subendocardium and in places transmurally in the anterior and lateral walls (96, 97).  620 

A diagnosis of Danon disease is always confirmed by EMB results.  621 

99mTc-methoxyisobutylisonitrile (MIBI) myocardial imaging has also been employed as an 622 

imaging diagnostic test for glycogen storage disease, to detect myocardial damage as a non-623 

invasive method. There has been a positive rate of detection of damage with G-MPI of 77.8 624 

% (98). 625 

Other storage / infiltrative diseases (Gaucher disease, mucopolysaccharidoses) may be 626 

rarely associated with cardiac involvement (99, 100). 627 

 628 

 629 

Pseudoxanthoma elasticum 630 

Pseudoxanthoma elasticum is a rare, inherited connective tissue disorder associated with 631 

coronary and peripheral arterial disease and accelerated atherosclerosis in medium sized 632 

arteries (101). Cardiac involvement may start as a diffuse arteriopathy secondary to elastic 633 

fiber dysgenesis, involving the small intramural coronary vessels ('small-vessel disease') and 634 

it may reach the clinical presentation of congestive heart failure, even though – quite often 635 

- with normal epicardial vessels (102). 636 

Echocardiography detects impaired LV systolic and diastolic function (103). Other imaging 637 

modalities – as functional tests – such as perfusion CMR or nuclear myocardial perfusion 638 

imaging, may be useful to demonstrate early coronary involvement and/or the direct 639 
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consequences of ultrastructural defects of the elastic tissue of the heart. Increased 640 

awareness for silent ischemia is recommended (101, 104). 641 

An important study with arterial stiffness evaluation demonstrates the early detection of 642 

accelerated atherosclerosis and the impairment of the elastic properties of the aorta. A lower 643 

elasticity in large arteries, a higher cardiac output and a higher total vascular impedance 644 

were observed in patients with pseudoxanthoma elasticum with respect to the control group 645 

(104). 646 

 647 

 648 

4 - Non familial/non-genetic RCM: Inflammatory cardiomyopathies 649 

with a restrictive hemodynamic component:  650 

Cardiac Sarcoidosis 651 

Sarcoidosis is a multisystem inflammatory granulomatous disease of unknown origin. 652 

Cardiac sarcoidosis (CS) is frequently isolated (105). Its diagnosis is difficult and has 653 

benefited from the use of multimodality imaging. 654 

Although echocardiography is not the method of choice for the diagnosis of cardiac 655 

sarcoidosis, it can offer very useful information in some cases (106). An unexplained reduced 656 

LV ejection fraction <40% in a patient with a histological diagnosis of extra-cardiac 657 

sarcoidosis is suggestive of cardiac sarcoidosis (107). Characteristic echocardiographic 658 

changes suggestive of cardiac sarcoidosis are: wall thickness >13 mm (due to 659 

granulomatous expansion), or <7 mm (due to fibrosis), aneurysmal dilatation especially at 660 

the level of the inferior and posterior walls (108), regional wall motion abnormalities without 661 

any specific coronary distribution, interspersed with normokinetic segments (109). 662 

CMR is one of the imaging modalities recommended for the diagnosis of cardiac sarcoidosis 663 

in current guidelines (106) and CMR may be more sensitive for cardiac involvement than 664 

currently used clinical criteria (110). Myocardial inflammation may be identified by T2 STIR 665 

images and early contrast enhancement while areas of fibrosis are detected by LGE (111) 666 

(figure 12). The typical pattern of cardiac sarcoidosis on LGE is patchy focal enhancement 667 

sparing the endocardial border, not following a coronary artery distribution (112), and 668 

involving mainly the basal and lateral LV walls (113). Single or often multiple lesions are 669 

seen and other, more atypical LGE patterns have also been described. Importantly, no LGE 670 

pattern is pathognomonic for CS. Moreover, CMR offers prognostic information: myocardial 671 

scar determined by LGE is a predictor for ventricular arrhythmia and sudden cardiac death 672 

in patients with sarcoidosis (114).  673 



Nuclear imaging has also an important role in the assessment of cardiac sarcoidosis. 674 

Although the major diagnostic criteria for CS include [67Ga]-citrate scintigraphy, its 675 

sensitivity for CS is significantly lower than [18F]FDG-PET/CT (115). For this reason 676 

