
Journal of Artificial Intelligence Research 40 (2011) 305-351 Submitted 07/10; published 01/11

Multimode Control Attacks on Elections

Piotr Faliszewski faliszew@agh.edu.pl
Department of Computer Science
AGH University of Science and Technology
Kraków, Poland

Edith Hemaspaandra eh@cs.rit.edu
Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623 USA

Lane A. Hemaspaandra lane@cs.rochester.edu

Department of Computer Science
University of Rochester
Rochester, NY 14627 USA

Abstract

In 1992, Bartholdi, Tovey, and Trick opened the study of control attacks on elections—
attempts to improve the election outcome by such actions as adding/deleting candidates or
voters. That work has led to many results on how algorithms can be used to find attacks
on elections and how complexity-theoretic hardness results can be used as shields against
attacks. However, all the work in this line has assumed that the attacker employs just a
single type of attack. In this paper, we model and study the case in which the attacker
launches a multipronged (i.e., multimode) attack. We do so to more realistically capture the
richness of real-life settings. For example, an attacker might simultaneously try to suppress
some voters, attract new voters into the election, and introduce a spoiler candidate. Our
model provides a unified framework for such varied attacks. By constructing polynomial-
time multiprong attack algorithms we prove that for various election systems even such
concerted, flexible attacks can be perfectly planned in deterministic polynomial time.

1. Introduction

Elections are a central model for collective decision-making: Actors’ (voters’) preferences
among alternatives (candidates) are input to the election rule and a winner (or winners in
the case of ties) is declared by the rule. Bartholdi, Orlin, Tovey, and Trick initiated a line of
research whose goal is to protect elections from various attacking actions intended to skew
the election’s results. Bartholdi, Orlin, Tovey, and Trick’s strategy for achieving this goal
was to show that for various election systems and attacking actions, even seeing whether
for a given set of votes such an attack is possible is NP-complete. Their papers (Bartholdi,
Tovey, & Trick, 1989a; Bartholdi & Orlin, 1991; Bartholdi, Tovey, & Trick, 1992) consider
actions such as voter manipulation (i.e., situations where a voter misrepresents his or her
vote to obtain some goal) and various types of election control (i.e., situations where the
attacker is capable of modifying the structure of an election, e.g., by adding or deleting
either voters or candidates). Since then, many researchers have extended Bartholdi, Orlin,
Tovey, and Trick’s work by providing new models, new results, and new perspectives. But

c©2011 AI Access Foundation. All rights reserved.



Faliszewski, Hemaspaandra, & Hemaspaandra

to the best of our knowledge, until now no one has considered the situation in which an
attacker combines multiple standard attack types into a single attack—let us call that a
multipronged (or multimode) attack.

Studying multipronged control is a step in the direction of more realistically modeling
real-life scenarios. Certainly, in real-life settings an attacker would not voluntarily limit
himself or herself to a single type of attack but rather would use all available means of
reaching his or her goal. For example, an attacker interested in some candidate p winning
might, at the same time, intimidate p’s most dangerous competitors so that they would
withdraw from the election, and encourage voters who support p to show up to vote. In
this paper we study the complexity of such multipronged control attacks.1

Given a type of multiprong control, we seek to analyze its complexity. In particular,
we try to show either that one can compute in polynomial time an optimal attack of that
control type, or that even recognizing the existence of an attack is NP-hard. It is particularly
interesting to ask about the complexity of a multipronged attack whose components each
have efficient algorithms. We are interested in whether such a combined attack (a) becomes
computationally hard, or (b) still has a polynomial-time algorithm. Regarding the (a) case,
we give an example of a natural election system that displays this behavior. Our paper’s core
work studies the (b) case and shows that even attacks having multiple prongs can in many
cases be planned with perfect efficiency. Such results yield as immediate consequences all
the individual efficient attack algorithms for each prong, and as such allow a more compact
presentation of results and more compact proofs. But they go beyond that: They show that
the interactions between the prongs can be managed without such cost as to move beyond
polynomial time.

The paper’s organization is as follows. In Section 2 we discuss the relevant literature. In
Section 3 we present the standard model of elections and describe relevant voting systems.
In Section 4 we introduce multiprong control, provide initial results, and show how existing
immunity, vulnerability, and resistance results interact with this model. In Section 5 we
provide a complexity analysis of candidate and voter control in maximin elections, showing
how multiprong control is useful in doing so. In Section 6 we consider fixed-parameter com-
plexity of multiprong control, using as our parameter the number of candidates. Section 7
provides conclusions and open problems. In the appendix, we show that maximin has an
interesting relation to Dodgson elections: No candidate whose Dodgson score is more than
m2 times that of the Dodgson winner(s) can be a maximin winner.

2. Related Work

Since the seminal paper of Bartholdi et al. (1992), much research has been dedicated to
studying the complexity of control in elections. Bartholdi et al. (1992) considered construc-
tive control only, i.e., scenarios where the goal of the attacker is to ensure some candidate’s
victory. Hemaspaandra, Hemaspaandra, and Rothe (2007) extended their work to the de-
structive case, i.e., scenarios in which the goal is to prevent someone from winning.

A central but elusive goal of control research is finding a natural election system (with
a polynomial-time winner algorithm) that is resistant to all the standard types of con-

1. In fact, our framework of multiprong control includes the unpriced bribery of Faliszewski, Hemaspaandra,
and Hemaspaandra (2009a), and can be extended to include manipulation.

306



Multimode Control Attacks on Elections

trol, i.e., for which all the types of control are NP-hard. Hemaspaandra, Hemaspaandra,
and Rothe (2009) showed that there exist highly resistant artificial election systems. Fali-
szewski, Hemaspaandra, Hemaspaandra, and Rothe (2009a) then showed that the natural
system known as Copeland voting is not too far from the goal mentioned above. And
Erdélyi, Nowak, and Rothe (2009) then showed a system with even more resistances than
Copeland, but in a slightly nonstandard voter model (see Baumeister, Erdélyi, Hemaspaan-
dra, Hemaspaandra, & Rothe, 2010, for discussion and Erdélyi, Piras, & Rothe, 2010b,
2010a; Menton, 2010, for some related follow-up work).

Recently, researchers also started focusing on the parameterized complexity of control in
elections. Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2009a) provided several
fixed-parameter tractability results. Betzler and Uhlmann (2009) and Liu, Feng, Zhu, and
Luan (2009) showed so-called W[1]- and W[2]-hardness results for control under various vot-
ing rules. In response to the conference version (Faliszewski, Hemaspaandra, & Hemaspaan-
dra, 2009b) of the present paper, Liu and Zhu (2010) conducted a parameterized-complexity
study of control in maximin elections.

Going in a somewhat different direction, Meir, Procaccia, Rosenschein, and Zohar (2008)
bridged the notions of constructive and destructive control by considering utility functions,
and in this model obtained control results for multiwinner elections. In multiwinner elections
the goal is to elect a whole group of people (consider, e.g., parliamentary elections) rather
than just a single person. Elkind, Faliszewski, and Slinko (2010a) and Maudet, Lang,
Chevaleyre, and Monnot (2010) considered two types of problems related to control by
adding candidates for the case where it is not known how the voters would rank the added
candidates.

Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2011) and Brandt, Brill,
Hemaspaandra, and Hemaspaandra (2010) have studied control (and manipulation and
bribery) in so-called single-peaked domains, a model of overall electorate behavior from
political science.

There is a growing body of work on manipulation that regards frequency of
(non)hardness of election problems (see, e.g., Conitzer & Sandholm, 2006; Friedgut, Kalai,
& Nisan, 2008; Dobzinski & Procaccia, 2008; Xia & Conitzer, 2008b, 2008a; Walsh, 2009;
Isaksson, Kindler, & Mossel, 2010). This work studies whether a given NP-hard election
problem (to date only manipulation/winner problems have been studied, not control prob-
lems) can be often solved in practice (assuming some distribution of votes). (One however
should keep in mind that if any polynomial-time algorithm solves any NP-hard problem ex-
tremely frequently—if it errs on only a sparse set in the formal complexity-theoretic sense
of that term—then P = NP, Schöning, 1986.) Such frequency results are of course very
relevant when one’s goal is to protect elections from manipulative actions, and so although
NP-hardness is a very important step, it is but a first step towards truly broad, satisfying
security. However, in this paper we typically take the role of an attacker and design control
algorithms that are fast on all instances.

Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2009b) and Faliszewski, Hema-
spaandra, and Hemaspaandra (2010b) provide an overview of some complexity-of-election
issues.

307



Faliszewski, Hemaspaandra, & Hemaspaandra

3. Preliminaries

This section covers preliminaries about elections and computational complexity.

3.1 Elections

An election is a pair (C, V ), where C = {c1, . . . , cm} is the set of candidates and V =
(v1, . . . , vn) is a collection of voters. Each voter vi is represented by his or her preference
list.2 For example, if we have three candidates, c1, c2, and c3, a voter who likes c1 most,
then c2, and then c3 would have preference list c1 > c2 > c3.3 Given an election E = (C, V ),
by NE(ci, cj), where ci, cj ∈ C and i 6= j, we denote the number of voters in V who prefer
ci to cj . We adopt the following convention for specifying preference lists.

Convention 3.1. Listing some set D of candidates as an item in a preference list means
listing all the members of this set in increasing lexicographic order (with respect to the
candidates’ names), and listing

←−
D means listing all the members of D but in decreasing

lexicographic order (with respect to the candidates’ names).

Example 3.2. Let us give a quick example of the convention. If C = {Bob, Carol, Ted,
Alice} and D = {Alice, Ted, Bob}, then Carol > D is shorthand for Carol > Alice > Bob >
Ted, and Carol >

←−
D is shorthand for Carol > Ted > Bob > Alice.4

Note that in the model used in this paper, we assume that the person trying to do the
attack on the election knows what the votes, V , are. This has been the standard model
in computational studies of attacks on elections ever since the seminal work of Bartholdi
et al. (1989a, 1992) and Bartholdi and Orlin (1991). However, it is worth noting that it is
an abstract model that has strains in its connection to the real world. Regarding proving
lower bounds, such as NP-hardness results, results in this model are actually stronger: One
is showing that even given full access to the votes, V , the attacker still has an NP-hard
task. On the other hand, when we build polynomial-time attack algorithms in this model,
those algorithms are benefiting from the model letting them know what the votes are. How
natural this model is will vary by the situation, and one should always keep in mind that
this is indeed an abstract model, not the real world itself. However, in many settings, it
is not unreasonable to assume that the attacker might have strong information about the
votes. That information might come from polls, or it might come from door-to-door or
telephone canvassing, or it might come from voter registration or contribution records, or

2. We also assume that each voter has a unique name. However, all the election systems we consider
here—except for the election system of Theorem 4.12—are oblivious to the particular voter names and
the order of the votes.

3. Preference lists are also called preference orders, and in this paper we will use these two terms inter-
changeably.

4. In the constructions where we use this convention, we are using variable names for objects—such as
{b1, . . . , b3k} and p and so on—that are used as candidate sets in elections that are being output by the
reduction. However, since an election has as part of its input the set of candidates (which are named),
our actual reductions will be assigning name strings to each of these objects, and so the ordering we have
discussed is well-defined and can be easily carried out by the reductions. And in fact, in the context of
those reductions, actual (string) values of the bi’s are probably already part of the input to the reduction.
(We have chosen lexicographic order simply because polynomial-time reductions can sort things into it,
and its reverse, without any problem.)

308



Multimode Control Attacks on Elections

it might come (in intimate, human elections, such as votes on whether one should have a
course-based or an exam-based M.S. degree in one’s department) from great familiarity of
the attacker with the voters, or it might come from the attacker being the vote collector.

An election system is a mapping that given an election (C, V ) outputs a set W , satisfying
W ⊆ C, called the winners of the election.5

We focus on the following five voting systems: plurality, Copeland, maximin, approval,
and Condorcet. (However, in Section 6 and the appendix we take a detour through some
other systems.) Each of plurality, Copeland, maximin, and approval assigns points to
candidates and elects those that receive the most points. Let E = (C, V ) be an election,
where C = {c1, . . . , cm} and V = (v1, . . . , vn). In plurality, each candidate receives a single
point for each voter who ranks him or her first. In maximin, the score of a candidate ci in E is
defined as mincj∈C−{ci}NE(ci, cj). For each rational α, 0 ≤ α ≤ 1, in Copelandα candidate
ci receives 1 point for each candidate cj , j 6= i, such that NE(ci, cj) > NE(cj , ci) and α
points for each candidate cj , j 6= i, such that NE(ci, cj) = NE(cj , ci). That is, the parameter
α describes the value of ties in head-to-head majority contests. In approval, instead of
preference lists each voter’s ballot is a 0-1 vector, where each entry denotes whether the voter
approves of the corresponding candidate (gives the corresponding candidate a point). For
example, vector (1, 0, 0, 1) means that the voter approves of the first and fourth candidates,
but not the second and third. We use scoreE(ci) to denote the score of candidate ci in
election E (the particular election system used will always be clear from context).

A candidate c is a Condorcet winner of an election E = (C, V ) if for each other candidate
c′ ∈ C it holds that NE(c, c′) > NE(c′, c). Condorcet voting is the election system in which
the winner set is, by definition, exactly the set of Condorcet winners. It follows from the
definition that each election has at most one Condorcet winner. Not every election has a
Condorcet winner. However, as our notion of an election allows outcomes in which no one
wins, electing the Condorcet winner when there is one and otherwise having no winner is a
legal election system.

