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Multimodality Quantitative Assessments of

Myocardial Perfusion Using Dynamic Contrast

Enhanced Magnetic Resonance and 15O-Labeled

Water Positron Emission Tomography Imaging
G. Papanastasiou , M. C. Williams, M. R. Dweck, S. Mirsadraee, N. Weir, A. Fletcher, C. Lucatelli, D. Patel,

E. J. R. van Beek, D. E. Newby, and S. I. K. Semple

Abstract—Kinetic modeling of myocardial perfusion imaging
data allows the absolute quantification of myocardial blood
flow (MBF) and can improve the diagnosis and clinical assess-
ment of coronary artery disease (CAD). Positron emission
tomography (PET) imaging is considered the reference stan-
dard technique for absolute quantification, whilst oxygen-15

(15O)-water has been extensively implemented for MBF quantifi-
cation. Dynamic contrast enhanced magnetic resonance imaging
(DCE-MRI) has also been used for MBF quantification and

showed comparable diagnostic performance against (15O)-water
PET studies. We investigated for the first time the diagnos-
tic performance of two different PET MBF analysis softwares
PMOD and Carimas, for obstructive CAD detection against inva-
sive clinical standard methods in 20 patients with known or sus-
pected CAD. Fermi and distributed parameter modeling-derived
MBF quantification from DCE-MRI was also compared against

(15O)-water PET, in a subgroup of six patients. The sensitivity
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and specificity for PMOD was significantly superior for obstruc-
tive CAD detection in both per vessel (0.83, 0.90) and per patient
(0.86, 0.75) analysis, against Carimas (0.75, 0.65) and (0.81,
0.70), respectively. We showed strong, significant correlations
between MR and PET MBF quantifications (r = 0.83 − 0.92).
However, DP and PMOD analysis demonstrated comparable
and higher hemodynamic differences between obstructive ver-
sus (no, minor, or non)-obstructive CAD, against Fermi and
Carimas analysis. Our MR method assessments against the opti-
mum PET reference standard technique for perfusion analysis
showed promising results in per segment level and can sup-
port further multimodality assessments in larger patient cohorts.
Further MR against PET assessments may help to determine
their comparative diagnostic performance for obstructive CAD
detection.

Index Terms—Coronary artery disease (CAD), dynamic con-
trast enhanced magnetic resonance imaging (DCE-MRI), kinetic

modeling, Oxygen-15 (15O)-water Positron emission tomogra-
phy (PET).

I. INTRODUCTION

M
YOCARDIAL ischaemia is an essential prognostic

determinant in coronary artery disease (CAD) and non-

invasive methods for ischaemia assessment are important for

the clinical management of patients with known or suspected

CAD [1]. The current noninvasive clinical standard assess-

ment for myocardial ischaemia is based on visual estimates

from perfusion imaging data which are limited to identify-

ing regional perfusion changes. The diagnostic performance

of visual estimates is particularly compromised in condi-

tions where MBF is diffusely abnormal, such as in multi-

vessel disease, or where microvascular dysfunction may be

present [2]. Kinetic modeling of myocardial perfusion imaging

data can allow the absolute quantification of myocardial blood

flow (MBF), which has the potential to improve the diag-

nosis of CAD, the assessment of coronary microcirculation

and to precisely assess MBF changes following therapeutic

interventions [2], [3].

Positron emission tomography (PET) imaging benefits from

a direct relationship between signal intensity and the radioac-

tivity concentration in the tissue of interest and is considered

the reference standard technique for absolute quantification of

2469-7311 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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MBF [4]. In the context of MBF quantification, previous stud-

ies demonstrated the applicability of oxygen-15 (15O)-water

in PET perfusion imaging [4], [5]. For a metabolically inert

freely diffusible tracer such as 15O-water, single-tissue com-

partmental models are commonly used for MBF quantification

without the need for radio-metabolite correction in the arterial

blood [5], [6]. However, additional post-processing techniques

are required to correct for spill-over effects between the left,

right ventricular arterial blood, and myocardial tissue com-

partments and for the low-signal gradient between myocar-

dial tissue and arterial blood [2], [4]–[6]. Perfusion analysis

software implements different methods for spill-over correc-

tion and myocardial tissue delineation [4], [7], [8]. Although

strong correlations in MBF quantification derived from dif-

ferent available PET perfusion analysis software (Carimas

versus Cardiac VUer) have been previously shown [9], there

is no previous work comparing the diagnostic ability of dif-

ferent perfusion analysis softwares to detect hemodynamic

differences in the presence of obstructive CAD.

Dynamic contrast enhanced magnetic resonance imaging

(DCE-MRI) using gadolinium-based extracellular contrast

agents, has also been used to derive absolute quantifi-

cation of MBF. Quantitative MR studies have previously

shown comparable diagnostic performance for the detection

of obstructive CAD [10]–[12] compared to quantitative 15O-

water PET [13]–[15]. Various MR models have been used

to describe the kinetics of gadolinium-based contrast agents

through the myocardium. Their diagnostic performance in

detecting obstructive CAD has been assessed, with Fermi

deconvolution modeling showing high diagnostic accuracy

and being the most established approach [3], [10], [11]. The

Fermi model is an empirical-mathematical model used to

estimate MBF from MR perfusion data during first-pass

of gadolinium-based extracellular contrast agents [10], [12].

Our group recently demonstrated that distributed parame-

ter (DP) deconvolution modeling showed superior diagnos-

tic performance against Fermi modeling for the detection

of obstructive CAD using 3T MR and our results com-

pared favorably against previous MR studies [12]. The DP

model is based on tracer kinetics analysis and it can pro-

vide MBF quantification and additional information about

coronary vascularity and permeability, such as estimates of

intravascular space, extravascular-extracellular space, extrac-

tion fraction, permeability surface area product, and volume

of distribution [12], [16], [17]. MR-derived MBF has been

assessed against PET-derived MBF quantification in patients

with CAD by using ammonia-13 (13N) and rubidium-82

(82Rb), which showed weak [18] and stronger [19] correla-

tions, respectively. Despite these first multimodality MBF

comparisons, Fermi- and DP modeling-derived MBF quan-

tification from DCE-MR data have not been assessed against
15O-water PET data in patients with CAD.