[18F]FDG-PET/CT have currently replaced [67Ga]-scintigraphy in the majority of centers 677 

being nowadays the most commonly used imaging test for detecting myocardial 678 

inflammation. Advantages of [18F]FDG-PET/CT over [67Ga], includes favorable tracer 679 

kinetics, lower radiation exposure, and better quality images (116). Active sarcoid lesions 680 

present increased [18F]FDG uptake on PET/CT imaging due to utilization of glucose as an 681 

energy source by inflammatory cell in infiltrates (117). However, [18F]FDG-PET/CT has not 682 

been officially adopted in the diagnostic guidelines (118) mainly due to the high variability 683 

of [18F]FDG uptake in the normal myocardium, that requires adequate patient preparation 684 

to prevent errors. Strategies for myocardial suppression to maximize the accuracy of the 685 

procedure include prolonged fasting, dietary modifications, and a heparin load before 686 

imaging (119). The imaging protocol include preferable gated cardiac [18F]FDG and whole 687 

body images (120). A cardiac perfusion scan could be combined to compare [18F]FDG-PET 688 

and perfusion patterns (Table 4) (121).  689 

Pitfalls in [18F]FDG PET/CT imaging are myocarditis, cardiac amyloidosis, infection, and 690 

myocardial metastases, causing focal [18F]FDG uptake. There are very few circumstances 691 

under which [18F]FDG will be falsely negative as in case of corticosteroids treatment or “old, 692 

non-active” sarcoidosis.  693 

 [18F]FDG-PET/CT sensitivity and specificity for CS have been reported at 89% and 78%, 694 

respectively (117). Quantitative analysis further improved these figures, reaching a 695 

sensitivity of 97.3% and a specificity of 83.6% for the diagnosis of CS. In addition, 696 

standardized uptake value (SUVmax) on [18F]FDG-PET/CT was found the only independent 697 

predictor among clinical and imaging variables for diagnosing CS (122) .  698 

Serial [18F]FDG-PET/CT imaging can be utilized to assess the response to therapies. 699 

Decrease [18F]FDG uptake in cardiac lesions following therapy has been reported in case of 700 

corticosteroid treatment  as well as immunosuppressive therapies (123, 124). Figure 13 701 

illustrates the value of serial [18F]FDG PET/CT in a patient with CS treated with high dose 702 

corticosteroids.  703 

[18F]FDG-PET/CT only moderately correlated with CMR, mainly due to the different 704 

significance of findings: LGE by CMR represents cardiac damage and scarring whereas 705 

[18F]FDG uptake represents active inflammation. When CMR and [18F]FDG -PET/CT were 706 

compared with the Japanese Ministry of Health and Welfare guidelines (JMHWG), CMR had 707 

a higher specificity with lower sensitivity than nuclear imaging (125) .  708 

 709 



In summary, [18F]FDG-PET/CT and CMR are powerful imaging techniques for accurate 710 

detection and therapy monitoring of CS. Protocols for imaging with these modalities 711 

are increasingly well defined, however large prospective studies supporting new 712 

guidelines for CS imaging are warranted.   713 

 714 

Systemic sclerosis 715 

Systemic sclerosis (SSc) is a connective tissue disease characterized by vascular and fibrotic 716 

lesions of skin and internal organs and represents a model of progressive interstitial 717 

myocardial fibrosis triggered by increased endothelin production and also focal 718 

hypoperfusion (126). Cardiovascular involvement has been shown to be one of the leading 719 

causes of mortality in SSc and can occur in up to 70% of patients as a finding on autopsy 720 

(127, 128). Although the primary myocardial involvement remains clinically silent in the 721 

majority of patients, it can lead to further diastolic and systolic LV dysfunction (129), which 722 

carries a poor prognosis. Early diagnosis and accurate staging of myocardial involvement 723 

are therefore crucial for the management of these patients and for therapeutic strategies. 724 

Conventional echocardiographic assessment of the LVEF has shown limited sensitivity being 725 

able to identify only 5% of patients with cardiac involvement (130). Results of studies using 726 

TDI and speckle-tracking echocardiography suggested that myocardial velocity and strain 727 

might be more sensitive than conventional measures in identifying subtle cardiac 728 

dysfunction in asymptomatic patients with SSc (131, 132).  729 

Since myocardial fibrosis is the primary abnormality underlying SSc cardiac involvement, 730 

methods that enable early identification of fibrosis should be preferred. Endomyocardial 731 

biopsy is the gold standard for the detection of myocarditis that may be found in SSc 732 

patients and might help to detect cardiac involvement at an early stage of the disease as 733 

inflammation was found in 96 % and fibrosis in 100% of all SSc patients investigated (133). 734 

Importantly, prognosis was poor and associated with the degree of cardiac inflammation 735 

and fibrosis revealing an event rate of 28% within 22.5 months follow-up (133). 736 

CMR with LGE imaging has been used to detect myocardial areas with replacement fibrosis 737 

in patients with an advanced stage of SSc (134). However, at an early stage of the disease, 738 

myocardial fibrosis in SSc is usually diffuse and thus, undetected by LGE-CMR. ECV 739 

estimation using pre and post contrast T1 mapping has been used to visualize  increased 740 

collagen content in SSc (135). A recent study has demonstrated that ECV imaging performed 741 

early during SS reveals myocardial abnormalities consistent with diffuse myocardial fibrosis 742 

that are not apparent on LGE imaging, therefore representing an early marker of disease. 743 