5. Readers with a social choice background may wonder why we do not forbid the case W = ∅, as is
typically done in social choice framings of elections. Briefly put, allowing the possibility W = ∅ has
been the standard model in the computational studies of elections, starting with the seminal papers of
Bartholdi, Orlin, Tovey, and Trick. By retaining this model, our results can better be compared with the
existing computational results on attacks on elections. In fact, the recent (admittedly computationally
oriented) textbook of Shoham and Leyton-Brown (2009, Def. 9.2.2) treats the definition of a social choice
correspondence as allowing any subset of the candidates, including the empty set (in contrast, in social
choice papers, the notion of social choice correspondence routinely in its definition excludes the possibility
of having no winners). Although we follow the model of allowing the empty outcome as it is the standard
computational model and allows comparison with existing results, we mention in passing that we find this
model, on its merits, the more attractive one, although this is certainly a matter of taste, familiarity, and
comfort. This model avoids building in a special-case exception in the definition and allows one to discuss
zero-candidates elections if for some reason one wants to. But more importantly, many natural election
systems might have no winners. Examples include threshold election systems, including majority-rule
elections and the election systems often used to see whether anyone—by exceeding a certain percentage
of approval votes from a group of expert sports writers, for instance—merits induction into a sports Hall
of Fame that year. Condorcet voting (to be defined later), which the seminal control-of-elections paper
of Bartholdi et al. (1992) treated as an election system, also can have an empty winner set.

309



Faliszewski, Hemaspaandra, & Hemaspaandra

3.2 Computational Complexity

We use standard notions of complexity theory, as presented, e.g., in the textbook of Papa-
dimitriou (1994). We assume that the reader is familiar with the complexity classes P
and NP, polynomial-time many-one reductions, and the notions of NP-hardness and NP-
completeness. N will denote {0, 1, 2, . . .}.

Most of the NP-hardness proofs in this paper follow by a reduction from the well-known
NP-complete problem exact cover by 3-sets, known for short as X3C (see, e.g., Garey &
Johnson, 1979). In X3C we are given a pair (B,S), where B = {b1, . . . , b3k} is a set of 3k
elements and S = {S1, . . . , Sn} is a set of 3-subsets of B, and we ask whether there is a
subset S′ of exactly k elements of S such that their union is exactly B. We call such a set
S′ an exact cover of B.

In Section 6, we consider the fixed-parameter complexity of multiprong control. The
idea of fixed-parameter complexity is to measure the complexity of a given decision problem
with respect to both the instance size (as in the standard complexity theory) and some
parameter of the input (in our case, the number of candidates involved). For a problem
to be said to be fixed-parameter tractable, i.e., to belong to the complexity class FPT, we
as is standard require that the problem can be solved by an algorithm running in time
f(j)nO(1), where n is the size of the encoding of the given instance, j is the value of the
parameter for this instance, and f is some function. Note that f does not have to be
polynomially bounded or even computable. However, in all FPT claims in this paper, f is
a computable function. That is, our algorithms actually achieve so-called strongly uniform
fixed-parameter tractability. We point readers interested in parameterized complexity to,
for example, the recent book by Niedermeier (2006).

4. Control and Multiprong Control

In this section we introduce multiprong control, that is, control types that combine several
standard types of control. We first provide the definition, then proceed to analyzing general
properties of multiprong control, then consider multiprong control for election systems for
which the complexity of single-prong control has already been established, and finally give
an example of an election system for which multiprong control becomes harder than any of
its constituent prongs (assuming P 6= NP). We conclude the section with a summary of its
main contributions.

4.1 The Definition

We consider combinations of control by adding/deleting candidates/voters6 and by bribing
voters. Traditionally, bribery has not been considered a type of control but it fits the model
very naturally and strengthens our results.

In discussing control problems, we must be very clear about whether the goal of the
attacker is to make his or her preferred candidate the only winner, or is to make his or
her preferred candidate a winner. To be clear on this, we as is standard will use the
term “unique-winner model” for the model in which the goal is to make one’s preferred

6. Other control types, defined by Bartholdi et al. (1992) and refined by Hemaspaandra et al. (2007), regard
various types of partitioning candidates and voters.

310



Multimode Control Attacks on Elections

candidate the one and only winner, and we will use the term “nonunique-winner model”
for the approach in which the goal is to make one’s preferred candidate be a winner. (Note
that if exactly one person wins, he or she most certainly is considered to have satisfied the
control action in the nonunique-winner model. The “nonunique” in the model name merely
means we are not requiring that winners be unique.)

The destructive cases of each of these are, in the nonunique-winner model, blocking
one’s despised candidate from being a unique winner,7 and in the unique-winner model,
blocking one’s despised candidate from being a winner. We take the unique-winner model
as the default in this paper, as is the most common model in studies of control.

Definition 4.1. Let E be an election system. In the unique-winner,8 constructive E-
AC+DC+AV+DV+BV control problem we are given:

(a) two disjoint sets of candidates, C and A,

(b) two disjoint collections of voters, V and W , containing voters with preference lists
over C ∪A,

(c) a preferred candidate p ∈ C, and

(d) five nonnegative integers, kAC, kDC, kAV, kDV, and kBV.

We ask whether it is possible to find two sets, A′ ⊆ A and C ′ ⊂ C, and two subcollections
of voters, V ′ ⊆ V and W ′ ⊆W , such that:

(e) it is possible to ensure that p is a unique winner of E election ((C − C ′) ∪ A′, (V −
V ′) ∪ W ′) via changing preference orders of (i.e., bribing) at most kBV voters in
(V − V ′) ∪W ′,

(f) p /∈ C ′, and

(g) ‖A′‖ ≤ kAC, ‖C ′‖ ≤ kDC, ‖W ′‖ ≤ kAV, and ‖V ′‖ ≤ kDV.

In the unique-winner, destructive variant of the problem, we replace item (e) above with: “it
is possible to ensure that p is not a unique winner of E election ((C−C ′)∪A′, (V −V ′)∪W ′)
via changing preference orders of at most kBV voters in (V −V ′)∪W ′.” (In addition, in the
destructive variant we refer to p as “the despised candidate” rather than as “the preferred
candidate,” and we often denote him or her by d.)

Table 1 summarizes in informal English the notation used in this definition, so that this
information is easily available for the reader to refer back to.

The phrase AC+DC+AV+DV+BV in the problem name corresponds to four of the
standard types of control: adding candidates (AC), deleting candidates (DC), adding voters
(AV), deleting voters (DV), and to (unpriced) bribery (BV); we will refer to these five types
of control as the basic types of control. We again remind the reader that traditionally

7. We will often use the phrase “a unique winner,” as we just did. The reason we write “a unique winner”
rather than “the unique winner” is to avoid the impression that the election necessarily has some (unique)
winner.

8. One can straightforwardly adapt the definition to the nonunique-winner model.

311



Faliszewski, Hemaspaandra, & Hemaspaandra

Notation Meaning
AC Control by adding candidates.
DC Control by deleting candidates.
AV Control by adding voters.
DV Control by deleting voters.
BV Control by bribing voters.
C The set of initial candidates in an election.
A The set of additional candidates that the control agent may introduce.
V The collection of initial voters in an election.
W The collection of additional voters that the control agent may introduce.
kAC The bound on the number of candidates that can be added in AC control.
kDC The bound on the number of candidates that can be deleted in DC control.
kAV The bound on the number of voters that can be added in AV control.
kDV The bound on the number of voters that can be deleted in DV control.
kBV The bound on the number of voters that can be bribed in BV control.
p The preferred candidate (the constructive control goal is to ensure that p

is a unique winner).
d The despised candidate (the destructive control goal is to ensure that d is

not a unique winner).

Table 1: Notations from Definition 4.1 that are used frequently elsewhere.

bribery is not a type of control but we will call it a basic type of control for the sake of
uniformity and throughout the rest of the paper we will consider it as such.

As to why we choose these as the “basic” types, it is essentially because these are the
collection on which we focus, and so the term is a handy one to use to indicate them. But we
have focused on these particular ones largely because we find them highly attractive. The
various “partition” control types that appeared in the original paper on control, while quite
interesting, have always seemed less natural to us than adding/deleting voters/candidates.
Bribery to us is also quite compellingly natural. The attack known as manipulation is not
included by us among the “basic” types, but without a doubt is a natural and important
type of attack on elections, and in the conclusion we discuss it briefly, and commend to the
reader the issue of studying manipulation as an additional prong.

Instead of considering all of AC, DC, AV, DV, and BV, we often are interested in some
subset of them and so we consider special cases of the AC+DC+AV+DV+BV problem.
For example, we write DC+AV to refer to a variant of the AC+DC+AV+DV+BV problem
where only deleting candidates and adding voters is allowed. As part of our model we
assume that in each such variant, only the parameters relevant to the prongs are part of
the input. So, for example, DC+AV would have kDC, kAV, C, V , W , and p as the (only)
parts of its input. And the “missing” parts (e.g., for DC+AV, the missing parts are A, kAC,
kDV, and kBV) are treated in the obvious way in evaluating the formulas in Definition 4.1,
namely, missing sets are treated as ∅ and missing constants are treated as 0. If we name
only a single type of control, we in effect degenerate to one of the standard control problems.

312



Multimode Control Attacks on Elections

The reader may naturally wonder in what order the prongs of a multi-prong attack
occur. Note that part (e) of Definition 4.1 is quietly setting the order. However, almost all
the order interactions are uninteresting (unless the attacker is idiotic). For example, the
definition does not allow one to bribe voters that one will be deleting, but doing so would
be pointless anyway, so this is not an interesting restriction on the attacker. Similarly, the
definition does not allow one to add a voter and then immediately delete it, but again, that
does not take even one successful attack away from the attacker. Indeed, the only interesting
order interaction to consider is whether one can bribe added voters, or whether one can
only bribe voters who were originally in the election. One could argue this either way, and if
one wanted to avoid focusing on one or the other, one could analyze everything both ways.
However, our definition embraces the model in which even the added voters can be bribed.
Note that this is the model more favorable to the attacker. One referee commented that it
would be unreasonable to give attackers the flexibility of multiple attacks but deny them
the freedom to control the order of the attacks. In keeping with the spirit of that comment,
our definition resolves the order issue in the way that is most favorable to the attacker, and
so in no way is biased against the attacker. However, for completeness we should mention
that it is possible that some—perhaps highly artificial—systems might have different attack
complexities in the model where added voters cannot be bribed as compared to the model
in which added voters can be bribed.

There is at least one more way in which we could define multiprong control. The model
in the above definition can be called the separate-resource model, as the extent to which
we can use each basic type of control is bounded separately. In the shared-resource model
one pool of action allowances must be allocated among the allowed control types (so in
the definition above we would replace kAC, kDC, kAV, and kDV with a single value, k, and
require that ‖C ′‖+ ‖D′‖+ ‖V ′‖+ ‖W ′‖+ the-number -of -bribed -voters ≤ k). Although one
could make various arguments about which model is more appropriate, their computational
complexity is related.

Theorem 4.2. If there is a polynomial-time algorithm for a given variant of multiprong
control in the separate-resource model then there is one for the shared-resource model as
well.

Proof. Let E be an election system. We will describe the idea of our proof on the example
of the constructive E-AC+AV problem. The idea straightforwardly generalizes to any other
set of allowed control actions (complexity-theory savvy readers will quickly see that we, in
essence, give a disjunctive truth-table reduction).

We are given an instance I of the constructive E-AC+AV problem in the shared-resource
model, where k is the limit on the sum of the number of candidates and voters that we may
add. Given a polynomial-time algorithm for the separate-resource variant of the problem,
we solve I using the following method. (If k > ‖A‖ + ‖W‖ then set k = ‖A‖ + ‖W‖.)
We form a sequence I0, . . . , Ik of instances of the separate-resource variant of the problem,
where each I`, 0 ≤ ` ≤ k, is identical to I, except that we are allowed to add at most `
candidates and at most k − ` voters. We accept if at least one of I` is a “yes” instance
of the separate-resource, constructive E-AC+AV problem. It is straightforward to see that
this algorithm is correct and runs in polynomial time.

313



Faliszewski, Hemaspaandra, & Hemaspaandra

It would be interesting to consider a variant of the shared-resource model where var-
ious actions come at different costs (e.g., adding some candidate c′ might be much more
expensive—or difficult—than adding some other candidate c′′). This approach would be
close in spirit to priced bribery of Faliszewski, Hemaspaandra, and Hemaspaandra (2009a).
Analysis of such priced control is beyond the scope of the current paper.

4.2 Susceptibility, Immunity, Vulnerability, and Resistance

As is standard in the election-control (and election-bribery) literature, we consider vulner-
ability, immunity, susceptibility, and resistance to control. Let E be an election system and
let C be a type of control.

We say that E is susceptible to constructive C control if there is a scenario in which
effectuating C makes someone become a unique winner of some E election E. We say that
E is susceptible to destructive C control if there is a scenario in which effectuating C makes
someone stop being a unique winner of some E election E.
E is immune to constructive (respectively, destructive) C control if E is not susceptible

to constructive (respectively, destructive) C control.
We say that E is vulnerable to constructive (respectively, destructive) C control if E is sus-

ceptible to constructive (respectively, destructive) C control and there is a polynomial-time
algorithm that decides the constructive (respectively, destructive) E-C problem. Actually,
this paper’s vulnerability algorithms/proofs will each go further and will in polynomial time
produce, or will make implicitly clear how to produce, the successful control action. So we
in each case are even achieving the so-called certifiable vulnerability of Hemaspaandra et al.
(2007).
E is resistant to constructive (respectively, destructive) C control if E is susceptible

to (respectively, destructive) C control and the constructive (respectively, destructive) E-C
problem is NP-hard.

Before we move on to our theorems, we mention two important points to put these
notions into context. Vulnerability is about (within susceptible settings) polynomial-time
recognition of those inputs on which there are successful attacks (and on those, as noted
above, we will actually in this paper produce the attacks), not about the proportion of inputs
on which attacks succeed (however, see our comments and references earlier in this paper
about work studying frequency of hardness issues). Also, for a type of multiprong control
that, for example, has one on-its-own immune prong and some on-their-own vulnerable
prongs, we are about to prove that immunity will not hold. (In some cases vulnerability
will hold, and in some cases resistance might hold.) However, for that portion of the
input universe that allows changes on the immune-on-its-own prong but not on the other
prongs, one can quickly (assuming the winner problem for the given election system itself
is a polynomial-time problem) both recognize that one is on that subspace of inputs and
determine whether one can achieve one’s goal (since due to the immunity we are on a “dead”
prong—that prong on its own cannot raise us from failure to success).

The next few theorems describe how multiprong control problems can inherit suscep-
tibility, immunity, vulnerability, and resistance from the basic control types that they are
built from. (We will often write “(destructive)” rather than “(respectively, destructive),”
when the “respectively” is clear from context.)