The objectives of this paper were twofold. We evaluated

the diagnostic performance of two dedicated software pack-

ages, Carimas and PMOD, to detect obstructive CAD against

the current clinical standard assessments of invasive coronary

angiography and fractional flow reserve in a pilot popu-

lation. We also assessed for the first-time Fermi- and DP

modeling-derived MBF quantification from DCE-MRI against
15O-water PET data, acquired in patients with CAD.

II. METHODS

A. Study Population

The study was performed with the approval of the insti-

tutional research ethics committee and in accordance with

the Declaration of Helsinki, as previously described [20].

Following informed consent, 15O-water PET was acquired in

20 patients with history of stable angina and known or sus-

pected CAD. Results are also presented here for a subset of

six subjects who agreed to receive DCE-MRI, prior to stan-

dard clinical invasive CAD assessments (maximum interval

between PET and MR imaging was seven days). All sub-

jects were instructed to abstain from caffeine for 12 h before

PET and MR imaging, which acts as an adenosine recep-

tor antagonist and can otherwise affect adenosine-induced

stress imaging [11], [14]. Exclusion criteria for subject recruit-

ment included history of severely compromised renal function

(serum creatinine greater than 2.26 mg/dL or glomerular fil-

tration rate ≤ 30 mL/min), pregnancy and contraindications

to adenosine or MR imaging. All patients underwent invasive

coronary angiography and fractional flow reserve.

B. Cardiac Positron Emission Tomography

Rest and adenosine stress 15O-water PET was performed

using a hybrid PET-CT scanner (128-multidetector Biograph

mCT, Siemens Medical Systems, Germany), as previously

described [20]. Attenuation correction computed tomography

imaging maps was acquired before rest and stress imaging.
15O-water was produced by an on-site cyclotron (PETtrace

8, GE Healthcare, U.K.) and a radiowater generator (Hydex

Oy, Finland) generated the 15O-water bolus. For rest imaging,

a target of 500 MBq 15O-water bolus was injected intra-

venously over 15 s and the venous line was then flushed for

another 2 min. The dynamic acquisition was performed over

5 min (14 frames × 5 s, 3 frames × 10 s, 3 frames × 20 s,

and 4 frames × 30 s).

Following suitable radioactivity decay (of approxi-

mately 10 min), stress imaging was performed with

intravenously administering adenosine for 4 min (140

µg/kg/min, Adenoscan, Sanofi Aventis) [13], [20]. The

above protocol was then repeated using a further dose of

500 MBq 15O-water bolus. Dynamic emission images were

reconstructed using the standard UltraHD algorithm (Siemens

Medical Systems, Germany) with a zoom of 2.00, matrix

128 × 128, voxels 3.18 × 3.18 × 3 mm.

C. Cardiac Magnetic Resonance Imaging

DCE-MRI imaging was acquired in a 3T Verio imag-

ing system (Siemens, Healthcare Gmbh, Erlangen, Germany)

using electrocardiogram-gating, as previously described [12].

Standard cardiac imaging planes and a short axis stack of left

ventricular cine data were acquired using routine steady state

free precession (TrueFISP) acquisitions. Modified look-locker

inversion recovery (MOLLI) T1 maps were acquired using
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the Siemens Works in Progress Package #448, Quantitative

Cardiac Parameter Mapping [21].

Stress imaging was performed by implementing the

same adenosine infusion protocol as described above for

4 min [10], [12]. Fifty dynamic perfusion images were

obtained at diastole across three short-axis view slices, cover-

ing 16 of the standard myocardial segments [22]. For dynamic

imaging, a turbo-fast low angle shot (FLASH) saturation

recovery prepared single-shot gradient echo pulse sequence

was used with imaging parameters: flip angle 12◦, repetition

time/echo time 2.20 ms/1.07 ms, slice thickness 8 mm, prepa-

ration pulse delay to central line of k-space 100 ms, matrix

size 192×108 and FoV 330 mm × 440 mm. Parallel imaging

was performed with the application of GRAPPA (accelera-

tor factor of 3) and partial Fourier acquisition of 0.75, which

led to 48-phase encoding lines for each dynamic frame. An

intravenous bolus of 0.05 mmol/kg of a gadolinium-based con-

trast agent (Gadovist, Bayer Healthcare) followed by 20 mL

of 0.9% saline (Medrad Spectris Solaris, Medrad, USA) was

injected at 4 mL/s using an MR compatible pump injec-

tor (Spectris Solaris, Medrad, Bayer). To allow clearance of

residual contrast agent, rest perfusion imaging was performed

15 min after stress imaging, with the same acquisition protocol

for all six subjects.

D. Invasive Coronary Angiography and Fractional

Flow Reserve

Subjects underwent invasive coronary angiography and frac-

tional flow reserve (clinical reference standard assessments) at

the Royal Infirmary of Edinburgh. Invasive coronary angiogra-

phy was performed via the radial artery as per standard clinical

practice [20], [23]. Fractional flow reserve was assessed for

major epicardial vessels and defined as the ratio between

distal coronary pressure and aortic pressure measured simul-

taneously at maximal adenosine-induced (intravenous 140

µg/kg/min) hyperemia [23]. Obstructive CAD was defined as

luminal stenosis ≥ 70% on invasive coronary angiography

alone, or luminal stenosis ≥ 50% and fractional flow reserve

≤ 0.80 [12], [20]. (No, minor, or non)-obstructive CAD was

defined as luminal stenosis < 50% or luminal stenosis ≥ 50%

and fractional flow reserve > 0.80 [12], [20].