(136). In addition, the ECV abnormalities correlated with diastolic LV dysfunction which 744 



occurred in 45% of the patients (137). This study also evaluated the systolic circumferential 745 

strain by CMR that was also found decreased but without any correlation with ECV increase, 746 

suggesting therefore that LV systolic dysfunction may be related not only to myocardial 747 

fibrosis but also to other phenomena, such as myocardial ischemia. 748 

In SSc, myocardial ischemia, unrelated to coronary artery disease, is common with 749 

impairment of microcirculation and coronary vasospasm (138). Therefore, stress 750 

echocardiography, CMR stress perfusion and single-photon emission computed tomography 751 

(SPECT) have been proposed to evaluate myocardial perfusion in SS patients 752 

 753 

 754 

5 - Non familial/non genetic RCM: Radiation therapy and cancer 755 

drug therapy induced RCM:  756 

Cardiac toxicity of radiation therapy 757 

In general, the development of radiotherapy-induced RCM suggests a prior high dose chest 758 

irradiation (>60 Gy). It can also occur at lower radiation exposure when anthracycline is 759 

used (139). RCM occurs as a result of diffuse myocardial fibrosis. On echocardiography, the 760 

classical features of RCM are found. Although its value in radiation-related myocardial 761 

fibrosis is still unclear, ECV estimation using pre and post contract T1 mapping by CMR is 762 

directly related to collagen content (140). The presence of decreased mean LV mass, end-763 

diastolic dimension, and end-diastolic wall thickness together with dilation of both atria and 764 

self-reported dyspnea, is suggestive of RCM in this population (141). Cardiac CT has little 765 

value in the diagnosis of RCM after radiotherapy, except for the detection of any associated 766 

vascular disease. There is no proven value of nuclear cardiology in the detection of RCM 767 

after radiation exposure. However, perfusion scintigraphy imaging can reveal fixed regional 768 

perfusion defects, which possibly indicate direct damage and the presence of local fibrosis 769 

(142). 770 

 771 

 772 

Cancer drug induced RCM 773 

The typical structural manifestation of cancer drug induced cardiomyopathy corresponds 774 

to a LV eccentric remodeling with dilation of internal cavity and thinning of myocardial walls 775 

[143]. When clinical heart failure is overt, this picture is associated with a significant 776 

reduction of LV ejection fraction. In the more advanced stages LV diastolic function can be 777 

strongly altered, with an abnormal increase of LV filling pressure. This will induce the 778 

classic "restrictive" physiology with the typical standard Doppler-derived transmitral 779 

Commented [v28]: Is this specific for this type of RCM ? from 
previous description this is common to all of them ? 



pattern: E/A ratio > 2 or even > 3 and short E velocity deceleration time (usually < 150-160 780 

msec). The presence of a restrictive pattern in a patient with cancer drug induced 781 

cardiotoxicity has a recognized prognostic value, exactly as this occurs in the general clinical 782 

setting [8].     783 

Currently, the restrictive diastolic pattern is detectable in particular in patients undergoing 784 

anthracyclines (Cardiotoxicity type 1), it being possibly evident not only during treatment 785 

(acute cardiotoxicity) but also - and more often - after the completion (even several years 786 

after) of cancer therapies [143]. (figure 14, videos 6 and 7). Early cardiotoxicity, occurring 787 

during or within 1 year of completion of treatment, is the most important risk factor for the 788 

development of late cardiotoxicity, which occurs beyond a year of completion of treatment. 789 

This is very important to know in children undergoing anthracyclines therapy. In fact, they 790 

can develop late cardiotoxicity during adulthood and should be therefore carefully 791 

monitored for years by echocardiography. Cumulative as well as peak anthracycline doses 792 

affect adults and children alike. 793 

The restrictive physiology of diastolic pattern is instead very rare in patients undergoing 794 

trastuzumab therapy and similar drugs (Cardiotoxicity type 2) [143]. This kind of 795 

cardiotoxicity is usually reversible with cancer therapy interruption. However, since 796 

trastuzumab can be sequentially added to anthracyclines, a combined effect anthracyclines 797 

+ trastuzumab on the degree of LV filling pressures cannot be excluded and should therefore 798 

be carefully monitored. 799 

When a restrictive LV diastolic pattern is detectable in patients receiving cancer drugs, the 800 

echocardiographic exam should be extended to a quantitative evaluation of LV longitudinal 801 

function. In fact, when high levels of LV filling pressure are evident, a reduction of global 802 

longitudinal strain (GLS), measurable by speckle tracking echocardiography, is usually 803 

observed. If speckle tracking echocardiography is not available, pulsed tissue Doppler 804 

derived s' velocity of the mitral annulus or even the simple M-mode derived mitral annular 805 

plane systolic excursion represent much more than simple surrogates of LV longitudinal 806 

dysfunction.      807 

In this cohort of patients, CMR can be useful both for the accurate volumetric assessment 808 

with cine imaging but also with the LGE technique for the detection of myocardial fibrosis 809 

[143], i.e., the first determinant of LV diastolic dysfunction and LV filling pressure increase. 810 