314



Multimode Control Attacks on Elections

Theorem 4.3. Let E be an election system and let C1 + · · ·+Ck be a variant of multiprong
control (so 1 ≤ k ≤ 5 and each Ci is a basic control type). E is susceptible to constructive
(destructive) C1+· · ·+Ck control if and only if E is susceptible to at least one of constructive
(destructive) C1, . . . , Ck control.

Proof. The “if” direction is trivial: The attacker can always choose to use only the type
of control to which E is susceptible. As to the “only if” direction, it is not hard to see
that if there is some input election for which by a C1 + · · · + Ck action we can achieve
our desired change (of creating or removing unique-winnerhood for p, depending on the
case), then there is some election (not necessarily our input election) for which one of those
actions alone achieves our desired change. In essence, we can view a control action A of
type C1 + · · ·+Ck as a sequence of operations, each operation being of one of the C1, . . . , Ck
types, that—when executed in order—transform our input election into an election where
our goal is satisfied. Thus there is a single operation within A—and this operation is of one
of the types C1, . . . , Ck—that transforms some election E′ where our goal is not satisfied to
some election E′′ where the goal is satisfied.

We immediately have the following corollary.

Corollary 4.4. Let E be an election system and let C1 + · · ·+Ck be a variant of multiprong
control (so 1 ≤ k ≤ 5 and each Ci is a basic control type). E is immune to constructive
(destructive) C1 + · · · + Ck control if and only if for each i, 1 ≤ i ≤ k, E is immune to
constructive (destructive) Ci control.

In the next theorem we show that if a given election system is vulnerable to some basic
type of control and is immune to another basic type of control, then it is vulnerable to these
two types of control combined. The proof of this theorem is straightforward, but we need
to be particularly careful as vulnerabilities and immunities can behave quite unexpectedly.
For example, it might seem that we can assume that if an election system is vulnerable to
AV and DV then it should also be vulnerable to BV, because bribing a particular voter
can be viewed as first deleting this voter and then adding—in his or her place—a voter
with the preference order as required by the briber. (This assumes we have such a voter
among the voters we can add, but when arguing susceptibility/immunity we can make this
assumption.) However, there is a simple election system that is vulnerable to both AV and
DV control, but that is immune to BV control. This system just says that in an election
E = (C, V ), where C = {c1, . . . , cm} and V = (v1, . . . , vn), the winner is the candidate ci
such that n ≡ i− 1 (mod m).9

Theorem 4.5. Let E be an election system and let C1 + · · ·+Ck+D1 + · · ·+D` be a variant
of multiprong control (so 1 ≤ k ≤ 5, 1 ≤ ` ≤ 5, and each Ci and each Di is a basic control
type) such that E is vulnerable to constructive (destructive) C1 + · · · + Ck control and for
each i, 1 ≤ i ≤ `, E is immune to constructive (destructive) Di control.10 E is vulnerable
to C1 + · · ·+ Ck +D1 + · · ·+D` control.

9. Of course, this election system is not neutral; permuting the names of the candidates, evaluating the
election’s winners, and then running the winners through the inverse of the permutation can change the
outcome of an election.

10. So we certainly have k + ` ≤ 5, since immunity and vulnerability are mutually exclusive.

315



Faliszewski, Hemaspaandra, & Hemaspaandra

Proof. We will give a proof for the constructive case only. The proof for the destructive
case is analogous. Let E be an election system as in the statement of the theorem and let
I be an instance of constructive E-C1 + · · · + Ck + D1 + · · · + D` control, which contains
election E = (C, V ), information about the specifics of control actions we can implement,
and where the goal is to ensure that candidate p is a unique winner. Let us first consider
the case where BV is not among C1, . . . , Ck, D1, . . . D`.

Let us assume that there is a collection A of control actions of types
C1, . . . Ck, D1, . . . , D`, such that applying the actions from A to E is legal within I and
results in an election EC+D where p is the unique winner. (We take A to be empty if p is a
unique winner of E.) We split A into two parts, AC and AD, such that AC contains exactly
the actions of types C1, . . . , Ck, and a AD contains exactly the actions of types D1, . . . , D`.
Since BV is not among our control actions, it is straightforward to see that it is possible
to apply actions AC to election E to obtain some election EC . (To see why it is important
that we do not consider BV, assume that BV is among control types C1, . . . , Ck and AV
is among control types D1, . . . , D`. In this case, AC might include an action that bribes a
voter that is added by an action from AD.)

We claim that p is the unique winner of EC . For the sake of contradiction, let us assume
that this is not the case (note that this implies that p is not a unique winner of E). If we
apply control actions AD to EC , we reach exactly election EC+D, where p is the unique
winner. Yet, this is a contradiction, because by Corollary 4.4 we have that E is immune to
D1 + · · · + D`. That is, there is no scenario where control actions of type D1 + · · · + D`

make some candidate a unique winner if he or she was not a unique winner before.
Thus it is possible to ensure that p is a unique winner by actions of type C1 + · · ·+ Ck

alone. We chose I arbitrarily, and thus any instance of E-C1 + · · · + Ck + D1 + · · · + D`

control can be solved by an algorithm that considers control actions of type C1 + · · ·+ Ck
only. This proves that E is vulnerable to C1 + · · ·+Ck +D1 + · · ·+D` control because, as
we have assumed, it is vulnerable to C1 + · · ·+ Ck control.

It remains to prove the theorem for the case where BV is among our control actions. In
the case where BV is among the control actions but AV is not, or if AV and BV are in the
same group of actions (i.e., either both are among the Ci’s or both are among the Di’s),
it is straightforward to see that the above proof still works. Similarly, if BV is among the
Di’s and AV is among the Ci’s, the above proof works as well. The only remaining case is
if our allowed control types include both BV and AV, where BV is among the Ci’s and AV
is among the Di’s.

In this last case, the proof also follows the general structure of the previous construction,
except that we have to take care of one issue: It is possible that AC includes bribery of
voters that are to be added by actions from AD. (We use the same notation as in the main
construction.) Let VBV be the collection of voters that AC requires to bribe, but that are
added in AD. We form a collection A′C of control actions that is identical to AC , except
that it includes adding the voters from VBV, and we let A′D be identical to AD, except that
it no longer includes adding the voters from VBV. Using A′C and A′D instead of AC and
AD, it is straightforward to show the following: If it is possible to ensure that p is a unique
winner in instance I by a legal action of type C1 + · · ·+Ck +D1 + · · ·+D`, then it is also
possible to do so by a legal action of type C1 + · · · + Ck + AV, where each added voter is
also bribed. Thus given an instance I of E-C1 + · · · + Ck + D1 + · · · + D` we can solve it

316



Multimode Control Attacks on Elections

using the following algorithm. Let W be the collection of voters that can be added within
I and let kAV be the limit on the number of voters that we can add.

1. Let t be min(kAV, ‖W‖).

2. For each i in {0, 1, . . . , t} execute the next two substeps.

(a) Form instance I ′ that is identical to I, except i (arbitrarily chosen) voters from
W are added to the election.

(b) Run the E-C1 + · · ·+ Ck algorithm on instance I ′ and accept if it does.

3. If the algorithm has not accepted yet, reject.

It is straightforward to see that this algorithm is correct and, since E is vulnerable to
C1 + · · ·+ Ck, works in polynomial time. This completes the proof of the theorem.

Theorem 4.6. Let E be an election system and let C1 + · · ·+Ck be a variant of multiprong
control (so 1 ≤ k ≤ 5 and each Ci is a basic control type). If for some i, 1 ≤ i ≤ k,
E is resistant to constructive (destructive) Ci control, then E is resistant to constructive
(destructive) C1 + · · ·+ Ck control.

Proof. Let Ci be the control type to which E is resistant. Since E is susceptible to construc-
tive (destructive) Ci control, it follows by Theorem 4.3 that E is susceptible to constructive
(destructive) C1 + · · · + Ck control. And since the E-Ci constructive (destructive) control
problem is essentially (give or take syntax) an embedded subproblem of the E-C1 + · · ·+Ck
control problem, it follows that E is resistant to C1 + · · ·+ Ck control.

By combining the results obtained so far in Section 4.2, we obtain a simple tool that
allows us to classify a large number of multiprong control problems based on the properties
of their prongs. This theorem—along with the forthcoming “Classification Rule A,” which
shows how to apply this result to well-behaved election systems—is the central result of
this paper.

Theorem 4.7. Let E be an election system and let C1 + · · ·+Ck be a variant of multiprong
control (so 1 ≤ k ≤ 5 and each Ci is a basic control type), such that for each Ci, 1 ≤ i ≤ k,
E is resistant, vulnerable, or immune to constructive (destructive) Ci control. If there is
an i, 1 ≤ i ≤ k, such that E is resistant to constructive (destructive) Ci control then E
is resistant to constructive (destructive) C1 + · · · + Ck control. Otherwise, if for each i,
1 ≤ i ≤ k, E is immune to constructive (destructive) Ci control (1 ≤ i ≤ k), then it is
immune to constructive (destructive) C1 + · · · + Ck control. Otherwise, if E is vulnerable
to the constructive (destructive) multiprong control consisting of all the individual prongs
among the Ci for which E is vulnerable to constructive (destructive) control, then E is
vulnerable to constructive (destructive) C1 + · · ·+ Ck control.

To avoid any confusion, we stress that throughout one’s reading of the above corollary,
one must either always use the “constructive” case or must always use the “destructive”
case—one cannot mix and match. Also, our third “otherwise” really is an otherwise; its
claim assumes that the first case (that there is at least one resistance) did not hold.

317



Faliszewski, Hemaspaandra, & Hemaspaandra

So does the vulnerability/resistance/immunity information on the five individual prongs
completely determine which of vulnerability/resistance/immunity holds for each of the 25−1
multiprong settings? It would be very satisfying if this were so. However, later results in
this paper show that this is not the case, since we will prove that two vulnerable prongs can
combine to yield resistance (Theorem 4.12) but also can combine to yield vulnerability (e.g.,
Theorem 4.10). (It is even plausible that there may exist cases where two vulnerable prongs
combine to yield a multiprong case that, while certainly susceptible due to Theorem 4.3 (i.e.,
immunity is impossible in this case), is neither in P nor NP-hard, i.e., is neither vulnerable
nor resistant.)

However, for every voting system that has a certain common, nice property, we can from
the 5 individual prongs’ vulnerability/resistance/immunity status mechanically read off all
25 − 1 multiprong results. That nice property is the following.

Definition 4.8. We say that an election system E is constructive (destructive)
vulnerability-combining if for each variant C1 + · · ·+Ck of multiprong control (so 1 ≤ k ≤ 5
and each Ci is a basic control type) it holds that if for all i, 1 ≤ i ≤ k, E is vulnerable
to constructive (destructive) Ci control, then E is vulnerable to constructive (destructive)
C1 + · · ·+ Ck control.

For systems that are constructive (destructive) vulnerability-combining, it is straight-
forward to see that Theorem 4.7 can be used to read off all 25 − 1 multiprong cases, given
just the status of the five underlying prongs.

But how can one in practice establish that a system is constructive (destructive)
vulnerability-combining? One could try it by brute force, looking at each collection of
vulnerable prongs. However, there is a better path to follow. One can look at all the
vulnerable prongs together, and prove (if it happens to be the case) that they yield vul-
nerability. Note that doing so successfully implies immediately that vulnerability holds for
every nonempty subset of those prongs. That this is true follows from the following claim.

Proposition 4.9. Let E be an election system and let C1, . . . , Ck, 1 ≤ k ≤ 5, be a collection
of basic control types. If for each i, 1 ≤ i ≤ k, E is susceptible to constructive (destructive)
Ci control, and E is vulnerable to constructive (destructive) C1 + · · ·+Ck control, then for
any nonempty subset K of {C1, . . . , Ck}, E is vulnerable to the constructive (destructive)
multiprong control involving exactly the prongs from K.

Proof. Let the notation be as in the statement of the proposition, and let K be some
nonempty subset of {C1, . . . , Ck}. By Theorem 4.3, E is susceptible to constructive (de-
structive) multiprong control by the constructive (destructive) control type consisting of
exactly the prongs from K. By E ’s vulnerability to constructive (destructive) C1 + · · ·+Ck
control, we have a polynomial-time algorithm for constructive (destructive) multiprong con-
trol involving exactly the prongs from K: It suffices to use the algorithm for constructive
(destructive) C1 + · · · + Ck multiprong control, with the bounds on the extent to which
nonoccurring prongs can be used set to 0.

Motivated by the above discussion and by Proposition 4.9, in Sections 4.3 and 5 we
will show that plurality, Condorcet, Copelandα (for each rational α, 0 ≤ α ≤ 1), approval,

318



Multimode Control Attacks on Elections

and maximin are indeed constructive vulnerability-combining and destructive vulnerability-
combining. Thus for these systems we will have analyzed all 25 − 1 constructive cases and
all 25 − 1 destructive cases of multiprong control. Namely, for a constructive (destructive)
vulnerability-combining election system E and for any variant C1 + · · ·+ Ck, 1 ≤ k ≤ 5, of
constructive (destructive) multiprong control such that for each i, 1 ≤ i ≤ k, E is either
resistant, vulnerable, or immune to constructive (destructive) Ci control, we can use the
following simple rule (which we will refer back to as Classification Rule A) to classify
constructive (destructive) C1 + · · · + Ck multiprong control (note: the correctness of the
third part of this classification is where the vulnerability-combining property of E is being
relied on):

1. If E is resistant to at least one of the control prongs, then it is resistant to the whole
attack.

2. If E is immune to each of the prongs, then it is immune to the whole attack.

3. If neither of the above holds, then E is vulnerable to the whole attack.

In general, we do not consider partition cases of control in this paper. However, we make
an exception for the next example, which shows how even types of control to which a given
election system is immune may prove useful in multiprong control. In constructive control
by partition of candidates (reminder: this is not a basic control type) in the ties-eliminate
model (PC-TE control type), we are given an election E = (C, V ) and a preferred candidate
p ∈ C, and we ask whether it is possible to find a partition (C1, C2) of C (i.e., C1 ∪C2 = C
and C1 ∩ C2 = ∅) such that p is a winner of the following two-round election: We first find
the winner sets, W1 and W2, of elections (C1, V ) and (C2, V ). If W1 (W2) contains more
than one candidate, we set W1 = ∅ (W2 = ∅), since we are in the “ties eliminate” model.
The candidates who win election (W1 ∪ W2, V ) are the winners of the overall two-stage
election.