E. Quantitative 15O-Water PET Analysis

15O-water PET data were analyzed with two dedicated

softwares (Carimas 2.9, www.turkupetcentre.net, Finland and

PMOD 3.7, www.pmod.com, Switzerland), using single-tissue

compartment modeling. The single-tissue compartment model

can be mathematically described by

dCt(t)

dt
= MBF · Ca(t) −

MBF

p
Ct(t) (1)

where Ct(t) and Ca(t) are the radioactivity concentrations

extracted by the myocardial tissue and the arterial blood from

the left ventricular blood pool, respectively, and p is the

partition coefficient of 15O-water (i.e., myocardial to blood

radioactivity concentration at equilibrium, when the net tracer

flux between the compartments is zero; a constant value of

0.95 mL/mL for Carimas [7] and of 0.96 mL/mL for PMOD

modeling [24] were used).

Myocardial contours were defined in short axis views,

automatically with manual adjustment on digital subtraction

images in Carimas [7], and semi-automatically with man-

ual adjustment on images generated by factor analysis in

PMOD [24]. In Carimas, digital subtraction images were auto-

matically generated. For factor analysis in PMOD, volumes

of interest were initially outlined within the left and right

lungs, from which an average lung time activity curve was

extracted. By time-shifting this lung time activity curve (auto-

mated time shift of −5 and 5 s for the right and left ventricle,

respectively), approximations of two synthetic time activity

curves in the right and left ventricle were derived. A third syn-

thetic time activity curve corresponding to myocardial uptake

was then calculated by solving the single-tissue compart-

ment model with the shifted lung time activity curve (8 s)

and by using a mean MBF value of 1 mL/min/mL [24]. All

synthetic time activity curves were then used to automati-

cally estimate weighted factors for the myocardium and left-

ventricular blood pool for each dynamic frame, as described

by Hermansen et al. [25] and factor analysis images were

generated.

Carimas and PMOD performed correction for spill-over

fractions from the left [7] and left and right ventricles [24],

respectively. In Carimas post-processing, the measured

radioactivity concentration derived from the images was

expressed as a function of true radioactivity (radioactivity

without the spill-over fractions) in the myocardium and left

ventricular blood pool, as described in the following system

of equations:

Ct(t) = TF · Ctt(t) + Va · Cta(t)

Ca(t) = β · Cta(t) + (1 − β) · Ctt(t) (2)

where TF, Ctt, Va, Cta, and β are the perfusable tissue

fraction and true radioactivity in the myocardial tissue, the

arterial vascular space (including the spill-over from the left

ventricle blood pool), the true radioactivity in the left ven-

tricular blood pool and the recovery coefficient (i.e., the

ratio of measured to known radioactivity, a constant value of

0.93 was used), respectively. MBF quantification in Carimas

was then performed in a 2-step process. Following substi-

tutions in (1) and (2), and integration, the first operational

equation was derived, which is a function of measured radioac-

tivities in the left ventricular blood pool and myocardial

tissue and fitted in a time activity curve extracted from the

whole (nonsegmented) myocardium, using multilinear regres-

sion analysis for model fitting (see Table I) [26]. This first step

allowed the calculation of the true radioactivity concentration

in the left ventricular blood pool Cta. By solving for Ctt(t) in

the former expression of the system equation (2), integrating

and substituting into equation (1), the final operational equa-

tion (second step) was then derived which was expressed as

a function of true radioactivity Cta(t) (measured from step 1) in

the left ventricular blood pool (Table I). From the fitted param-

eters K′
1, k′

2, and V ′
fit of this operational equation MBF, TF,

and Va were calculated and MBF parametric maps (per pixel
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analysis) were generated. Mathematical derivations for true tis-

sue radioactivity Ctt, true radioactivity in the left ventricular

blood pool Cta as well as for MBF, TF, and Va calculations

and explicit mathematical processing in Carimas, are further

described in the Turku PET Centre Modeling report website

link (www.turkupetcentre.net/reports/tpcmod0005.pdf).

In PMOD, by numerically integrating equation (1) and

incorporating the spill-over corrections, the operational equa-

tion was derived (Table I) and fitted to the time activity curves

extracted from myocardial tissue regions of interest using

iterative nonlinear least square fitting (1-step process) [24].

In PMOD, the operational equation was expressed in terms of

the fitted parameters TF, VLV, VRV, and CaRV: perfusable tis-

sue fraction in the myocardial tissue, spill-over fraction from

the left ventricle, spill-over fraction from the right ventricle,

and radioactivity concentration in the right ventricle blood

pool, respectively. Spill-over correction from the right ven-

tricle (VRV) was fitted for septal myocardial segments and

was set to zero for nonseptal myocardial areas. Details about

PMOD post-processing are further described in the PMOD

website link (doc.pmod.com/PDF/PKIN.pdf). A list of nota-

tions for all kinetic modeling parameters are summarized in

the supplementary material 1.

F. Quantitative DCE-MRI Analysis

Endocardial and epicardial MR contours were manually

outlined using validated cardiac image analysis software

(QMass, Medis, The Netherlands). Myocardial and arterial

input function signal intensity-time curves were converted to

gadolinium concentration-time curves using the method of

Larsson et al. [27] as previously described [10], [12], [28].

According to this, the longitudinal relaxation rate R1 (1/T1)

changes linearly as a function of contrast agent concentration

influx C(t) in the tissue at time t, multiplied by its relaxivity r1:

�R1 = C(t) · r1 (3)

where �R1 = R1(t) − R1(0) = (1/T1(t)) − (1/T1(0)).