 811 

 812 

 813 

 814 

 815 
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6 – Endomyocardial RCMs  816 

Endomyocardial fibrosis 817 

Endomyocardial fibrosis (EMF) is an often-neglected disorder in the tropical and subtropical 818 

regions of the world which is characterized by the development of a restrictive 819 

cardiomyopathy (144), and is associated with a high morbidity and mortality (145). As 820 

etiologic causes of endomyocardial fibrosis, infections, inflammation, allergy, malnutrition 821 

and toxic agents are discussed (146).  At the histological level, EMF is characterized by a 822 

marked endocardial thickening due to the deposition of fibrous tissue (Figure 15)(147).  823 

An echocardiographic examination of 1063 individuals revealed that most subjects (55%) 824 

had a biventricular involvement, and 28% revealed a right-sided prevalence with mild-825 

moderate structural and functional echocardiographic abnormalities (148). 826 

Regarding the diagnosis of EMF, transthoracic echocardiographic changes can be useful for 827 

visualizing structural abnormalities, especially in chronic EMF (145, 147). The main 828 

echocardiographic features include apical obliteration of the left and / or right ventricles, 829 

reduced volume of the ventricular cavity, endocardial thickening and a restrictive pattern. 830 

(figure 16, video 8) 831 

Endomyocardial fibrosis may be difficult to differentiate from other cardiomyopathies 832 

(Loeffler´s endocarditis, Churg-Strauss syndrome or rheumatoid arthritis, tuberculous 833 

pericarditis, constrictive pericarditis or apical HCM (145, 149-151). After initial 834 

echocardiographic analysis, CMR (152) including LGE imaging  should be performed which 835 

is now the gold standard for imaging the disease.(figure 17)  In a CMR study of 36 patients 836 

it was shown that LGE-CMR can provide detailed information on ventricular morphology, 837 

including the existence of thrombus or calcifications, and revealing functional information 838 

which is useful in the diagnosis and prognosis of EMF through quantification of the typical 839 

pattern of the endocardial fibrous tissue deposition (153). Adjunctive diagnostic tools, such 840 

as EMB, can be considered in ambiguous cases (154) and can help in patient management. 841 

 842 

 843 

Hypereosinophilic syndrome 844 

Eosinophilic endomyocardial fibrosis is a rare cause of RCM, resulting from toxicity of 845 

eosinophils towards cardiac tissues (155).  The causes for eosinophilic infiltration of 846 

myocardium are hypersensitivity, parasitic infestation, systemic disease, myeloproliferative 847 

syndrome and idiopathic hypereosinophilic syndrome (155).  848 

Cardiac disease follows three stages, with involvement of the endocardium, the myocardium 849 

and the pericardium. The first is eosinophilic myocarditis (acute necrotic stage) due to 850 



infiltration of eosinophils and release of the contents of their granules in the myocardium 851 

(155). There is no relationship between the extent of the infiltrate and clinical symptoms 852 

(156). The intermediate phase is the thrombotic stage, characterized by mural thrombi along 853 

the damaged endocardium (more often in the apex of the left ventricle). The third stage is 854 

the later fibrotic stage in which the granulation tissue is changed into hyaline fibrosis. The 855 

endocardial scar can results in a decrease of ventricular compliance and in RCM (157). 856 

On echocardiography, classical findings are progressive endomyocardial thickening, apical 857 

obliteration of one or both ventricles by echogenic material suggestive of fibrosis or 858 

thrombus formation, posterior mitral leaflet involvement and papillary dysfunction resulting 859 

in mitral regurgitation (157, 158) (figure 18a). Pericardial effusion can be present as well as 860 

the typical RCM pattern of normal-to-small ventricles with large atria (159). 861 

Echocardiography can also be useful for monitoring the effects of specific therapies on the 862 

reversal of endomyocardial infiltration in hypereosinophilic cardiomyopathy (160). 863 

CMR is very useful in endomyocardial fibrosis, both for diagnosis of endocardial involvement 864 

and for detection of thrombus formation in both ventricles (161-164)(figure 18b). The gold 865 

standard is EMB but the high resolution of CMR and TTE is frequently sufficient for 866 

diagnosis and follow-up. (3).  867 

 868 

 869 

Carcinoid heart disease 870 

Carcinoid heart disease occurs in 20% to 70% of patients with metastatic carcinoid tumors 871 

and will lead to increased morbidity and mortality in these patients. (165)  The endocardial 872 

fibrosis results in retraction and fixation of the heart valves. Right-sided valves are mainly 873 

affected(166). Left-sided valvular pathology occurs in approximately 10% of patients with 874 

carcinoid heart disease and is associated with right-to-left shunting, bronchial carcinoid, or 875 

poorly controlled carcinoid syndrome. (167, 168). 876 

The hallmarks of carcinoid heart disease are a combination of right-sided valvular 877 

dysfunction and typical morphological changes of the valves like valve leaflet thickening, 878 

shortening, retraction, reduced mobility, or incomplete coaptation of the tricuspid leaflets. 879 