Now, let us look at constructive approval-AC+PC-TE control, where (by definition, let
us say) we first add new candidates and then perform the partition action. We consider an
approval election with two candidates, p and c, where p has 50 approvals and c has 100.
We are also allowed to add candidate c′, who has 100 approvals. Note that it is impossible
to make p a unique winner by adding c′. Exercising the partition action alone does not
ensure p’s victory either. However, combining both AC and PC-TE does the job. If we first
add c′ to the election and then partition candidates into {p} and {c, c′} then, due to the
ties-eliminate rule, p becomes the unique winner. It is rather interesting that even though
approval is immune to constructive AC control, there are cases where one has to apply AC
control to open the possibility of effectively using other types of control.

The above example is perhaps surprising in light of Theorem 4.5. In essence, in the proof
of that theorem we argue that if an election system is vulnerable to some basic control type
C but is immune to some other basic control type D, then it is also vulnerable to control
type C + D. We proved the theorem by showing that we can safely disregard the actions
of type D (assuming C does not include BV control type). The above example shows that
this proof approach would not work if we considered PC-TE in addition to the basic control
types.

319



Faliszewski, Hemaspaandra, & Hemaspaandra

4.3 Combining Vulnerabilities

In the previous section we considered the case where separate prongs of a multiprong control
problem have different computational properties, e.g., some are resistant, some are vulnera-
ble, and some are immune. In this section we consider the case where an election system is
vulnerable to each prong separately, and we show how such vulnerabilities combine within
election systems for which control results were obtained in previous papers (see Table 5).
In particular, in the next theorem we show that for all the election systems considered
by Bartholdi et al. (1992), Hemaspaandra et al. (2007), and Faliszewski, Hemaspaandra,
Hemaspaandra, and Rothe (2009a), all constructive vulnerabilities to AC, DC, AV, DV,
and BV combine to vulnerabilities, and all destructive vulnerabilities to AC, DC, AV, DV,
BV combine to vulnerabilities.11 Using this (and some additional discussion to correctly
handle the possibility that P = NP), we will soon conclude that each election system
studied in these three papers is both constructive vulnerability-combining and destructive
vulnerability-combining.

Theorem 4.10. (a) Plurality is vulnerable to both constructive AV+DV+BV control and
destructive AV+DV+BV control. (b) Both Condorcet and approval are vulnerable to
AC+AV+DV+BV destructive control. (c) For each rational α, 0 ≤ α ≤ 1, Copelandα

is vulnerable to destructive AC+DC control.12

Proof. (a) Let us consider an instance I of constructive plurality-AV+DV+BV control
where we want to ensure candidate p’s victory: It is enough to add all the voters who vote
for p (or as many as we are allowed) and then, in a loop, keep deleting voters who vote
for a candidate other than p with the highest score, until p is the only candidate with the
highest score or we have exceeded our limit of voters to delete. Finally, in a loop, keep
bribing voters who vote for a candidate other than p with the highest score to vote for p,
until p is the only candidate with the highest score or we have exceeded our limit of voters
to bribe. If p becomes a unique winner via this procedure, then accept. Otherwise reject.
We omit the straightforward proof for the destructive case.

(b) Let I be an instance of destructive Condorcet-AC+AV+DV+BV, where our goal is
to prevent candidate p from being a Condorcet winner (we assume that p is a Condorcet
winner before any control action is performed). It is enough to ensure that some candidate
c wins a head-to-head contest with p. Our algorithm works as follows.

Let C be the set of candidates originally in the election and let A be the set of candidates
that we can add (we take A = ∅ if we are not allowed to add any candidates). For each
c ∈ (C ∪A)− {p} we do the following:

1. Add as many voters who prefer c to p as possible.

11. Constructive bribery for plurality and constructive bribery for approval have been considered by Faliszew-
ski, Hemaspaandra, and Hemaspaandra (2009a) and constructive and destructive bribery for Copeland
has been studied by Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2009a). In Theorem 4.10
we—in effect—give polynomial-time algorithms for destructive bribery in plurality, approval, and
Condorcet. Constructive Condorcet-BV is NP-complete and this is implicitly shown by Faliszewski,
Hemaspaandra, Hemaspaandra, and Rothe (2009a, Theorem 3.2).

12. Regarding the types among AC, DC, AV, DV, and BV not mentioned in each part of the theorem,
plurality is resistant to constructive and destructive AC and DC, Condorcet and approval are immune
to constructive AC and destructive DC, and for each rational α, 0 ≤ α ≤ 1, Copelandα is resistant to all
five constructive basic types of control and to destructive AV, DV, and BV (see Table 5 for references).

320



Multimode Control Attacks on Elections

2. Delete as many voters who prefer p to c as possible.

3. Among the remaining voters who prefer p to c, bribe as many as possible to rank c
first.

If after these actions c wins his or her head-to-head contest with p then we accept. If no
c ∈ (C ∪A)− {p} leads to acceptance, then we reject. It is straightforward to see that this
algorithm is correct and runs in polynomial time. (We point out that it is enough to add
only a single candidate, the candidate c that prevents p from winning, if he or she happens
to be a member of A).

For the case of approval, our algorithm works similarly, except the following differences:
We add voters who approve of c but not of p. We delete voters who approve of p but not of
c. For each remaining voter vi, if we still have not exceeded our bribing limit, if vi approves
of p but not of c, we bribe vi to reverse approvals on p and c. (Note that if we do not
exceed our bribing limit by this procedure, this means that each voter that approves of p
also approves of c and thus p is not a unique winner.) If these actions lead to p not being
a unique winner, we accept. If we do not accept for any c ∈ (C ∪A)− {p}, we reject.

(c) The idea is to combine Copelandα destructive-AC and destructive-DC algo-
rithms (Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009a). We give the full
proof for the sake of completeness.

Let us fix a rational value α, 0 ≤ α ≤ 1. Given an election E and a candidate c in
this election, we write scoreαE(c) to denote Copelandα score of c. Let I be an instance
of destructive Copelandα-AC+DC control, with an election E = (C, V ), where we can
add at most kAC spoiler candidates from the set A, and where we can delete at most kDC

candidates. Our goal is to ensure that some despised candidate d ∈ C is not a unique winner.
Our algorithm is based on the following simple observation of Faliszewski, Hemaspaandra,
Hemaspaandra, and Rothe (2009a). For each candidate c ∈ C:

scoreα(C,V )(c) =
∑

c′∈C−{c}

scoreα({c,c′},V )(c).

Our goal is to prevent candidate d from being a unique winner. If d is not a unique winner,
we immediately accept. Otherwise, we seek a candidate c ∈ C ∪A such that we can ensure
that c’s score is at least as high as that of d. Thus for each c ∈ C ∪A we do the following.

1. If c ∈ A, and kAC > 0, we add c to the election (and if c ∈ A but kAC = 0, we proceed
to the next c).

2. As long as we can still add more candidates, we keep executing the following operation:
If there is a candidate c′ ∈ A such that value a(c′) = scoreα({c,c′},V )(c)−scoreα({d,c′},V )(d)
is positive, we add a candidate c′′ ∈ A, for whom a(c′′) is highest.

3. As long as we can still delete candidates, we keep executing the following operation: If
there is a candidate c′ ∈ C such that value r(c′) = scoreα({d,c′},V )(d)− scoreα({c,c′},V )(c)
is positive, we delete a candidate c′′ ∈ C, for whom r(c′′) is highest.

4. If after these steps d is not a unique winner, we accept.

321



Faliszewski, Hemaspaandra, & Hemaspaandra

If we do not accept for any c ∈ C ∪A, we reject.
It is straightforward to see that we never delete a candidate that we have added. Also, it

is straightforward to see that the algorithm works in polynomial time, and that it is correct.
Correctness follows from the fact that (a) in the main loop of the algorithm, when dealing
with candidate c ∈ C ∪ A, each addition of a candidate and each deletion of a candidate
increases the difference between the score of c and the score of d as much as is possible, and
(b) the order of adding/deleting candidates is irrelevant.

From the above theorem, the comments preceding it, and a bit of care regarding the
possibility that P = NP, we obtain the following claim.

Theorem 4.11. Plurality, Condorcet, Copelandα (for each rational α, 0 ≤ α ≤ 1), and ap-
proval are both constructive vulnerability-combining and destructive vulnerability-combining.

Proof. Immune prongs are never vulnerable. If P 6= NP then resistant prongs cannot be
vulnerable, and we are already done by the previous theorem. If P = NP, then it is possible
that resistant prongs are also vulnerable. Indeed, for all the systems under discussion in
this proof, all their resistant prongs under basic control types happen to be in NP and are
vulnerable if P = NP. However, it is straightforward to see that if P = NP, then for these
particular election systems it holds that all of their vulnerable constructive (destructive)
basic prongs—which for these will in that case be all their nonimmune basic constructive
(destructive) prongs—when combined yield a multiprong constructive (destructive) control
type for which vulnerability holds.

As established by Theorem 4.11 and the (soon-to-come) results of Section 5, all natural
election systems that we have discussed so far in this paper are vulnerability-combining both
in the constructive setting and in the destructive setting. It is natural to wonder whether
this is a necessary consequence of our model of multiprong control or whether in fact there is
an election system for which combining two control types to which the system is vulnerable
yields a multipronged control problem to which the system is resistant. Theorem 4.12 shows
that the latter is the case, even for a natural election system.

In the thirteenth century, Ramon Llull proposed an election system that could be used
to choose popes and leaders of monastic orders (see Hägele & Pukelsheim, 2001; McLean
& Lorrey, 2006). In his system, voters choose the winner from among themselves (so, the
candidates are the same as the voters). Apart from that, Llull’s voting system is basically
Copeland1, the version of Copeland that most richly rewards ties. Formally, we define the
voting system OriginalLlull as follows: For an election E = (C, V ), if the set of names
of V , which we will denote by names(V ), is not equal to C, then there are no winners.
Otherwise, a candidate c ∈ C is a winner if and only if it is a Copeland1 winner. Note that
single-prong AC and AV control for OriginalLlull do not make all that much sense, and so it
should come as no surprise that OriginalLlull is vulnerable to both constructive AC control
and constructive AV control. In addition, we will show (by renaming and padding) that
Copeland1-AV can be be reduced to OriginalLlull1-AC+AV. Since Copeland1 is resistant
to constructive control by adding voters (Faliszewski, Hemaspaandra, Hemaspaandra, &
Rothe, 2009a), this then leads to the following theorem.

Theorem 4.12. OriginalLlull is vulnerable to both constructive AC control and constructive
AV control but is resistant to constructive AC+AV control.

322



Multimode Control Attacks on Elections

Proof. It is immediate that OriginalLlull is susceptible to constructive AC, AV, and
(by Theorem 4.3) AC+AV control. It is also straightforward to see that constructive
OriginalLlull-AC (AV) control is in P: If possible add candidates (voters) such that the
set of voter names is equal to the set of candidates, and then check if the preferred candi-
date is a unique Copeland1 winner. If this is not possible, reject.

We will now show, via a reduction from constructive Copeland1-AV control (which is
NP-hard by Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009a) that constructive
OriginalLlull-AC+AV control is NP-hard. Let C be a set of candidates, let V and W be
two disjoint collections of voters with preference lists over C, let p ∈ C be the preferred
candidate, and k be an element of N. The question is whether there exists a subcollection
W ′ ⊆W of size at most k such that p is a unique Copeland1 winner of (C, V ∪W ′). Without
loss of generality, we assume that V is not empty.

We will now show how to pad this election. For an OriginalLlull election to be nontrivial,
we certainly need to have the same number of candidates as voters (later, we will also rename
the voters so that they are the same as the candidates). If ‖V ‖ < ‖C‖, we want to add a
collection of new dummy voters V ′ such that ‖V ‖ + ‖V ′‖ = ‖C‖ and such that adding V ′

to an election does not change the relative Copeland1 scores of the candidates. This can be
accomplished by letting half of the voters in V ′ vote C (recall Convention 3.1) and half of
the voters in V ′ vote

←−
C . Of course, this can only be done if ‖V ′‖ is even.

So, we will do the following. If ‖V ‖ < ‖C‖, we add a collection of new voters V ′ such
that ‖V ′‖ = ‖C‖ − ‖V ‖ if ‖C‖ − ‖V ‖ is even, and ‖V ′‖ = ‖C‖ − ‖V ‖ + 1 if ‖C‖ − ‖V ‖
is odd. If ‖V ‖ ≥ ‖C‖, we let V ′ = ∅. Half of the voters in V ′ vote C and half of
the voters in V ′ vote

←−
C . In addition, we introduce a set A of new candidates such that

‖C‖+‖A‖ = ‖V ‖+‖V ′‖+‖W‖. Note that this is always possible, since ‖V ‖+‖V ′‖ ≥ ‖C‖.
We extend the votes of the voters (in V , V ′, and W ) to C ∪ A by taking their preference
order on C and following this by the candidates in A in some fixed, arbitrary order. Note
that this will have the effect that candidates in A will never be winners.

Let W ′ ⊆W , A′ ⊆ A, E = (C, V ∪W ′), E′ = (C∪A′, V ∪V ′∪W ′). It is straightforward
to see that the following hold (recall that V is not empty).

1. For all d ∈ A′, score1
E′(d) ≤ ‖A′‖ − 1.

2. For all c ∈ C, score1
E′(c) = score1

E(c) + ‖A′‖.

3. For all c, c′ ∈ C, c 6= c′, score1
E(c)− score1

E(c′) = score1
E′(c)− score1

E′(c′).

4. p is a unique Copeland1 winner of E if and only if p is a unique Copeland1 winner of
E′.