T1(0) is the native longitudinal relaxation rate and T1(t) is

the longitudinal relaxation rate at time t of contrast enhance-

ment. R1(t) can be calculated by adapting the MR signal equa-

tion for the saturation recovery prepared single-shot FLASH

sequence [10], [28]

S(t) = � · f (R1(t), PD, n) (4)

where S(t) is the equilibrium signal intensity at time t, �

is a calibration constant dependent on instrument conditions,

such as the receiver gain, the proton density, and the flip angle

α. PD is the prepulse delay which is the time between satu-

ration pulse and the central line of k-space, n is the number

of applied pulses of flip angle α. � can initially be calculated

from (4) using native T1(0) (measured with MOLLI [21]).

R1(t) at time t of contrast enhancement can then be calculated

from (4), using � and S(t) values extracted from the same

region of interest. Contrast agent concentration-time curves

can then be calculated using (3).

Model-dependent deconvolution analysis was implemented

to measure MBF using Fermi and 1-barrier 2-region DP

functions as previously described [12]. Fermi parameteriza-

tion is an empirical 3-parameter model fit in which τ o

defines the width of the initial plateau of the tissue impulse

response before it decays mono-exponentially at a rate given

by the parameter k (see fitted parameters of Fermi function

in Table I) [29]. The Fermi model is fitted to the first-pass

phase of contrast enhancement. This is estimated by setting

the end-point at the contrast agent concentration minimum in

the arterial input function, before the recirculation component

begins (this range varies from patient to patient and is com-

monly in the range between 20 and 35 dynamic frames) [12].

DP parameterization is a 4-parameter model fit based on tracer

kinetics analysis and its tissue impulse response is expressed

in terms of the fitted parameters T, Tc, and Te : T is mean

overall transit time, Tc is mean capillary transit time, and

Te is mean interstitial (i.e., extravascular-extracellular) tran-

sit time (Table I). DP modeling describes the intravascular

space as a plug flow system, whilst assumes no axial indica-

tor transport in the extravascular-extracellular space [16], [17].

The third and fourth fitted parameter for Fermi and DP decon-

volution analysis, respectively, was MBF. DP model fitting

was performed in the Laplace domain to avoid the discontinu-

ities of the time step-function that can be present when fitting

the DP model in the time domain [30]. To account for the

time delay (between the onset of contrast enhancement in the

blood pool and the myocardium), both models were fitted to

the data multiple times from zero to six times the temporal

resolution starting from the onset of contrast enhancement in

the blood pool and the time delay reaching the optimal x2 fit

to the data was used in the analysis.

A standardized American Heart Association (AHA)

16-segment model of the heart was generated across all

modeling applications [22]. In Carimas, the per pixel anal-

ysis was averaged for each of the 16-myocardial segments.

For both 15O-water PET and DCE-MR analysis, myocardial

perfusion reserve (MPR) was also calculated by dividing the

hyperemic by the resting MBF. MBF and MPR were quan-

tified for each of the 16 myocardial segments and were then

averaged per epicardial vessel territory (vessel territories corre-

sponded to the three main coronary vessels, defined according

to the 16 segment model [22]). Mean values for MBF at stress

and MPR were classified accordingly in two groups for per

vessel and per patient based analysis (see classification in the

results section).

G. Statistical Analysis

Blinded and independent analysis of 15O-water PET and

DCE-MRI data was performed using dedicated statistics soft-

ware (R Foundation for statistical computing, Vienna, Austria;

MedCalc Software, Ostend, Belgium). Linear regression and

Pearson’s correlation coefficients were used to investigate

correlations in MBF estimates between different modeling

applications, for both 15O-water PET and DCE-MRI, in

a per segment and per vessel basis. Bland Altman analy-

sis was implemented to investigate systematic bias between

all modeling applications. Hemodynamic differences between

obstructive versus (no, minor, or non)-obstructive CAD and
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TABLE I
FITTED PARAMETERS AND OPERATIONAL EQUATIONS FOR CARIMAS (2-STEP PROCESSING), PMOD (15O-WATER PET) ANALYSIS AND TISSUE

IMPULSE RESPONSE FUNCTIONS FOR FERMI, 1-BARRIER 2-REGION DP (DCE-MRI) ANALYSIS ARE SHOWN. FITTED PARAMETERS FOR STEPS 1 AND

2 IN CAR: K1 , k2 , AND Vfit AND K′
1

, k′
2

, V ′
fit

FROM WHICH MBF, TF, AND Va WERE CALCULATED, RESPECTIVELY. CCAR1 AND CCAR2 ARE THE

OPERATIONAL EQUATIONS (1) AND (2) FOR CARIMAS PROCESSING, RESPECTIVELY. FITTED PARAMETERS FOR PMOD: MBF, TF, VLV , AND VRV .
FITTED PARAMETERS FOR FERMI: MBF, τ0 CHARACTERIZED THE WIDTH OF THE SHOULDER OF THE FERMI FUNCTION AND k DETERMINED THE

DECAY RATE OF THE TISSUE IMPULSE RESPONSE R(t) DUE TO CONTRAST AGENT WASH-OUT, t IS THE TIME VARIABLE. FITTED PARAMETERS FOR

DISTRIBUTED PARAMETER: MBF, T IS MEAN OVERALL TRANSIT TIME, Tc IS MEAN CAPILLARY TRANSIT TIME, Te IS MEAN INTERSTITIAL (I.E.,
EXTRAVASCULAR-EXTRACELLULAR) TRANSIT TIME. CAR: CARIMAS, Ct : THE IMAGE-DERIVED RADIOACTIVITY CONCENTRATION IN THE

MYOCARDIAL TISSUE, Cta : THE TRUE (WITHOUT SPILL-OVER FRACTION FROM THE MYOCARDIAL TISSUE) RADIOACTIVITY CONCENTRATION IN THE