(169- 171). CMR has an additive value in carcinoid heart diseases, especially when 880 

echocardiography is inconclusive and for accurate measurements of right ventricular 881 

function and assessment of carcinoid plaques using LGE (171). Figure 19, videos 9 and 10, 882 

illustrate the value of multimodality imaging in a patient with carcinoid heart disease. 883 

 884 

 885 
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Drug-induced endomyocardial fibrosis 886 

Animal data suggest the possibility of drug-induced endomyocardial fibrosis induced by 5-887 

HT2B serotonin receptor agonists such as fenfluramine derivatives, pergolide, cabergolide 888 

and methysergid and ergotamine (172-174), but very scarce data are currently reported in 889 

man. Indeed, only one case of RCM is reported after fenfluramine-phentermine exposure 890 

(175). In addition, a case of sub-aortic obstruction within the LV outflow tract related to 891 

drug-induced endomyocardial fibrosis has been recently reported in a patient exposed to 892 

benfluorex, an agonist of 5-HT2B serotoninergic receptors (176).  893 

 894 

 895 

6. Differential diagnosis between RCM and other cardiac diseases 896 

Differential diagnosis between RCM and constrictive pericarditis 897 

Differential diagnosis between RCM and constrictive pericarditis (CP) can be a challenge as 898 

their clinical presentation is relatively similar with right heart failure symptoms, preserved 899 

LV ejection fraction, and diastolic dysfunction. However, as the treatment of these two 900 

conditions is very different, constriction being potentially curable by surgery, making the 901 

correct diagnosis is critically important. The differential diagnosis could be performed 902 

particularly using the complementary elements obtained from TTE, CMR, cardiac CT, or 903 

cardiac catheterization. (table 5) 904 

Cardiac catheterization was the first method historically used to help in the differential 905 

diagnosis of RCM and CP, but is not always conclusive (177, 178). 906 

In both RCM and CP, biatrial dilatation, venous dilatation as well as pericardial effusion can 907 

be observed. Several echocardiographic parameters have been identified to differentiate 908 

myocardial diseases from pericardial constriction (10, 179). In case of RCM, some degree of 909 

LV or biventricular hypertrophy or unusual echo texture can be noted (RCM of infiltrative 910 

origin). In case of constrictive pericarditis, pericardial thickening (>3mm) or 911 

hyperechogenicity of the pericardium can be observed. But one of the main characteristics 912 

of CP is the absence of transmission of the intrathoracic pressure variations to the heart, 913 

which are physiologically present during the respiratory cycle.  914 

Both TTE and real time cine CMR allow the identification of some key findings which 915 

differentiate the two pathologies: septal bulging occurring with cavity volume variations and 916 

the exaggerated respiratory-related LV-RV coupling highlighted by a respiratory septal shift 917 

observed in CP and a significant respiratory variation of the diastolic flow. The respiratory 918 

septal shift is defined by a difference in the maximal septal excursion into LV between 919 
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inspiration and expiration (Video 11).(179) Using CMR, this parameter has a sensitivity of 920 

80% and specificity of 100% to detect CP. (180)  921 

Other echocardiographic findings have been reported to be useful for differentiating RCM 922 

and CP, including TDI (e’), E velocity deceleration time, pulmonary vein flow, left atrial 923 

volume, and E/e’ ratio (181). Figure 20 shows an algorithm proposed by the recent ASE / 924 

EACVI recommendations for the evaluation of diastolic function by echocardiography (8), 925 

comparing constrictive pericarditis and RCM. The presence of a normal annular e’ velocity 926 

in a patient referred with heart failure diagnosis should raise suspicion of pericardial 927 

constriction (8). 928 

LV myocardial velocities (182-185) and deformation (11) measured by both TTE and CMR 929 

(186) are reduced at a greater degree in RCM compared to constrictive pericarditis. Both 930 

echocardiography and CMR provide concordant diagnostic information and incremental 931 

value for differentiating constrictive pericarditis from RCM. Complementary assessment of 932 

structural (pericardial thickening), mechanical (myocardial velocities and strains) and 933 

hemodynamic (respiratory septal shift) by both TTE and CMR and their complementary use 934 

increase the cost-efficacy and confidence for the diagnosis of RCM vs. constrictive 935 

pericarditis.  936 

Cardiac CT provides excellent anatomic delineation of the pericardium, allowing for accurate 937 

measurement of pericardial thickness (abnormal if >4mm) (187), although a normal 938 

pericardial thickness does not exclude constrictive pericarditis (188). Cardiac CT is superior 939 

to CMR in detecting pericardial calcifications (189). Finally, multimodality imaging should 940 

be performed in patients with suspected constrictive pericarditis, since each imaging 941 

modality presents with both advantages and limitations (table 5, figure 21)  942 

 943 

In summary, the differentiation between RCM and constrictive pericarditis is 944 

frequently difficult and should take into account both clinical presentation and 945 

multimodality imaging. The absence of pericardial thickening does not rule out 946 

constrictive pericarditis.  Echocardiography, CMR and CT provide complementary 947 

information and in many patients all three should be performed when constrictive 948 

pericarditis is suspected. 949 

 950 

 951 



Differential diagnosis or association between RCM and other 952 

myocardial diseases 953 

Although in its most typical « apparently idiopathic » form, RCM presents without LV 954 

hypertrophy, in some patients, some forms of cardiomyopathy may resemble or be 955 

associated with RCM. Particularly, HCM may resemble RCM in some patients. The classical 956 