We are now ready to define the reduction. Name the voters such that names(V ∪V ′) ⊇ C
and names(V ∪ V ′ ∪W ) = C ∪ A. Then map (C, V,W, p, k) to (C,A, V ∪ V ′,W, p, ‖A‖, k).
We claim that p can be made a unique Copeland1 winner of (C, V ) by adding at most k
voters from W if and only if p can be made a unique OriginalLlull winner of (C, V ∪V ′) by
adding (an unlimited number of) candidates from A and at most k voters from W .

First suppose that W ′ is a subcollection of W of size at most k such that p is the
unique Copeland1 winner of (C, V ∪W ′). Let A′ ⊆ A be the set of candidates such that

323



Faliszewski, Hemaspaandra, & Hemaspaandra

C ∪ A′ = names(V ∪ V ′ ∪ W ′). By item 4 above, p is the unique Copeland1 winner of
(C∪A′, V ∪V ′∪W ′), and thus p is the unique OriginalLlull winner of (C∪A′, V ∪V ′∪W ′).

For the converse, suppose that there exist A′ ⊆ A and W ′ ⊆ W such that ‖W ′‖ ≤ k,
and p is the unique OriginalLlull winner of (C ∪ A′, V ∪ V ′ ∪W ′). Then p is the unique
Copeland1 winner of (C∪A′, V ∪V ′∪W ′), and, by item 4, p is the unique Copeland1 winner
of (C, V ∪W ′).

Thus our reduction is correct and, since it can be computed in polynomial time, the
proof is complete.

We have the following corollary, since OriginalLlull is neutral (permuting the names of
the candidates, evaluating the election’s winners, and then running the winners through
the inverse of the permutation does not affect the outcome of the election) and anonymous
(permuting the names of the voters does not affect the outcome of the election).13

Corollary 4.13. There exists a neutral and anonymous election system E such that E is
vulnerable to both constructive AC control and constructive AV control but is resistant to
constructive AC+AV control.

Something might seem a bit strange about Theorem 4.12. After all, it says that a
powerful chair—one who can both add candidates and add voters—faces a harder task than
would be faced by a weaker chair—say, one who can just add candidates. The important
thing to keep in mind, to understand why this is not strange, is that the different chairs
are facing (correspondingly) different problems. The powerful type of chair is being asked
to determine whether by specified amounts of adding candidates and voters a goal can be
met, and the weaker type of chair is being asked whether by a specified amount of adding
candidates a goal can be met. Thus it is not at all paradoxical for the former problem
to have higher complexity than the latter. (After all, a “powerful” solution-finder—one
allowed to use any assignment—seeking to find a satisfying assignment to input Boolean
formulas is facing an NP-hard task, but a “weak” solution-finder—one only allowed to find
solutions with at most 2011 variables assigned “False”—seeking to find for input Boolean
formulas a satisfying assignment, when such exists, that has at most 2011 variables assigned
“False” faces just a polynomial-time task, due to the natural brute-force approach.)

4.4 Summary

We now summarize the main contributions of Section 4. We will not try here to motivate
or interpret our results, but rather will summarize our results “as they are,” so the reader
can easily jump back to this section for reference.

13. The notion of anonymity just stated is the standard one in the literature. To avoid any confusion, we
mention that an earlier version (Faliszewski, Hemaspaandra, & Hemaspaandra, 2010a) of this paper used
a much stronger definition of anonymity—one that required one to be able to not just permute the voter
names but to one-to-one map them to any set of names and yet have the outcome not change. Let us
call that notion voter-superanonymity. OriginalLlull does not satisfy that stronger notion. However, the
earlier version of this paper—by sneakily building the preference orders of the voters into the names of
the candidates—constructed a highly artificial system that was neutral, anonymous (in the sense of the
present paper), and voter-superanonymous, and that had two vulnerable prongs that when combined
yielded resistance (Faliszewski et al., 2010a). In contrast, Theorem 4.12/Corollary 4.13 provides such
a jump from vulnerability to resistance for a preexisting, natural voting system that is neutral and
anonymous.

324



Multimode Control Attacks on Elections

C1 C2 C1 + C2

R R R
R V R
R I R
I I I
I V V
V V susceptible (i.e., not I)

Table 2: An example of applying Theorem 4.7. Let E be some election system. We consider
two basic types of constructive (destructive) control, C1 and C2, to which E is
either resistant (R), immune (I), or vulnerable (V). The table shows how C1 +C2

control for E inherits properties from its prongs. Note that Theorem 4.7 does
not on its own give results for the case when E is vulnerable to both C1 and C2

(although from Theorem 4.3 susceptibility must hold). To see this, note that for
vulnerability-combining systems putting together two vulnerable prongs leads to
a two-pronged control problem to which the system is vulnerable. But there are
examples of voting systems where combining two vulnerable prongs leads to a
resistant two-pronged control problem (see Theorem 4.12).

In Section 4.1, we introduced our model of multiprong control, which allows the attacker
to use several types of control jointly, either to try to make a given candidate a unique winner
(constructive control), or to try to prevent a given candidate from being a unique winner
(destructive control).

In Section 4.2 we focused on the following issue: Let E be an election system. Let
C1 + · · · + Ck be a variant of multiprong control (so 1 ≤ k ≤ 5 and each Ci is a basic
control type). Suppose we know, for each Ci, 1 ≤ i ≤ k, whether E is resistant, immune,
or vulnerable to constructive (destructive) control type Ci. To what extent can we from
this alone tell whether E is resistant, immune, or vulnerable to constructive (destructive)
C1 + · · · + Ck multiprong control? Theorem 4.7 and the paragraphs following it provide a
detailed answer. As an example of applying Theorem 4.7, in Table 2 we show how properties
of two control prongs, C1 and C2, combine into properties of two-pronged C1 +C2 control.

Simply stated, Theorem 4.7 (for those systems where each prong happens to be immune
or vulnerable or resistant—and that should include essentially all reasonable, natural elec-
tion systems having polynomial-time winner problems) gives a read-off-the-answer classifi-
cation for all the multiprong cases, except if the system has multiple vulnerable constructive
prongs or has multiple vulnerable destructive prongs. And to handle that case, the case
of systems (where each prong happens to be immune or vulnerable or resistant) having
multiple vulnerable constructive (destructive) prongs, we defined the notion of construc-
tive (destructive) vulnerability-combining election systems, and provided as Classification
Rule A a simple rule that classifies all multiprong control cases. We also provided a handy
tool, Proposition 4.9, for proving that an election system is vulnerability-combining. We
conjecture that almost all natural systems are vulnerability-combining.

Finally, in Section 4.3 we considered several natural election systems for which control
has already been studied (namely, plurality, Condorcet, Copelandα (for each rational α,

325



Faliszewski, Hemaspaandra, & Hemaspaandra

Election system Our results that combine into multiprong vul-
nerability all immune and all vulnerable entries
in each column of Table 5
Constructive Destructive

Plurality AV+DV+BV AV+DV+BV
Condorcet AC+DC AC+DC+AV+DV+BV
Copelandα, for each 0 ≤ α ≤ 1 (none) AC+DC
Approval AC+DC AC+DC+AV+DV+BV
Maximin DC AC+DC

Table 3: Summary of our vulnerability results for multiprong control for plurality, Con-
dorcet, Copelandα, and approval voting systems. Regarding the five basic control
types, these summarize that for each column of Table 5 that has at least one
vulnerable entry, we have established that the multiprong combination of all the
immunity and vulnerability entries in that column remains vulnerable. These re-
sults are obtained by combining Theorem 4.10 and Theorem 4.7 (with Theorem 4.7
letting us add in basic control types to which a given system is immune). For the
sake of completeness, we have also included the analogous results regarding max-
imin, from Section 5.

0 ≤ α ≤ 1), and approval), and for each of these systems we proved that the system
is both constructive vulnerability-combining and destructive vulnerability-combining (see
Theorem 4.11 for the formal result; but Table 3 summarizes the actual combinations that are
in play here unless P = NP). Nonetheless, in Theorem 4.12 we have shown that the ancient
election system OriginalLlull has two vulnerable prongs that combine to yield resistance;
unless P = NP, OriginalLlull is not vulnerability-combining.

5. Control in Maximin

In this section we initiate the study of control in the maximin election system. Maximin
is loosely related to Copelandα voting in the sense that both are defined in terms of the
pairwise head-to-head contests. In addition, the unweighted coalitional manipulation prob-
lem for maximin and Copelandα (α 6= 0.5) exhibits the same behavior: It is in P for one
manipulator and NP-complete for two or more manipulators (Xia, Zuckerman, Procaccia,
Conitzer, & Rosenschein, 2009; Faliszewski, Hemaspaandra, & Schnoor, 2008, 2010). Thus
one might wonder whether both systems will be similar with regard to their resistances to
control. In fact, there are very interesting differences.

It is straightforward to see that maximin is susceptible to all basic types of constructive
and destructive control. And so, by Theorem 4.3, to show vulnerability to constructive
(destructive) C control it suffices to give a polynomial-time algorithm that decides the
constructive (destructive) E-C problem, and to show resistance to constructive (destructive)
C control it suffices to show that the constructive (destructive) E-C problem is NP-hard.

As a consequence of the analysis given in the following subsections, we have that maximin
is both constructive vulnerability-combining and destructive vulnerability-combining.

326



Multimode Control Attacks on Elections

Theorem 5.1. Maximin is both constructive vulnerability-combining and destructive
vulnerability-combining.

Proof. The same discussion and analysis provided in the proof of Theorem 4.11 apply here,
except relying on the underpinning work provided later in this section. The constructive
case here is degenerate, as among basic prongs there is only one that is of interest (although
we will briefly discuss a special “extra” prong later). Even for the destructive case, there
are only two basic prongs that are not resistant.

5.1 Candidate Control in Maximin

Let us now focus on candidate control in maximin, that is, on the AC and the DC control
types, both in the constructive and in the destructive setting. As is the case for Copelandα,
0 ≤ α ≤ 1, maximin is resistant to control by adding candidates.

Theorem 5.2. Maximin is resistant to constructive AC control.

Proof. We give a reduction from X3C. Let (B,S), where B = {b1, . . . , b3k} is a set of
3k elements and S = {S1, . . . , Sn} is a set of 3-subsets of B, be our input X3C instance.
We form an election E = (C ∪ A, V ), where C = B ∪ {p}, A = {a1, . . . , an}, and V =
(v1, . . . , v2n+2). (Candidates in A are the spoiler candidates, which the attacker has the
ability to add to election (C, V ).)

Voters in V have the following preferences. For each Si ∈ S, voter vi reports preference
list p > B−Si > ai > Si > A−{ai} and voter vn+i reports preference list

←−−−−−−
A− {ai} > ai >←−

Si >
←−−−−
B − Si > p. Voter v2n+1 reports p > A > B and voter v2n+2 reports

←−
B > p >

←−
A .

We claim that there is a set A′ ⊆ A such that ‖A′‖ ≤ k and p is a unique winner of
(C ∪A′, V ) if and only if (B,S) is a “yes” instance of X3C.

To show the claim, let E′ = (C, V ). For each pair of distinct elements bi, bj ∈ B, we have
that NE′(bi, bj) = n+1, NE′(p, bi) = n+1, and NE′(bi, p) = n+1. That is, all candidates in
E′ tie. Now consider some set A′′ ⊆ A, ‖A′′‖ ≤ k, and an election E′′ = (C∪A′′, V ). Values
of NE′′ and NE′ are the same for each pair of candidates in {p}∪B. For each pair of distinct
elements ai, aj ∈ A′′, we have NE′′(p, ai) = n+ 2, NE′′(ai, p) = n, and NE′′(ai, aj) = n+ 1.
For each bi ∈ B and each aj ∈ A′′ we have that

NE′′(bi, aj) =
{
n if bi ∈ Sj ,
n+ 1 if bi /∈ Sj ,

and, of course, NE′′(aj , bi) = 2n+ 2−NE′′(bi, aj). Thus, by definition of maximin, we have
the following scores in E′′: (a) scoreE′′(p) = n + 1, (b) for each aj ∈ A′′, scoreE′′(aj) = n,
and (c) for each bi ∈ B,

scoreE′′(bi) =
{
n if (∃aj ∈ A′′)[bi ∈ Sj ],
n+ 1 otherwise.

A′′ corresponds to a family S′′ of 3-sets from S such that for each j, 1 ≤ j ≤ n, S′′

contains set Sj if and only if A′′ contains aj . Since ‖A′′‖ ≤ k, it is straightforward to see
that p is a unique winner of E′′ if and only if S′′ is an exact cover of B.

327



Faliszewski, Hemaspaandra, & Hemaspaandra

Copelandα, 0 ≤ α ≤ 1, is resistant to constructive AC control, but for α ∈ {0, 1},
Copelandα is vulnerable to constructive control by adding an unlimited number of candi-
dates. It turns out that so is maximin. However, interestingly, in contrast to Copeland,
maximin is also vulnerable to DC control.

Rather than just proving that, we will prove a bit more: We will just for this moment
discuss a different control type, ACu, that we will not consider to be one of the five basic
types. ACu control (called control by adding an unlimited number of candidates) is just
like control by adding candidates, except there (by definition) is no limit on the number
of candidates to add—in effect, one requires kAC = ‖A‖.14 We will show that maximin is
vulnerable not just to DC control but in fact even to ACu+DC control. Intuitively, in con-
structive ACu+DC control we should add as many candidates as possible (because adding
a candidate generally decreases other candidates’ scores, making our preferred candidate’s
way to victory easier) and then delete those candidates who stand in our candidate’s way
(i.e., those whose existence blocks the preferred candidate’s score from increasing). Studying
constructive ACu+DC control for maximin jointly leads to a compact, coherent algorithm.
If we were to consider both control types separately, we would have to give two fairly similar
algorithms while obtaining a weaker result.

Theorem 5.3. Maximin is vulnerable to constructive ACu+DC control.