LEFT VENTRICLE, MBF: MYOCARDIAL BLOOD FLOW, TF: PERFUSABLE TISSUE FRACTION IN THE MYOCARDIAL TISSUE, VLV : SPILL-OVER

FRACTION FROM THE LEFT VENTRICLE, VRV : SPILL-OVER FRACTION FROM THE RIGHT VENTRICLE, DP: DISTRIBUTED PARAMETER MODEL.
s = i · 2 · π · f WHERE f IS THE FREQUENCY VARIABLE IN THE FOURIER TRANSFORMED DATA

between all modeling applications in a per segment basis,

were investigated by implementing two sample t-test (two-

sided P value < 0.05 were considered significant). For the

Carimas versus PMOD comparison, receiver-operating char-

acteristic (ROC) analysis was used on a per vessel and per

patient basis to determine threshold values for absolute MBF

at stress and MPR with the greatest sensitivity and specificity

to detect obstructive versus (no, minor, or non)-obstructive

CAD (group 2 versus group 1, see results). The area under

the curve (AUC) was calculated using trapezoidal numerical

integration and a DeLong et al. [31] nonparametric comparison

was performed to compare the diagnostic performance of 15O-

water PET quantitative methods. The maximal Youden Index

was used to determine the optimal threshold values [10], [12].

III. RESULTS

The baseline characteristics of the full patient cohort are

presented in Table II. Quantitative 15O-water PET analy-

sis was performed in 20 patients, in which the diagnostic

performance of Carimas versus PMOD in detecting obstructive

CAD was investigated. For six of these patients, quantitative

DCE-MRI analysis was also performed and correlations and

agreements in MBF measurements were investigated against
15O-water PET (Fig. 1).

For each subject, MBF quantification across all four

modeling methods was performed for each of the 16 myocar-

dial segments, in per segment analysis. Myocardial segments

with (no, minor, or non)-obstructive and obstructive CAD were

then classified based on the invasive coronary angiography and

fractional flow reserve data, in groups 1 and 2, respectively. In

TABLE II
PATIENT CHARACTERISTICS (N = 20) PRESENTED

per vessel analysis, segmental MBF values were averaged per

epicardial vessel territory (three main coronary vessels, as per

the 16-segment AHA model) [10], [15], [22]. Vessel territo-

ries with (no, minor, or non)-obstructive CAD were classified

in group 1 and vessels with obstructive CAD were classified

in group 2. For per patient analysis, patients with all vessel

territories detected with (no, minor, or non)-obstructive CAD

were classified in group 1, whilst patients with at least one ves-

sel identified with obstructive CAD, were classified in group

2 [12].

A. Carimas Versus PMOD Analysis

Quantitative 15O-water PET analysis was performed in

60 vessel territories in total (20 patients, 3 vessel territories
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(b)

(c)

(d)
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(f)
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(j)

(k)

(l)

(m)

(n)

(o)

Fig. 1. Perfusion images showing myocardial 15O-water PET radioactivity in unprocessed data at the (a)–(c) peak of contrast enhancement and (d)–(f) during
the wash-out phase, from a patient with nonobstructive CAD. Note that the low signal gradient between the myocardial tissue and arterial blood. (g)–(i) Carimas
and (j)–(l) PMOD post-processed images are shown, generated using digital subtraction and factor analysis, respectively, for the same patient data (note that
the two softwares use different color bars to show radioactivity in the images). The entire myocardial wall is well delineated in both Carimas and PMOD.
(m)–(o) DCE-MR images showing peak contrast enhancement in the myocardium from the same patient. (a), (d), (g), (j), and (m) Basal, (b), (e), (h), (k),
and (n) mid-ventricular, and (c), (f), (i), (l), and (o) apical slices are illustrated.

each). Seven patients had at least one vessel identified with

obstructive CAD: 3 patients had 1-vessel disease, 3 had

2-vessel disease, and 1 had 3-vessel disease. Examples of

model fitting and arterial input functions from both modeling

approaches are presented in Fig. 2.

On linear regression and Pearson’s correlation, PMOD and

Carimas-derived MBF showed strong, significant correlations

(P < 0.001), in both per segment (r = 0.88) and per ves-

sel (r = 0.91) analysis. Carimas overestimated PMOD MBF

estimates at stress (P < 0.05), whilst underestimated PMOD

MBF estimates at rest (P < 0.01).

On Bland Altman analysis, the average bias was calculated

as the Carimas-derived estimates minus the PMOD modeling-

derived estimates. The systematic bias was low in both per

segment and per vessel basis: 0.16 (−1.18, 1.50) versus 0.16

(−0.95, 1.28), respectively.

Hemodynamic differences between obstructive versus (no,

minor, or non)-obstructive CAD were initially assessed in

a per segment basis. Significant differences in stress MBF

values between myocardial segments classified in group

1 versus group 2 were higher (4 orders of magnitude) for

PMOD modeling against Carimas modeling, respectively (P <

0.0001).

ROC analysis curves were subsequently investigated in per

vessel and per patient analysis, shown in Fig. 3. Mean (SD)

values for Carimas and PMOD-derived MBF and MPR in

groups 1 and 2 for per vessel analysis are shown in Table III.

All hemodynamic thresholds estimated on ROC analysis are

presented in Table IV. In per vessel ROC analysis, the AUCs

for PMOD were significantly higher compared to Carimas

modeling, for both MBF at stress and MPR (Table IV). The

diagnostic performance of PMOD consistently outperformed

Carimas modeling (Table IV).

Mean (SD) values for Carimas and PMOD-derived MBF

and MPR in groups 1 and 2 for per patient analysis are

presented in Table III. In per patient ROC analysis, the AUCs

for PMOD were significantly higher whilst the diagnostic

performance was consistently superior for PMOD modeling

compared to Carimas modeling, for both MBF at stress and

MPR (Table IV).