HCM phenotype presents with enhanced contractility, small cavity, reduced indexed stoke 957 

volume, LVOT obstruction, grade 1 diastolic dysfunction with some fibrosis (190, 191). As 958 

the disease progresses, extensive fibrosis (52), reduced systolic function (52), diastolic 959 

dysfunction (192, 193), marked dilatation of the atria (194), relative thinning of the LV walls, 960 

loss of LVOT obstruction (194-196) and pulmonary hypertension (196) dominate the picture, 961 

mimicking RCM.         962 

Isolated LV non-compaction is a rare form of cardiomyopathy (197), which should also be 963 

differentiated from RCM, but is also sometimes associated with a restrictive pattern or even 964 

a true RCM (198) (figure 22, video 12) 965 

  966 

 967 

7. Conclusion and future directions 968 

RCM represents a heterogeneous group of cardiac diseases, with different 969 

pathophysiological processes, clinical presentation, treatment, and prognosis. The two main 970 

objectives of the clinician are to rule out constrictive pericarditis, and to find a potentially 971 

treatable cause of RCM. Imaging techniques including echocardiography, cardiac CT, CMR, 972 

and nuclear techniques are of utmost value for the diagnostic and prognostic assessment 973 

of RCM. These techniques give additional information and should frequently be used in 974 

combination in the same patient to maximize diagnostic performance. Finally, additional 975 

investigations such as endomyocardial biopsy, familial screening, and genetic studies are 976 

frequently necessary in these patients. For these reasons, patients with suspected RCM 977 

should be referred to specialized centers that can provide multimodality imaging and a 978 

multidisciplinary team approach.  979 

 980 
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 984 

 985 

Figure legends: 986 

 987 

Figure 1: ASE – EACVI criteria for grading LV diastolic function in patients with depressed LVEF and 988 

patients with myocardial disease and normal LVEF after consideration of clinical and other 2D data. 989 

(from reference 8 with permission) 990 

 991 

Figure 2: 74 year old patient presenting with breathlessness. Cine CMR showed global left ventricular 992 

hypertrophy, impaired longitudinal LV shortening and dilated atria. Late gadolinium enhanced CMR 993 

in the figure showed diffuse endocardial enhancement consistent with infiltrative disease. 994 

Subsequently the patient was found to have amyloidosis.  LV: left ventricle; RV: right ventricle; LA: 995 

left atrium; RA: right atrium 996 

 997 

Figure 3: Patient With Acute Myocardial Sarcoidosis (from reference 37 with permission) 998 

Patient (62-year-old male) followed for histologically proven pulmonary sarcoidosis treated by steroids 999 

for 10 years presented with symptoms of acute breathlessness. Cardiac involvement was suspected. 1000 

LGE-CMR (A) images showed patchy LGE of the lateral wall. Matched FDG-PET (B) and fused FDG-1001 

PET/MR (C and D) images obtained in short-axis view showed intense uptake in exactly the same 1002 

territory as the pattern of injury on CMR (maximum standardized uptake value of LGE territory/blood 1003 

pool uptake ratio = 2.7). A 2-chamber cine CMR (E) sequence showed mild hypokinesis of the lateral 1004 

wall and mild overall left ventricular systolic impairment (left ventricular ejection fraction = 52%). 1005 

Maximum intensity projection FDG-PET (F) cine view confirmed abnormal myocardial uptake without 1006 

evidence of increased activity outside of the heart.  1007 

 1008 

Figure 4: Imaging of RCM at the cellular level. Different disease entities of RCM are visualized by 1009 

histology and immunohistology. Sarcoidosis with typical granulomas, fibrosis (blue tissue) (A, 1010 