Proof. We give a polynomial-time algorithm for constructive maximin-ACu+DC control.
The input contains an election E = (C, V ), a set of spoiler candidates A, a preferred
candidate p ∈ C, and a nonnegative integer kDC. Voters in V have preference lists over the
candidates in C ∪ A. We ask whether there exist sets A′ ⊆ A and C ′ ⊆ C such that (a)
‖C ′‖ ≤ kDC and (b) p is a unique winner of election ((C − C ′) ∪A′, V ). If kDC ≥ ‖C‖ − 1,
we accept immediately because we can delete all candidates but p. Otherwise, we use the
following algorithm.

Preparation. We rename the candidates in C and A so that C = {p, c1, . . . , cm} and A =
{cm+1, . . . , cm+m′}. Let E′ = (C ∪A, V ) and let P = {NE′(p, ci) | ci ∈ C ∪A}. That
is, P contains all the values that candidate p may obtain as scores upon deleting some
candidates from E′. For each k ∈ P , let Q(k) = {ci | ci ∈ C∪A−{p}∧NE′(p, ci) < k}.
Intuitively, Q(k) is the set of candidates in E′ that prevent p from having at least k
points.

14. The control type ACu is of some historical interest as it was used as the control by adding candidates
notion in the seminal paper on control. However, following a suggestion of Faliszewski, Hemaspaandra,
Hemaspaandra, and Rothe (2007), AC has been used in most work in recent years; it is the more natural
choice since it is analogous to the other three add/delete voter/candidate control types. In addition to
Theorem 5.3’s result about the constructive case, we mention in passing that maximin’s vulnerability to
destructive AC (see Theorem 5.4 in light of Proposition 4.9) implies that it is also vulnerable to ACu.
Readers wishing to know what results hold for the prong ACu for each of the election systems covered
in this paper can find that summarized in a table of Faliszewski et al. (2010a)—except for the α 6= 0.5
cases of Copelandα, and for those cases Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2009a)
can be referred to. Our entire set of tools in Section 4.2 is framed around the five basic control types, so
we do not here try to weave in ACu into the framework. We mention that tools apply well to this type
also, and so it would prove no special hurdle to incorporate it into the framework. Still, we feel that
AC (not ACu) is by far the more attractive way to frame control by adding candidates and so such an
addition is not compelling.

328



Multimode Control Attacks on Elections

Main loop. For each k ∈ P , our algorithm tests whether by deleting at most kDC candi-
dates from C and any number of candidates from A it is possible to ensure that p
obtains exactly k points and becomes a unique winner of E′. Let us fix some value
k ∈ P . We build a set D of candidates to delete. Initially, we set D = Q(k). It is
straightforward to see that deleting candidates in Q(k) is a necessary and sufficient
condition for p to have score k. However, deleting candidates in Q(k) is not necessarily
sufficient to ensure that p is a unique winner because candidates with scores greater
or equal to k may exist. We execute the following loop (which we will call the fixing
loop):

1. Set E′′ = ((C ∪A)−D,V ).

2. Pick a candidate d ∈ (C ∪A)−D such that scoreE′′(d) ≥ k (break from the loop
if no such candidate exists).

3. Add d to D and jump back to Step 1.

We accept if C ∩D ≤ kDC and we proceed to the next value of k otherwise.15 If none
of the values k ∈ P leads to acceptance then we reject.

Let us now briefly explain why the above algorithm is correct. It is straightforward to see
that in maximin adding some candidate c to an election does not increase other candidates’
scores, and deleting some candidate d from an election does not decrease other candidates’
scores. Thus, if after deleting candidates in Q(k) there still are candidates other than p with
k points or more, the only way to ensure p’s victory—without explicitly trying to increase
p’s score—is by deleting those candidates. Also, note that the only way to ensure that p
has exactly k points is by deleting candidates Q(k).

Note that during the execution of the fixing loop, the score of p might increase to some
value k′ > k. If that happens, it means that it is impossible to ensure p’s victory while
keeping his or her score equal to k. However, we do not need to change k to k′ in that
iteration of the main loop as we will consider k′ in a different iteration.

Maximin is also vulnerable to destructive AC+DC control. The proof relies on the fact
that (a) if there is a way to prevent a despised candidate from winning a maximin election
via adding some spoiler candidates then there is a way to do so by adding at most two
candidates, (b) adding a candidate cannot increase the score of any candidate other than
the added one, and (c) deleting a candidate cannot decrease the score of any candidate
other than the deleted one. In essence, the algorithm performs a brute-force search for
the candidates to add and then uses the constructive maximin-DC control algorithm from
Theorem 5.3.

Theorem 5.4. Maximin is vulnerable to destructive AC+DC control.

Proof. We remind the reader that part of the definition of destructive control by deleting
candidates is that one cannot simply delete one’s despised candidate.

15. If we accept, D implicitly describes the control action that ensures p’s victory: We should delete from
C the candidates in C ∩D and add from A the candidates in A−D.

329



Faliszewski, Hemaspaandra, & Hemaspaandra

We will first give an algorithm for destructive maximin-AC and then argue how it can
be combined with the algorithm from Theorem 5.3 to solve destructive maximin-AC+DC
in polynomial time.

Let us first focus on the destructive AC problem. Our input is an election E =
(C, V ), where C = {d, c1, . . . , cm} and V = (v1, . . . , vn), a spoiler candidate set A =
{cm+1, . . . , cm′}, and a nonnegative integer kAC. The voters have preference orders over
C ∪ A. The goal is to ensure that d is not a unique winner of E via adding at most kAC

candidates from A.
Let us assume that there exists a set A′ ⊆ A such that d is not a unique winner of

election E′ = (C ∪A′, V ). Since d is not a unique winner of E′, there exists some candidate
c′ ∈ C ∪ A′ such that scoreE′(c′) ≥ scoreE′(d). Also, by definition of maximin, there is
some candidate d′ ∈ C ∪A′ such that scoreE′(d) = NE′(d, d′). As a consequence, d is not a
unique winner of election E′′ = (C ∪{c′, d′}, V ). The reason is that scoreE′′(d) = scoreE′(d)
(because both E′ and E′′ contain d′) and scoreE′′(c′) ≥ scoreE′(c′) (because adding the
remaining A′−{c′, d′} candidates to E′′ does not increase c′’s score). Thus, to test whether
it is possible to ensure that d is not a unique winner of E, it suffices to test whether there
is a set A′′ ⊆ A such that ‖A′′‖ ≤ min(2, kAC) and d is not a unique winner of (C ∪A′′, V ).
Note that this test can be carried out in polynomial time.

Let us now consider the AC+DC case. The input and the goal are the same as before,
except that now we are also given a nonnegative integer kDC and we are allowed to delete
up to kDC candidates. We now describe our algorithm. For each set {c′, d′} of up to two
candidates, {c′, d′} ⊆ (C ∪A)− {d} we execute the following steps.

1. We check if ‖A∩ {c′, d′}‖ ≤ kAC (and we proceed to the next {c′, d′} if this is not the
case).

2. We compute a set D ⊆ C − {d, c′, d′}, ‖D‖ ≤ kDC, that maximizes scoreE′(c′), where
E′ = ((C ∪ {c′, d′})−D,V ).

3. If d is not a unique winner of E′ = ((C ∪ {c′, d′})−D,V ), we accept.

We reject if we do not accept for any {c′, d′} ⊆ (C ∪A)− {d}.
The intended role of d′ is to lower the score of d and keep it at a fixed level, while, of

course, the intended role of c′ is to defeat d. By reasoning analogous to that for the AC
case, we can see that there is no need to add more than two candidates. Thus, given {c′, d′},
it remains to compute the appropriate set D. In essence, we can do so in the same manner
as in the constructive AC+DC case.

Let k be some positive integer. We set D(k) = {ci ∈ C −{c′, d′, d} | NE(c′, ci) < k} and
we pick D = D(i), where i is as large as possible (but no larger than ‖V ‖) and ‖D‖ ≤ kDC.
Deleting candidates in D maximizes the score of c′, given that we cannot delete d and d′ (we
cannot delete d by definition of control by deleting candidates, and we cannot—or, more
precisely, do not want to—delete d′ because the role of d′ in our algorithm is to keep the
score of d in check). It is straightforward to see that this D can be computed in polynomial
time.

330



Multimode Control Attacks on Elections

5.2 Control by Adding and Deleting Voters in Maximin

In this section we consider the complexity of constructive and destructive AV and DV con-
trol types. (We will consider bribery, BV, in the next section; recall that in this paper,
bribery is a basic control type, though it is usually treated separately in the literature.) In
the previous section we have seen that maximin is vulnerable to all basic types of construc-
tive and destructive candidate control except for constructive control by adding candidates
(constructive AC control). The situation regarding voter control is quite different: As
shown in the next three theorems, maximin is resistant to all basic types of constructive
and destructive voter control.

Theorem 5.5. Maximin is resistant to constructive and destructive AV control.

Proof. We will first give an NP-hardness proof for the constructive case and then we will
describe how to modify it for the destructive case.

We now give a reduction of the X3C problem to the constructive maximin-AV problem.
Our input X3C instance is (B,S), where B = {b1, . . . , b3k} is a set of 3k distinct elements
and S = {S1, . . . , Sn} is a family of n 3-element subsets of B. Without loss of generality,
we assume k ≥ 1. Our reduction outputs the following instance. We have an election
E = (C, V ), where C = B ∪ {p, d} and V = (v1, . . . , v4k). There are 2k voters with
preference order d > B > p, k voters with preference order p > B > d, and k voters with
preference order p > d > B. In addition, we have a collection W = (w1, . . . , wn) of voters
who can be added, where the i’th voter, 1 ≤ i ≤ n, has preference order

B − Si > p > Si > d.

We claim that there is a subcollection W ′ ⊆ W such that ‖W ′‖ ≤ k and p is a unique
winner of election (C, V ∪W ′) if and only if (B,S) is a “yes” instance of X3C.

It is straightforward to verify that for each bi ∈ B it holds that NE(p, bi) = 2k, and
that NE(p, d) = 2k. Thus scoreE(p) = 2k. Similarly, it is straightforward to verify that
scoreE(d) = 2k, and that for each bi ∈ B, scoreE(bi) ≤ k. Let W ′′ be a subcollection of W
such that ‖W ′′‖ ≤ k and let E′′ = (C, V ∪W ′′). For each bi ∈ B it holds that scoreE′′(bi) ≤
2k. Since each voter in W ranks d as the least desirable candidate, scoreE′′(d) = 2k. What
is p’s score in election E′′? If there exists a candidate bi ∈ B such that there is no voter
wj in W ′′ that prefers p to bi, then scoreE′′(p) = 2k (because NE′′(p, bi) = 2k). Otherwise,
scoreE′′(p) ≥ 2k + 1. Thus p is a unique winner of E′′ if and only if W ′′ corresponds to an
exact cover of B. This proves our claim and, as the reduction is straightforwardly seen to
be computable in polynomial time, concludes the proof for the constructive maximin-AC
case.

To show that destructive maximin-AC is NP-hard, we use the same reduction, except
that we remove from V a single voter with preference list p > B > d, and we set the task
to preventing d from being a unique winner. Removing a p > B > d voter from V ensures
that before we start adding candidates, d has score 2k (and this score cannot be changed),
p has score 2k− 1 (and p needs to get one point extra over each other candidate to increase
his or her score and prevent d from being a unique winner), and each bi ∈ B has score
k− 1 (thus no candidate in B can obtain score higher than 2k− 1 via adding no more than
k candidates from W ). The same reasoning as for the constructive case proves that the
reduction correctly reduces X3C to destructive maximin-AV.

331



Faliszewski, Hemaspaandra, & Hemaspaandra

Theorem 5.6. Maximin is resistant to constructive and destructive DV control.

Proof. We will first show NP-hardness for constructive maximin-DV control and then we
will argue how to modify the construction to obtain the result for the destructive case.

Our reduction is from X3C. Let (B,S) be our input X3C instance, where B =
{b1, . . . , b3k}, S = {S1, . . . , Sn}, and for each i, 1 ≤ i ≤ n, ‖Si‖ = 3. Without loss of
generality, we assume that n ≥ k ≥ 3 (if n < k then S does not contain a cover of B, and
if k ≤ 2 we can solve the problem by brute force). We form an election E = (C, V ), where
C = B ∪ {p, d} and where V = V ′ ∪ V ′′, V ′ = (v′1, . . . , v

′
2n), V ′′ = (v′′1 , . . . , v

′′
2n−k+2). For

each i, 1 ≤ i ≤ n, voter v′i has preference order

d > B − Si > p > Si

and voter v′n+i has preference order

d >
←−
Si > p >

←−−−−
B − Si.

Among the voters in V ′′ we have: 2 voters with preference order p > d > B, n − k voters
with preference order p > B > d, and n voters with preference order B > p > d. We claim
that it is possible to ensure that p is a unique winner of election E via deleting at most k
voters if and only if (B,S) is a “yes” instance of X3C.

Via routine calculation we see that candidates in election E have the following scores:

1. scoreE(d) = 2n (because NE(d, p) = 2n and for each bi ∈ B, NE(d, bi) = 2n+ 2),

2. scoreE(p) = 2n−k+2 (because NE(p, d) = 2n−k+2 and for each bi ∈ B, NE(p, bi) =
2n− k + 2), and

3. for each bi ∈ B, scoreE(bi) ≤ 2n− k (because NE(bi, d) = 2n− k).

Before any voters are deleted, d is the unique winner with k − 2 more points than p. Via
deleting at most k voters it is possible to decrease d’s score at most by k points. Let W be
a collection of voters such that p is the unique winner of E′ = (C, V −W ). We partition
W into W ′ ∪ W ′′, where W ′ contains those members of W that belong to V ′ and W ′′

contains those members of W that belong to V ′′. We claim that W ′′ is empty. For the
sake of contradiction let us assume that W ′′ 6= ∅. Let E′′ = (C, V − W ′′). Since every
voter in V ′′ prefers p to d, we have that NE′′(p, d) = NE(p, d) − ‖W ′′‖ and, as a result,
scoreE′′(p) ≤ scoreE(p)−‖W ′′‖. In addition, assumingW ′′ is not empty, it is straightforward
to observe that scoreE′′(d) ≥ scoreE(d)−‖W ′′‖+ 1 (the reason for this is that deleting any
single member of V ′′ does not decrease d’s score). That is, we have that:

scoreE′′(p) ≤ 2n− k + 2− ‖W ′′‖,
scoreE′′(d) ≥ 2n+ 1− ‖W ′′‖.