B. DCE-MRI Versus 15O-Water PET

Quantitative 15O-water PET against DCE-MRI analysis was

performed in 18 vessel territories in total (six patients, three

vessel territories each). Mean values (SD) and significant dif-

ferences for all modeling applications, for groups 1 and 2,

are shown in Fig. 4. Significant differences between groups 1

and 2 were equivalent (P values in the same order of magni-

tude) for DP against PMOD modeling (Fig. 4, P < 0.0001).

Significant differences were higher (two orders of magni-

tude) for DP and PMOD modeling against Carimas and Fermi

modeling, respectively (Fig. 4, P < 0.0001). An example

file presenting per segment analysis across all models for

a patient with obstructive CAD is shown in the supplementary

material 2.
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(a) (b)

(c) (d)

Fig. 2. Perfusion curves and model fits extracted for all modeling applications from the AHA-myocardial segment 8 of the same patient with nonobstructive
CAD in (a) and (b) PET and (c) and (d) MR. The green, dotted, and solid yellow curves are the arterial input function, myocardial tissue time activity curve,
and model fit in (a) Carimas, the red, squared green, and blue curves are the arterial input function, myocardial tissue time activity curve, and model fit
in (b) PMOD, respectively, for the same myocardial segment. The dashed-dotted, dotted-solid blue, and red curves are the arterial input function, myocardial
tissue Gd concentration-time curve, and models fits for (c) Fermi and (d) DP modeling, respectively, from the same MR myocardial segment.

TABLE III
MEAN (SD) VALUES IN PER VESSEL AND PER PATIENT CLASSIFICATION FOR CARIMAS (CAR) AND PMOD MODELING

There were no significant differences between DP, Carimas,

and PMOD modeling-derived MBF values at stress. Fermi

modeling significantly overestimated MBF compared with all

other modeling applications, both at stress and rest (P < 0.01).

DP and Fermi modeling-derived values overestimated Carimas

and PMOD modeling-derived values at rest (P < 0.001).

On linear regression and Pearson’s correlation analysis,

MBF estimates derived from 15O-water PET and DCE-MRI

data, were initially separately assessed. Carimas versus PMOD

MBF values, as well as DP versus Fermi MBF values, showed

significant correlations in per segment and per vessel analysis

(Table V, P < 0.001).

On Bland Altman analysis, the average bias was calcu-

lated as the Carimas-derived estimates minus the PMOD

modeling-derived estimates for 15O-water PET data; and Fermi

modeling-derived estimates minus the DP modeling-derived

estimates for DCE-MRI data (Table V). The systematic bias

was low, mainly for 15O-water PET data, which was eliminated

in per vessel analysis.

Subsequently, MBF measurements from DP and Fermi

modeling from DCE-MRI data were compared against mea-

surements from Carimas and PMOD modeling from 15O-water

PET data. Similarly, there were significant (P < 0.001) cor-

relations for all comparisons, whilst DP and Fermi modeling

showed consistently better correlations with PMOD modeling

(Fig. 5), compared to Carimas analysis (Table V).

On Bland Altman analysis, the average bias was calculated

as PMOD- and Carimas modeling-derived estimates minus DP

modeling-derived estimates; and the Fermi modeling-derived

estimates minus the PMOD- and Carimas-modeling-derived

estimates (Table V). The lowest systematic bias was observed

between PMOD and DP-modeling derived MBF, although with

broader limits of agreement, compared to Fermi modeling

(Table V, Fig. 5).
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TABLE IV
AUCS, DIAGNOSTIC PERFORMANCE, HEMODYNAMIC THRESHOLDS AND AUC DIFFERENCES BETWEEN METHODS ON ROC ANALYSIS, ARE

PRESENTED. CAR, MBF, AND MPR (SIGNIFICANT DIFFERENCES ARE INDICATED WITH *). VALUES INSIDE PARENTHESES SHOW SD

(a) (b)

(c) (d)

Fig. 3. ROC curves demonstrating diagnostic performance for both Carimas and PMOD modeling in (a) and (b) per vessel and (c) and (d) per patient
analysis showing measures of (a) and (c) MBF at stress, and (b) and (d) MPR.

IV. DISCUSSION

The main outcomes of this paper demonstrated that PMOD

showed higher hemodynamic differences between obstructive

versus (no, minor, or non)-obstructive CAD in per segment-

based analysis, as well as consistently outperforming Carimas

modeling in both per vessel and per patient analysis. Beyond

strong, significant correlations across all MR versus PET

comparisons, DP and PMOD analysis showed comparable

and higher hemodynamic differences between obstructive ver-

sus (no, minor, or non)-obstructive CAD, against Fermi and

Carimas analysis.

A. Carimas Versus PMOD

To date, this is the first study assessing diagnostic

performance for the detection of obstructive CAD, using
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Fig. 4. Mean MBF (SD) and significant differences between groups 1 (nonob-
structive CAD) and 2 (obstructive CAD), for all modeling applications. All
models showed significant differences between groups 1 and 2 (P < 0.0001).
Significant differences were higher for PMOD and DP modeling, compared to
CAR and Fermi modeling († show two orders of magnitude smaller P values
compared to *).

more than one perfusion analysis software. Our correla-

tion coefficients for Carimas versus PMOD estimates are in

agreement with similar comparisons performed in 15O-water

PET [4] and in 82Rb-rubidium PET [32], which showed good

correlations between different cardiac PET perfusion quantifi-

cation software. Despite the larger patient cohorts previously

analyzed, none of these studies compared the diagnostic ability

of the different software examined in detecting reduced blood

flow in the presence of obstructive CAD. In our pilot cohort,

we assessed hemodynamic differences between obstructive

versus (no, minor, or non)-obstructive CAD in per segment

analysis, as well as performed full diagnostic performance

in per vessel and per patient level on ROC analysis. We

demonstrated that PMOD consistently showed higher hemo-

dynamic differences and superior diagnostic performance in

detecting obstructive CAD, compared with Carimas. These

results indicate that it may be important to fully assess hemo-

dynamic differences and diagnostic performance, beyond just

MBF cross-correlations, when different perfusion softwares

are compared.