Masson trichrome stain) and numerous CD68+ macrophages and giant cells (B, 1011 

immunohistochemistry). Hypereosinophilic syndrome with myocyte necrosis, eosinophilic 1012 

granulocytes (C, Giemsa stain) and CD68+macrophages (D, immunohistochemistry). Storage 1013 

diseases: Hemochromatosis with iron containing myocytes (E, Prussian blue), and fibrosis (F, Sirius 1014 

red). AL-amyloidosis (G, AL-amyloid immunohistochemistry (green), H, Kongo red). Glycogenosis with 1015 

hypertrophic, vacuolated myocytes and fibrosis (I, Masson trichrome stain) and large amounts of 1016 

glycogen (J, PAS stain (red)). (A,B x 100x, C-J x200). 1017 

  1018 

 1019 



Figure 5: echo findings in 3 patients with apparently idiopathic RCM.  1020 

5a and video 1(TTE), 5b (CMR): impressive dilatation of both atria predominating on the right 1021 

cavities, contrasting with small LV and RV cavities 1022 

5c and video 2: more classical form of idiopathic RCM with normal ventricular systolic function and 1023 

severe atrial dilatation 1024 

RA: right atrium, RV: right ventricle, LV: left ventricle, LA: left atrium 1025 

5d: Multimodality imaging in a severe RCM. Patient in atrial fibrillation, and a pace maker for 1026 

severe atrio-ventricular block.  Huge atria that can be seen on the CT (1), the chest X-ray (2) and 1027 

the Echocardiography (6). There is a severe tricuspid regurgitation (5) and a severe alteration of the 1028 

longitudinal systolic and diastolic function as shown by the tissue Doppler (5),and the strain data 1029 

(4). Extensive circumferential subendocardial late gadolinium enhancement is observed by CMR (3). 1030 

 1031 

Figure 6a- 2D echocardiography in a 52 year-old male with cardiac amyloidosis, AL type, associated 1032 

with plasma cell dyscrasia: non- dilated LV with moderate concentric LVH with ‘granular sparkling’ 1033 

appearance, mitral valve thickening, mild to moderate  biatrial dilatation, inter atrial septum 1034 

infiltration (loss of physiological echo drop-out) and mild pericardial effusion 1035 

RA: right atrium, RV: right ventricle, LV: left ventricle, LA: left atrium, Ao: aorta 1036 

Figure 6b- Diastolic function in the same patient: E/A >>1 (PWD transmitral inflow), low systolic 1037 

and diastolic myocardial velocities (TDI), E/e’ =25, reflecting high LV filling pressures 1038 

 1039 

Figure 7a- 2D-STE apical longitudinal view in systemic AL amyloidosis : severely abnormal 1040 

longitudinal strain,  particularly in the  basal and medial LV segments 1041 

Figure 7b- Systemic AL amyloidosis , multiple myeloma: 2D-STE : Relative apical sparing, typical of 1042 

cardiac amyloidosis. Note the abnormal GLS ( -4,9%) 1043 

 1044 

Figure 8a. CMR in a 79-year old patient with cardiac amyloidosis showing mild septal hypertrophy 1045 

(16mm), biatrial enlargement, and diffuse patchy uptake of gadolinium throughout the 1046 

midventricular and basal segments of the septal, anterior and inferior wall with sparing of the 1047 

apicolateral wall. (Note small areas of bilateral subendocardial LGE in the septal wall characteristic 1048 

of cardiac amyloidosis (arrows) and LGE in the right ventricular free wall and the left atrium). 1049 

RA: right atrium, RV: right ventricle, LV: left ventricle, LA: left atrium 1050 

 1051 



Figure 8b. Late-phase planar 99mTc-DPD-scintigraphy (anterior views) in a patient with ATTR 1052 

amyloidosis (A) and a normal control (B). Note intense cardiac uptake in (A) demonstrating cardiac 1053 

amyloidosis. Moreover, increased soft tissue uptake particularly in the shoulder region and the 1054 

abdominal wall with obscuring of bone uptake can be observed as a typical pattern of ATTR 1055 

amyloidosis. 1056 

 1057 

Figure 9: Diagnostic algorithm for patients with suspected amyloid cardiomyopathy. (from reference 1058 

64 with permission). AApoA1 indicates apolipoprotein A-I; DPD, 3,3-diphosphono-1,2-1059 

propanodicarboxylic acid; HDMP, hydroxymethylene diphosphonate; and PYP, pyrophosphate. 1060 

 1061 

Figure 10: multimodality imaging in a patient with familial TTR amyloidosis 1062 

10a: and video 3: 2D echo long-axis view showing LV hypertrophy and pericardial effusion 1063 

10b: and video 4: apical sparing by 2D strain 1064 

10c: intense cardiac uptake on 99mTc scintigraphy 1065 

10d and video 5: CMR confirming LV hypertrophy and pericardial effusion 1066 

RV: right ventricle, LV: left ventricle, LA: left atrium, Per: pericardial effusion 1067 

 1068 

Figure 11: familial Fabry’s disease in 2 brothers 1069 
- 11a: EKG in a 55 year-old male showing a pattern of apical hypertrophy 1070 
- 11b: apical transthoracic view showing an apical hypertrophy (arrow) 1071 
- 11c: CMR finding of predominantly apical hypertrophy 1072 
- 11d: inferolateral late gadolidium enhancement 1073 
- 11e: EKG in his young brother showing milder but similar abnormalities 1074 
- 11f: concentric diffuse hypertrophy in the brother 1075 

RV: right ventricle, LV: left ventricle, LA: left atrium, RA: right atrium 1076 
 1077 