So in E′′, d has at least k − 1 more points than p. Since ‖W ′′‖ ≥ 1, we can delete at most
k− 1 voters W ′ from election E′′. But then p will not be a unique winner of E′, which is a
contradiction.

Thus W contains members of V ′ only. Since d is ranked first in every vote in V ′, deleting
voters from W decreases d’s score by exactly ‖W‖. Further, deleting voters W certainly
decreases p’s score by at least one point. Thus after deleting voters W we have:

332



Multimode Control Attacks on Elections

1. scoreE′(d) = 2n− ‖W‖,

2. scoreE′(p) ≤ 2n− k + 2− 1 = 2n− k + 1.

In consequence, the only possibility that p is a unique winner after deleting voters W is
that ‖W‖ = k and we have equality in item 2 above. It is straightforward to verify that
this equality holds if and only if W contains k voters among v′1, . . . , v

′
n that correspond to

an exact cover of B via sets from S (recall that k ≥ 3). This proves that our reduction is
correct, and since the reduction is straightforwardly seen to be computable in polynomial
time, completes the proof of NP-hardness of constructive maximin-DV control.

Let us now consider the destructive case. Let (B,S) be our input X3C instance (with B
and S as in the constructive case). We form election E = (C, V ) which is identical to the one
created in the constructive case, except that V ′′ = (v′′1 , . . . , v

′′
2n−k) and we set these voters’

preference orders as follows: There is one voter with preference order p > d > B, n − k
voters with preference order p > B > d, and n− 1 voters with preference order B > p > d.
(That is, compared to the constructive case, we remove one voter with preference order
p > d > B and one with preference order B > p > d.) It is straightforward to see that d is
the unique winner of election E and we claim that he or she can be prevented from being
a unique winner via deleting at most k voters if and only if there is an exact cover of B by
k sets from S.

Via routine calculation, it is straightforward to verify that scoreE(d) = 2n, and that
scoreE(p) = 2n − k. The former holds because NE(d, p) = 2n and NE(d, bi) = 2n + 1
and the latter holds because NE(p, d) = 2n − k and for each candidate bi ∈ B we have
NE(p, bi) = 2n − k + 1. In addition, each candidate bi ∈ B has score at most 2n − k − 1.
Thus it is possible to ensure that d is not a unique winner via deleting at most k voters if
and only if there are exactly k voters the deletion of which would decrease the score of d by
k points and would not decrease p’s score. Let us assume that such a collection of voters
exists and let W be such a collection. Since every voter in V ′′ prefers p to d, note that W
does not contain any voter in V ′′. Thus W contains exactly k voters from V ′. Since for
each bi ∈ B we have NE(p, bi) = 2n− k + 1, for each bi ∈ B W contains at most one voter
who prefers p to bi. Since ‖B‖ = 3k and k ≥ 3, this implies that W contains exactly a
collection of voters corresponding to some exact cover of B by sets in S. This completes
the proof for the destructive case.

5.3 Bribery in Maximin

We now move on to bribery in maximin. Given the previous results, it is not surprising that
maximin is resistant both to constructive bribery and to destructive bribery. Our proof is
an application of the “UV technique” of Faliszewski, Hemaspaandra, Hemaspaandra, and
Rothe (2009a). Very informally, the idea is to build an election in a way that ensures that
the briber is limited to bribing only those voters who rank two special candidates ahead of
the preferred one.

Theorem 5.7. Maximin is resistant to constructive and destructive BV control.

Proof. Our proofs follow via reductions from X3C. The reduction for the constructive case
is almost identical the one for the constructive case and thus we will consider both cases in
parallel.

333



Faliszewski, Hemaspaandra, & Hemaspaandra

Our reductions work as follows. Let (B,S) be an instance of X3C, where B =
{b1, . . . , b3k} is a set of 3k distinct elements, and S = {S1, . . . , Sn} is a family of 3-element
subsets of B. (Without loss of generality, we assume that n > k > 1. If this is not the case,
it is trivial to verify if (B,S) is a “yes” instance of X3C.) We construct a set of candidates
C = {p, d, s}∪B, where p is our preferred candidate (the goal in the constructive setting is
to ensure p is a unique winner) and d is our despised candidate (the goal in the destructive
setting is to prevent d from being a unique winner). We construct six collections of voters,
V 1, V 2, V 3, V 4, V 5, V 6, as follows:

1. V 1 contains 2n voters, v1
1, . . . , v

1
2n. For each i, 1 ≤ i ≤ n, voters v1

i and v1
i+n have the

following preference orders:

v1
i : d > s > Si > p > B − Si

v1
n+i :

←−−−−
B − Si > p >

←−
Si > d > s.

2. V 2 contains 2k voters, v2
1, . . . , v

2
2k. For each i, 1 ≤ i ≤ k, voters v2

i and v2
i+k have the

following preference orders:

v2
i : s > d > p > B

v2
k+i :

←−
B > d > p > s.

3. V 3 contains 2k voters, v3
1, . . . , v

3
2k. For each i, 1 ≤ i ≤ k, voters v3

i and v3
i+k have the

following preference orders:

v3
i : d > s > p > B

v3
k+i :

←−
B > s > p > d.

4. V 4 contains 4k voters, v4
1, . . . , v

4
4k. For each i, 1 ≤ i ≤ 2k, voters v4

i and v4
i+2k have

the following preference orders:

v4
i : d > B > p > s

v4
2k+i : s > p > d >

←−
B.

5. V 5 contains 2 voters, v5
1, v

5
2 with the following preference orders

v5
1 : s > B > p > d

v5
2 : d >

←−
B > p > s.

6. V 6 contains a single voter, v6
1, with preference order p > d > s > B.

We form two elections, Ec and Ed, where Ec = (C, V 1 ∪ · · · ∪ V 6) and Ed = (C, V 1 ∪
· · · ∪ V 5); that is, Ec and Ed are identical except Ed does not contain the single voter from
V 6. Ec contains 2n+ 8k+ 3 voters and Ed contains 2n+ 8k+ 2 voters. Values of NEc and
NEd for each pair of candidates are given in Table 4.

334



Multimode Control Attacks on Elections

(a) Values of NEc(·, ·).

p d s B

p – n+ 3k + 2 n+ 3k + 2 n+ 4k + 1
d n+ 5k + 1 – 2n+ 4k + 2 n+ 6k + 2
s n+ 5k + 1 4k + 1 – n+ 4k + 2
B n+ 4k + 2 n+ 2k + 1 n+ 4k + 1 ≤ n+ 4k + 2

(b) Values of NEd(·, ·).

p d s B

p – n+ 3k + 1 n+ 3k + 1 n+ 4k
d n+ 5k + 1 – 2n+ 4k + 1 n+ 6k + 1
s n+ 5k + 1 4k + 1 – n+ 4k + 1
B n+ 4k + 2 n+ 2k + 1 n+ 4k + 1 n+ 4k + 1

Table 4: Values of NEc(·, ·) and NEd(·, ·) for each pair of candidates. Let E be one of Ec, Ed.
An entry in row c′ ∈ {p, d, s} and column c′′ ∈ {p, d, s}, c′ 6= c′′, of the appropriate
table above gives value NE(c′, c′′). For row B and for column B we adopt the
following convention. For each c ∈ {p, d, s} and for each bi ∈ B, an entry in row B
and column c is equal to NE(bi, c). For each c ∈ {p, d, s} and for each bi ∈ B, an
entry in row c and column B is equal to NE(c, bi). For each two distinct bi, bj ∈ B,
the entry in row B and column B is the upper bound on NE(bi, bj). (For Ed this
entry is, in fact, exact.)

For the constructive case, we claim that it is possible to ensure that p is a unique winner
of election Ec by bribing at most k voters if and only if (B,S) is a “yes” instance of X3C.
Let us now prove this claim. By inspecting Table 4, and recalling that n > k > 1, we see
that scoreEc(p) = n + 3k + 2, scoreEc(d) = n + 5k + 1, scoreEc(s) = 4k + 1, and for each
bi ∈ B, scoreEc(bi) ≤ n+ 2k + 1. That is, prior to any bribing, d is the unique winner and
p has the second highest score.

It is straightforward to see that by bribing t ≤ k voters, the briber can change each
candidate’s score by at most t points. Thus, for the bribery to be successful, the briber has
to bribe exactly k voters in such a way that d’s score decreases to n+ 4k + 1 and p’s score
increases to n+ 4k+ 2. To achieve this, the briber has to find a collection V ′ of voters such
that ‖V ′‖ = k, and

1. each voter in V ′ ranks p below both d and s, and

2. for each bi ∈ B, there is a voter in V ′ who ranks p below bi.

The only voters that satisfy the first condition are v1
1, . . . , v

1
n, v

2
1, . . . , v

2
k, v

3
1, . . . , v

3
k. Further,

among these voters only v1
1, . . . , v

1
n rank p below some member of B and, in fact, for each

i, 1 ≤ i ≤ n, v1
i ranks p below exactly three members of B. Thus it is straightforward to

see that each k voters from v1
1, . . . , v

1
n, v

2
1, . . . , v

2
k, v

3
1, . . . , v

3
k that satisfy the second condition

correspond naturally to a cover of B by sets from S. (Note that it suffices that the briber
bribes voters in V ′ to rank p first without changing the votes in any other way, and that

335



Faliszewski, Hemaspaandra, & Hemaspaandra

changing the votes in any other way than ranking p first is not necessary.) As a result, if it
is possible to ensure that p is a winner of Ec by bribing at most k voters then (B,S) is a
“yes” instance of X3C. For the other direction, it is straightforward to verify that if (B,S)
is a “yes” instance of X3C then bribing k voters from v1

1, . . . , v
1
n that correspond to a cover

of B to rank p first suffices to ensure that p is a unique winner. This completes the proof
for the constructive case.

For the destructive case, we claim that it is possible to ensure that d is not a unique
winner of Ed if and only if (B,S) is a “yes” instance of X3C. The proof is analogous to the
constructive case: It suffices to note that p is the only candidate that can possibly tie for
victory with d. The rest of the proof proceeds as for the constructive case.

6. Fixed-Parameter Tractability

In this section we consider the parameterized complexity of multipronged control, in par-
ticular, the case where we can assume that the number of candidates is a small constant.
Elections with few candidates are very natural. For example, in many countries presidential
elections involve only a handful of candidates.

The main result of this section is that for many natural election systems E (formally,
for all election systems whose winner determination problem can be expressed via an inte-
ger linear program of a certain form), it holds that the E-AC+DC+AV+DV+BV control
problem is fixed-parameter tractable (is in the complexity class FPT) for the parameter
“number of candidates,” both in the constructive setting and in the destructive setting.
This result combines and significantly enhances FPT results from the literature, in par-
ticular, from the papers of Faliszewski, Hemaspaandra, and Hemaspaandra (2009a) and
Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2009a), which are the model for
and inspiration of this section. We also make explicit an “automatic” path to such results
that is implicit in the work of the two papers cited in the previous sentence. This path
should be helpful in letting many future analyses be done as tool-application exercises,
rather than being case-by-case challenges.

The present paper is not the only paper to pick up on the type of pattern in the earlier
work just mentioned, and to present a definition and results building on that. Independently
of the present paper, Dorn and Schlotter (2010) have done this in a different, bribery-related
context.

In this section we focus exclusively on the number of candidates as our parameter. That
is, our parameter is the number of candidates initially in the election plus the number of
candidates (if any) in the set of potential additional candidates. That is, in terms of the
variables we have been using to describe multiprong control the parameter is ‖C‖+ ‖A‖.

We mention that researchers sometimes analyze other parameterizations. For example,
Liu et al. (2009), Liu and Zhu (2010), and Betzler and Uhlmann (2009) consider as the
parameter the amount of change that one is allowed to use (e.g., the number of candi-
dates one can add), Bartholdi, Tovey, and Trick (1989b), Betzler and Uhlmann (2009), and
Faliszewski, Hemaspaandra, Hemaspaandra, and Rothe (2009a) study as the parameter the
number of voters (and also sometimes the number of candidates). And other parameters are
sometimes used when considering the so-called possible winner problem (see, e.g., Betzler
& Dorn, 2009; Betzler, Hemmann, & Niedermeier, 2009). However, we view the parameter

336



Multimode Control Attacks on Elections

“number of candidates” as the most essential and the most natural one. We now proceed
with our discussion of fixed-parameter tractability, with the number of candidates as the
parameter.

Let us consider an election system E and a set C = {c1, . . . , cm} of candidates. There are
exactlym! preference orders over the candidates in C and we will refer to them as o1, . . . , om!.
Let us assume that E is anonymous (i.e., the winners of each E election do not depend on
the order of votes or the names of the voters, but only—for each preference order oi—on
the number of votes with that preference order). We define predicate winE(cj , n1, . . . , nm!)
to be true if and only if ci is a unique winner of E elections with C = {c1, . . . , cm}, where
for each i, 1 ≤ i ≤ m!, there are exactly ni voters with preference order oi. For the rest
of this section, our inequalities always use one of the four operators “>,” “≥,” “<,” and
“≤.”16

Definition 6.1. We say that an anonymous election system E is unique-winner (nonunique-
winner) integer-linear-program implementable if for each set of candidates C = {c1, . . . , cm}
and each candidate cj ∈ C there exists a set S of linear inequalities with variables n1, . . . , nm!

such that:

1. If the integer assignment n1 = n̂1, . . ., nm! = n̂m! satisfies S, then each n̂i belongs to
N,17

2. S can be computed (i.e., obtained) in time polynomial in m!,18 and

3. for each (n̂1, . . . , n̂m!) ∈ Nm!, we have that (a) holds if and only if (b) holds, where (a)
and (b) are as follows:

(a) S is satisfied by the assignment n1 = n̂1, . . ., nm! = n̂m!.

(b) cj is a unique winner (is a winner) of an E election in which for each i, 1 ≤
i ≤ m!, there are exactly n̂i voters with preference order oi, where oi is the i’th
preference order over the set C.