The diagnostic performance for PMOD was in agreement

with a previous 15O-water PET study [14], whilst compared

favorably against other findings on a per vessel [33], or per

patient basis [8]. The highest diagnostic performance for the

detection of obstructive CAD was reached by PMOD-derived

MBF at stress in per vessel analysis, which is consistent with

a previous 15O-water study where the PMOD-derived sen-

sitivity and specificity were higher in per vessel compared

to per patient-based analysis [33]. Moreover, the diagnostic

performance of MBF at stress was consistently higher com-

pared to MPR for both Carimas and PMOD, as previously

demonstrated [8], [15], [33]. In this paper, a small pilot cohort

was investigated with a low number of patients with obstruc-

tive and multivessel CAD. Microvascular dysfunction that may

be present in patients with minor or nonobstructive CAD (see

risk factors in Table II: rates for hypertension, hypercholes-

terolemia, ex-smokers, and revascularization [12], [14]), can

also lead to MBF reductions, which in turn can compromise

the specificity for the detection of obstructive CAD-specific

MBF reductions [12]. We showed that Carimas overestimated

PMOD estimates at stress hence, any MBF overestimations in

myocardial segments classified with obstructive CAD could

explain its lower sensitivity versus PMOD, in our data. These

factors together with differences in patient cohorts and acqui-

sition protocols can explain the lower diagnostic performance

detected for the case of Carimas modeling, in comparison with

a previous study which used the same software in a larger

patient cohort (38 out of 104 patients scanned had obstructive

CAD) and higher 15O-water doses (maximum of 1100 MBq

for each 15O-water injection) [13].

Our hemodynamic thresholds on ROC analysis for PMOD

and Carimas-derived MBF (Table V) were consistent with

previous 15O-water PET studies which identified thresholds in

the range between 1.85 and 2.50 mL/min/mL, for both per ves-

sel and per patient-based analyses [8], [13], [14], [33], [34].

Furthermore, these thresholds agree with Fermi (2.49,

2.60 mL/min/mL) and DP (1.75, 2.00 mL/min/mL) modeling-

derived thresholds in per vessel and per patient analysis,

respectively, estimated by our group [12]. Differences in
15O-water doses, PET protocols and scanners, image recon-

struction, post-processing techniques, and angiographic thresh-

olds defining obstructive CAD can explain any hemody-

namic threshold variations between 15O-water PET stud-

ies, including the current work [13], [33]. We also demon-

strated that Carimas overestimated and underestimated

PMOD estimates at stress and rest, respectively, which

can explain the higher threshold values identified for

Carimas-derived MPRs, in both per vessel and per patient

analysis.

Technical disparities between Carimas and PMOD can

interpret the diagnostic performance differences demonstrated.

Although no spill-over correction from the right ventricle in

Carimas means that it would mainly affect MBF measure-

ments in septal myocardial segments (anatomically located

between the left and right ventricle), it also overestimated

PMOD MBF values at stress in nonseptal areas. A consider-

able disparity between Carimas and PMOD post-processing,

is the pixel by pixel-based (using a linear least square

approach described in [26]) versus segment-based (using stan-

dard nonlinear least square fitting) method for model fit-

ting, respectively. Differences between linear versus nonlinear

least square approaches have been assessed using single-

tissue compartmental modeling and demonstrated that linear

least square methods may compromise the accuracy of MBF

quantification [26], [35]. In contrast, other studies showed

that the linear least square and/or generalized linear least

square (designed to reduce estimation bias of the linear least

square method) approaches can provide accurate estimates of

blood flow, compared to the standard nonlinear least square

(segment-based) method [36]–[38]. Boellaard et al. [39] com-

pared different methods for pixel-based MBF analysis and

demonstrated that the basis function method was independent

of the noise level and provided the most accurate perfusion
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(a) (b)

(c) (d)

Fig. 5. (a) and (c) Linear regression, Pearson’s correlation (r) and (b) and (d) Bland Altman plot analysis (values coordinated accordingly to allow positive
average bias) for DP and Fermi versus PMOD modeling-derived MBF, in per vessel analysis.

TABLE V
PEARSON’S COEFFICIENTS AND BLAND ALTMAN ANALYSIS FOR ALL MULTIMODALITY COMPARISONS ARE PRESENTED.

CAR, DP MODEL, MBF, PS: PER SEGMENT, AND PV: PER VESSEL

estimates, compared to the linear least square and general-

ized linear least square approaches. Further work is needed

to elucidate to what degree the linear least square approach

used has affected the diagnostic performance of the Carimas

software. Another important difference in the post-processing

between Carimas and PMOD is the 2-step versus 1-step

mathematical modeling, respectively. This involves fitting dif-

ferent operational equations for the two softwares and thus,

MBF estimations differ: MBF is indirectly estimated through

the fitted parameter K1’ in Carimas (described in methods,

Table I, and Carimas documentation), whilst directly cal-

culated from the fitted parameter MBF in PMOD. These

disparities can suggest that any Carimas-derived MBF overes-

timations may be due to a combination of the above technical

differences, beyond just methodological differences in the

spill-over correction approach.