Figure 12: Patient with known cardiac sarcoidosis. The image shows a late gadolinium enhanced 1078 

CMR image in the vertical long axis plane. Several focal areas of myocardial enhancement can be 1079 

seen (arrows) consistent with granulomatous myocardial infiltration. 1080 

 1081 

Figure 13: 41 year-old male with a total AV-block, bradycardia and weakness. The patient was 1082 

suspected of cardiac sarcoidosis. Echocardiography was normal. A FDG PET/CT was performed after 1083 

careful patient preparation with a fatty diet and showed heterogeneous, spotty high uptake in the 1084 

left ventricle of the heart (left whole body PET and upper row right short axis PET/CT). The patient 1085 

was treated with high dose corticosteroids and the repeated FDG PET/CT after 3 months shows fully 1086 

normalization of the myocardium (right whole body FDG PET/CT and lower short axis PET/CT). 1087 

 1088 

 1089 

 1090 



Figure 14 and videos 6 and 7:25 year-old woman treated for Hodgkin disease in infancy with 1091 

anthracyclins.  1092 

Chest X ray (1) and echocardiography (2 and 3) show a non-dilated left ventricle, with a relatively 1093 

preserved LV contractility (video 6). However, mitral flow (4) and pulmonary venous flow (5) show a 1094 

severely restrictive pattern and tricuspid flow recording (6) reveals pulmonary hypertension. Severe 1095 

longitudinal dysfunction is evidenced by 2D strain (video 7) 1096 

 1097 

 1098 

Figure 15: histologic finding in a patient with endomyocardial fibrosis 1099 

 1100 

 1101 

Figure 16a and video 8 (TTE), 16b (CMR): right ventricular endomyocardial fibrosis in a 50 year-old 1102 

woman. The apex of the right ventricle is obliterated (white arrow), with subsequent surgical 1103 

confirmation. 1104 

RA: right atrium, RV: right ventricle, LV: left ventricle, LA: left atrium 1105 

 1106 

Figure 17: LV endomyocardial fibrosis in a 58 year-old man presenting with congestive heart failure 1107 

17a: Cine 4 chamber view in end-diastolic phase showing a thickening of LV apex (black arrow), a 1108 

reduced volume of the left ventricular cavity and a left atrial enlargement. 1109 

17b: LGE 4 chambers view showing a marked endocardial thickening with late gadolinium 1110 

enhancement (black arrow) and an apical thrombus (open arrow). 1111 

 1112 

 1113 

Figure 18a: Multimodality imaging in hypereosinophilic syndrome with cardiac involvement showing 1114 

severe restriction of the posterior mitral leaflet associated with involvement of the subvalvular 1115 

apparatus and severe mitral regurgitation by echocardiography (a, b) and CMR (c) with worsening in 1116 

the follow-up (d). From reference 158 with permission 1117 

RA: right atrium, RV: right ventricle, LV: left ventricle, LA: left atrium 1118 

 1119 

Figure 18b: CMR in a patient with hypereosinophilic syndrome and Loeffler's syndrome. Cine image 1120 

(still frame) (A) demonstrates a dilated left ventricle and moderate pericardial effusion (asterisks). 1121 

T2-weighted image (B,C) shows subendocardial high signal intensity suggestive of inflammation 1122 

(white arrows), and T1-weighted images after contrast administration (D–F) demonstrate 1123 

endocardial fibrosis (arrowheads). Of note, an RV apical thrombus is evident in the cine image and 1124 

in the T1-weighted sequences (triangles) (from reference 162 with permission) 1125 

 1126 



Figure 19, videos 9 and 10: carcinoid disease with right heart involvement. 1127 

19a (TTE) and 19c (CMR):  Restriction of the movements of the tricuspid leaflets, which are 1128 

thickened. The right ventricle myocardium is also involved 1129 

19b: massive tricuspid regurgitation (TTE) 1130 

19c: CMR showing dilatation of right heart cavities and restricted tricuspid leaflet (arrow) 1131 

RA: right atrium, RV: right ventricle, LV: left ventricle, LA: left atrium 1132 

 1133 

Figure 20: ASE / EACVI algorithm comparing constrictive pericarditis and restrictive 1134 

cardiomyopathy.  1135 

 1136 

Figure 21: Multimodality imaging in a patient with constrictive pericarditis  1137 

21a: CMR: Cine 4 chambers view in end-diastolic phase showing a circumferential pericardial 1138 

thickening (black arrows), biatrial dilatation and septal convexity inversion (open arrow) 1139 

21b: Cardiac CT: Axial thoracic CT scan showing a circumferential pericardial thickening (black 1140 

arrows). 1141 

 1142 

Video 11: CMR in constrictive pericarditis, illustrating the respiratory septal shift (difference in the 1143 

maximal septal excursion into LV between inspiration and expiration) 1144 

 1145 

Figure 22 and video 12: left ventricular hypertrabeculation (arrows) in a young patient with severe 1146 

RCM 1147 

 1148 

 1149 

 1150 
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