B. DCE-MR Versus 15O-Water PET

We demonstrated for the first time strong correla-

tions between DP/Fermi modeling- (from DCE-MRI) ver-

sus Carimas/PMOD modeling-derived values (from 15O-water

PET) in a subgroup of patients with CAD. This is also the first

study comparing DP modeling against PET. In per segment-

based analysis, we showed that hemodynamic differences

between obstructive versus (no, minor, or non)-obstructive

CAD were comparable for DP and PMOD, against Fermi

and Carimas analysis. Due to the small number of subjects
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in this subgroup of patients, it was not possible to perform

a full diagnostic performance comparison (ROC analysis) for

obstructive CAD detection across all our MR versus PET com-

parisons. However, our PET findings are consistent with the

higher hemodynamic differences presented in our full cohort

for PMOD in per segment level, for which superior diagnostic

performances were consistently demonstrated against Carimas.

Similarly, our MR findings are also consistent with the higher

hemodynamic differences showed in our previous study for DP

modeling in per segment level [12], for which higher diag-

nostic performances were consistently shown, against Fermi

modeling.

Direct comparisons in correlation coefficients against

previous MR versus PET studies are difficult because

of variations in the image acquisition and analysis

techniques [18], [19], [40]–[42]. However, our correlation

coefficients compare favorably against previous studies com-

paring two-compartmental and Fermi MR-derived MBF

against PET [19], [40] respectively, whilst are in agreement

with other studies that assessed model-independent, model-

independent/Fermi, and single-tissue compartment/Patlak

MR derived MBF against PET [18], [41], [42], respec-

tively. Two studies have previously compared DCE-MRI

against 15O-water PET data in healthy subjects [40], [42].

Pärkkä et al. [40] used 18 healthy volunteers and showed

weaker perfusion correlations compared to our data analy-

sis. Despite the larger healthy volunteer cohort used in this

paper, it was not possible to investigate correlations across

different hemodynamic states (MBF at stress in no, minor,

non-obstructive, obstructive CAD, MBF at rest), assessed

in our pilot cohort. Also for the MR analysis, the param-

eter Ktrans was estimated from which a direct estimate

of MBF is not possible, as its physiological interpretation

reflects a mixture of blood flow and the permeability surface

area product [17]. Our correlation coefficients agree with the

study by Tomiyama et al. [42], which showed strong corre-

lations between single-tissue compartment model (per vessel

analysis across 10 subjects, r = 0.92) and Patlak model (per

vessel analysis across ten subjects, r = 0.80) derived MBF

against an in-house software for 15O-water PET data analysis.

Although PET imaging is considered the reference stan-

dard for MBF quantification and therefore it is impor-

tant for validating MR perfusion, each tracer has its own

limitations [2], [5], [6]. The main limitations for the analysis

of 15O-water are the need to correct for the high 15O-water

activity in the blood pool and for the spill-over from the

left and right ventricles [2], [5]. Our multimodal comparisons

against invasive methods showed that PMOD may be able to

effectively minimize the impact of the above limitations for

MBF quantification compared to Carimas, and that it may be

a useful analysis tool for validating quantitative MR perfusion.

DP modeling did not show significant differences against

Carimas and PMOD estimates for MBF at stress, but sig-

nificantly overestimated MBF at rest [see Fig. 5(b)]. Fermi

modeling showed strong correlations against PMOD and

Carimas, but it significantly overestimated MBF values, com-

pared to all other modeling applications [Table V, Fig. 5(d)].

These MR-derived MBF overestimations are in agreement

with previous studies demonstrating rest [19] and stress-rest

overestimations [41] compared with PET estimates. Further

work needs to be done to assess which methodological

disparities may cause consistent differences in MBF quan-

tification between MR and PET [18], [19], [40]–[43] and to

what degree these can affect the diagnostic performance of

quantitative MR and PET protocols.

C. Study Limitations

Our diagnostic performance comparison between Carimas

and PMOD was performed in a small pilot cohort. However,

this is the first study comparing the diagnostic ability of dif-

ferent PET perfusion analysis software for detecting reduced

MBF in obstructive CAD, which showed considerable dif-

ferences between the two techniques. Any changes in the

acquisition protocol, the 15O-water dose or the reconstruc-

tion technique would necessitate a diagnostic performance

reassessment for both MBF quantification techniques [2], [6].

Our MR versus PET analysis was assessed in a small sub-

group of patients. For DCE-MRI, we used a single bolus

protocol that may be prone to arterial input function satura-

tion effects at the peak of contrast enhancement, which can

lead to MBF overestimations [10], [28]. Arterial input func-

tion saturation could be more pronounced in our 3T data,

compared to perfusion data from 1.5T. Our group previously

demonstrated that DP modeling is less dependent on arte-

rial input function saturation compared to Fermi modeling (at

3T) [12]. Fermi modeling may derive smaller systematic bias

against PET compared to our findings, if either dual bolus

protocols [28] and/or 1.5T [10] would be used for minimizing

signal saturation. Despite any Fermi-derived overestimations

due to arterial input function saturation effects, our findings

are consistent with other studies which showed that Fermi esti-

mates were systematically increased compared to DP modeling

(at 3T) [12], to model-independent, two-compartmental and

Patlak model analysis (mixture of 1.5 and 3T were used) [44]

as well as to uptake model and model-independent analysis

(at 1.5T) [10].

V. CONCLUSION

In conclusion, we demonstrated consistently superior diag-

nostic performance for the detection of obstructive CAD when

PMOD was used versus Carimas in 15O-water PET data.

Although we showed strong, significant cross-correlations

between MR against PET quantitative perfusion analysis,

PMOD and DP analysis detected comparable and higher

hemodynamic differences between obstructive versus (no,

minor, or non)-obstructive CAD, compared to Carimas and

Fermi analysis.

Our MR method assessments against the optimum PET

reference standard technique for perfusion analysis showed

promising results in per segment level and can support

further multimodality assessments in larger patient cohorts.

Further MR versus PET assessments may help to determine

the comparative diagnostic performance of both quantitative

methodologies for obstructive CAD detection.
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