16. We allow both strict and nonstrict inequalities. Since we allow only integer solutions, it is straightforward
to simulate strict inequalities with nonstrict ones and to simulate nonstrict inequalities with strict ones,
in both cases simply by adding a “1” to the appropriate side of the inequality. So we could equally well
have allowed just strict, or just nonstrict, inequalities.

17. It is straightforward to to put m! inequalities into S enforcing this condition. And this condition will
help us make the electoral part of our definition meaningful, i.e., it will avoid having problems from the
restriction in the final part of this definition that lets us avoid discussing negative numbers of voters.

18. We mention in passing that if the m! in this part of the definition were changed to any other computable

function of m, e.g., mmmm

, we would still obtain FPT results, and still would have them hold even
in the strengthened version of FPT in which the f of “f(parameter) · InputsizeO(1)” is required to be
computable. However, due to m! being the number of preference orders over m candidates, having S be
obtainable in time polynomial in m! will in practice be a particularly common case.

We also mention in passing that the FPT-establishing framework in this section and the results it
yields, similarly to the case in our work mentioned earlier (Faliszewski, Hemaspaandra, & Hemaspaan-
dra, 2009a; Faliszewski, Hemaspaandra, Hemaspaandra, & Rothe, 2009a), not only will apply in the
model where votes are input as a list of ballots, one per person, but also will hold in the so-called
“succinct” model (see Faliszewski, Hemaspaandra, & Hemaspaandra, 2009a; Faliszewski, Hemaspaan-
dra, Hemaspaandra, & Rothe, 2009a), in which we are given the votes not as individual ballots but as
binary numbers providing the number of voters having each preference order (or having each occurring
preference order).

337



Faliszewski, Hemaspaandra, & Hemaspaandra

In a slight abuse of notation, for integer-linear-program implementable election sys-
tems E we will simply refer to the set S of linear inequalities from Definition 6.1 as
winE(cj , n1, . . . , nm!). The particular set of candidates will always be clear from context.
Naturally, it is straightforward to adapt Definition 6.1 to apply to approval voting, but for
the sake of brevity we will not do so.

We are not aware of any natural systems that are integer-linear-program unique-winner
implementable yet not integer-linear-program nonunique-winner implementable, or vice
versa. In this paper we focus on the unique winner model so the reader may wonder
why we defined the nonunique winner variant of integer-linear-program implementability.
The answer is that, as we will see later in this section, it is a useful notion when dealing
with destructive control.

The class of election systems that are integer-linear-program implementable is remark-
ably broad. For example, it is variously implicit in or a consequence of results of Faliszewski,
Hemaspaandra, and Hemaspaandra (2009a) that plurality, veto, Borda, Dodgson, and each
polynomial-time computable (in the number of candidates) family of scoring protocols are
integer-linear-program implementable.19 For many other election systems—e.g., Kemeny
voting (Kemeny, 1959; Young & Levenglick, 1978) and Copeland voting—it is not clear
whether they are integer-linear-program implementable, but there are similar approaches
that will be as useful for us. We will return to this issue at the end of this section.

Theorem 6.2. Let E be an integer-linear-program unique-winner implementable election
system. For number of candidates as the parameter, constructive E-AC+DC+AV+DV+BV
is in FPT.

Proof. Let (C,A, V,W, p, kAC, kDC, kAV, kDV, kBV) be our input instance of the construc-
tive E-AC+DC+AV+DV+BV control problem, as described in Definition 4.1. Let C =
{p, c1, . . . , cm′} and A = {a1, . . . , am′′}. Our parameter, the total number of candidates, is
m = m′+m′′+1. For each subset K of C∪A we let oK1 , . . . , o

K
‖K‖! mean the ‖K‖! preference

orders over K.
The idea of our algorithm is to perform an exhaustive search through all the subsets of

candidates K, K ⊆ C ∪A, and for each K check whether (a) it is possible to obtain K from
C by deleting at most kDC candidates and adding at most kAC candidates from A, and (b)
it is possible to ensure that p is a unique winner of election (K,V ) by deleting at most kDV

voters, adding at most kAV voters from W , and bribing at most kBV voters. Given K, step
(a) can straightforwardly be implemented in polynomial time. To implement step (b), we
introduce a linear integer program P (K), which is satisfiable if and only if step (b) holds.
Let us now fix K ⊆ C ∪A and describe the integer linear program P (K).

We assume that p ∈ K as it is not legal to delete p (and it would be pointless, given
that we want to ensure his or her victory). We interpret preference orders of voters in V
and W as limited to the candidate set K. We use the following constants in our program.

19. Let m be the number of candidates. A scoring protocol is a vector of m nonnegative integers satisfying
α1 ≥ α2 ≥ · · · ≥ αm. Each candidate receives αi points for each vote that ranks him or her in the i’th
position, and the candidate(s) with most points win. Many election systems can be viewed as families
of scoring protocols. For example, plurality is defined by scoring protocols of the form (1, 0, . . . , 0), veto
is defined by scoring protocols of the form (1, . . . , 1, 0), and Borda is defined by scoring protocols of the
form (m− 1,m− 2, . . . , 0), where m is the number of candidates.

338



Multimode Control Attacks on Elections

For each i, 1 ≤ i ≤ ‖K‖!, we let nVi be the number of voters in V with preference order oKi ,
and we let nWi be the number of voters in W with preference order oKi . P (K) contains the
following variables (described together with their intended interpretation):

Variables av1, . . . , av‖K‖!. For each i, 1 ≤ i ≤ ‖K‖!, we interpret avi as the number of
voters with preference oKi that we add from W .

Variables dv1, . . . , dv‖K‖!. For each i, 1 ≤ i ≤ ‖K‖!, we interpret dvi as the number of
voters with preference oKi that we delete from V .

Variables bv1,1, bv1,2, . . . , bv1,‖K‖!, bv2,1, . . . , bv‖K‖!,‖K‖!. For each i, j, 1 ≤ i, j ≤
‖K‖!, we interpret bvi,j as the number of voters with preference oKi that, in case
i 6= j, we bribe to switch to preference order oKj , or, in case i = j, we leave unbribed.

P (K) contains the following constraints.

1. All the variables have nonnegative values.

2. For each variable avi, 1 ≤ i ≤ ‖K‖!, there are enough voters in W with preference
order oKi to be added. That is, for each i, 1 ≤ i ≤ ‖K‖!, we have a constraint
avi ≤ nWi . Altogether, we can add at most kAV voters so we have a constraint∑‖K‖!

i=1 avi ≤ kAV.

3. For each variable dvi, 1 ≤ i ≤ ‖K‖!, there are enough voters in V with preference
order oKi to be deleted. That is, for each i, 1 ≤ i ≤ ‖K‖!, we have a constraint
dvi ≤ nVi . Altogether, we can delete at most kDV voters so we have a constraint∑‖K‖!

i=1 dvi ≤ kDV.

4. For each variable bvi,j , 1 ≤ i, j ≤ ‖K‖!, there are enough voters with preference oKi
to be bribed. That is, for each i, 1 ≤ i ≤ ‖K‖!, we have a constraint

∑‖K‖!
j=1 bvi,j =

nVi + avi − dvi (the equality comes from the fact that for each i, 1 ≤ i ≤ ‖K‖!, bvi,i
is the number of voters with preference oKi that we do not bribe). Altogether, we can
bribe at most kBV voters so we also have a constraint‖K‖!∑

i=1

‖K‖!∑
j=1

bvi,j

− ‖K‖!∑
i=1

bvi,i ≤ kBV.

5. Candidate p is the unique winner of the election after we have executed all the adding,
deleting, and bribing of voters. Using the fact that E is integer-linear-program unique-
winner implementable, we can express this as winE(p, `1, . . . , `‖K‖!), where we sub-

stitute each `j , 1 ≤ j ≤ ‖K‖!, by
∑‖K‖!

i=1 bvi,j (note that, by previous constraints,
variables describing bribery already take into account adding and deleting voters).
This is a legal integer-linear-program constraint as winE(p, `1, . . . , `‖K‖!) is simply a
conjunction of linear inequalities over `1, . . . , `‖K‖!.

The number of variables and the number of inequalities in P (K) are each polynomially
bounded in m!. Keeping in mind Definitions 4.1 and 6.1, it is straightforward to see that pro-
gram P (K) does exactly what we expect it to. And testing whether P (K) is satisfiable (i.e.,

339



Faliszewski, Hemaspaandra, & Hemaspaandra

has an integer solution, as we are in the framework of an integer linear program) is in FPT,
with respect to the number of candidates being our parametrization, by using Lenstra’s
(1983) algorithm. Thus our complete FPT algorithm for the E-AC+DC+AV+DV+BV
problem works as follows. For each subset K of C ∪ A that includes p we execute the
following two steps:

1. Check whether it is possible to obtain K from C by deleting at most kDC candidates
and by adding at most kAC candidates from A.

2. Form linear program P (K) and check whether it has any integral solutions using the
algorithm of Lenstra (1983). Accept if so.

If after trying all sets K we have not accepted, then reject.
From the previous discussion, this algorithm is correct. Also, since (a) there are exactly

2m−1 sets K to try, (b) executing the first step above can be done in time polynomial
in m, and (c) the second step is in FPT (given that m is the parameter), constructive
E-AC+DC+AV+DV+BV is in FPT for parameter m.

Theorem 6.2 deals with constructive control only. However, using its proof, it is straight-
forward to prove a destructive variant of the result. We say that an election system is
strongly voiced (Hemaspaandra et al., 2007) if it holds that whenever there is at least one
candidate, there is at least one winner.20

Corollary 6.3. Let E be a strongly voiced, integer-linear-program nonunique-winner imple-
mentable election system. Destructive E-AC+DC+AV+DV+BV is in FPT for the param-
eter number of candidates.

To see that the corollary holds, it is enough to note that for strongly voiced election
systems a candidate can be prevented from being a unique winner if and only if some other
candidate can be made a (possibly nonunique) winner (see, e.g., Footnote 5 of Hemaspaan-
dra et al., 2007, for a relevant discussion). Thus to prove Corollary 6.3, we can simply
use an algorithm that for each candidate other than the despised one sees whether that
candidate can be made a (perhaps nonunique) winner, and if any can be made a (perhaps
nonunique) winner, declares destructive control achievable. (And the precise integer linear
programming feasibility problem solution given by Lenstra’s algorithm will reveal what ac-
tion achieves the control.) This can be done in FPT using the algorithm from the proof of
Theorem 6.2, adapted to work for the nonunique-winner problem (this is trivial given that
Corollary 6.3 assumes that E is integer-linear-program nonunique-winner implementable).

Let us now go back to the issue that some election systems may not be integer-linear-
program implementable. As an example, let us consider maximin. Let E = (C, V ) be
an election, where C = {c1, . . . , cm} and V = (v1, . . . , vn). As before, by o1, . . . , om! we
mean the m! possible preference orders over C, and for each i, 1 ≤ i ≤ m!, by ni we

20. Please recall Footnote 5. In this paper’s model of elections, which is the one that matches that of
the previous papers studying control, the notion of election does allow an election system to have on
some inputs no winner. However, we mention that in the social choice world, formalizations of elections
typically build into their definition an exclusion of the possibility of having no winners, and so in that
world, “strongly voiced” would seem a strange concept to explicitly define and require, as it is built into
the general definition from the start.

340



Multimode Control Attacks on Elections

mean the number of voters in V that report preference order oi. For each ci and cj in C,
ci 6= cj , we let O(ci, cj) be the set of preference orders over C where ci is preferred to cj . Let
k = (k1, . . . , km) be a vector of nonnegative integers such that for each i, 1 ≤ i ≤ m, it holds
that 1 ≤ ki ≤ m. For such a vector k and a candidate c` ∈ C we define M(c`, k1, . . . , km)
to be the following set of linear integer inequalities:

1. For each candidate ci, his or her maximin score is equal to NE(ci, cki). That is, for
each i, j, 1 ≤ i, j ≤ m, i 6= j, we have constraint

∑
ok∈O(ci,cki )

nk ≤
∑

ok∈O(ci,cj)
nk

2. c` has the highest maximin score in election E and thus is the unique winner of
E. That is, for each i, 1 ≤ i ≤ m, i 6= `, we have constraint

∑
ok∈O(c`,ck` )

nk >∑
ok∈O(ci,cki )

nk.

It is straightforward to see that c` is a unique maximin winner of E if and only if there is a
vector k = (k1, . . . , km) such that all inequalities of M(c`, k1, . . . , km) are satisfied. It is also
straightforward how to modify the above construction to handle the nonunique winner case.
Since there are only O(mm) vectors k to try and each M(c`, k1, . . . , km) contains O(m2)
inequalities, it is straightforward to modify the proof of Theorem 6.2 to work for maximin:
Assuming that one is interested in ensuring candidate c`’s victory, one simply has to replace
program P (K) in the proof of Theorem 6.2 with a family of programs that each include a
different M(c`, k1, . . . , km) for testing if c` had won. And one would accept if any of these
were satisfiable. Thus we have the following result.

Corollary 6.4. Constructive AC+DC+AV+DV+BV control and destructive
AC+DC+AV+DV+BV control are both in FPT for maximin for the parameter number of
candidates.

The above construction for the winner problem in maximin can be viewed as, in ef-
fect, a disjunction of a set of integer linear programs. Such constructions for the winner
problem have already been obtained for Kemeny elections21 by Faliszewski, Hemaspaan-
dra, and Hemaspaandra (2009a) and for Copeland elections by Faliszewski, Hemaspaandra,
Hemaspaandra, and Rothe (2009a). Thus we have the following theorem.

21. Our definition is one that is for the notion of a Kemeny voting system where voting is by preference
orders (so no ties within a voter’s preferences are allowed) and the allowed values for a Kemeny consensus
(soon to be defined) are also limited to preference orders. This is not the notion from the original
papers (Kemeny, 1959; Young & Levenglick, 1978), but rather is the notion of Kemeny elections used
by Faliszewski, Hemaspaandra, and Hemaspaandra (2009a), who themselves mention they are following
the Saari and Merlin (2000) notion of Kemeny elections; interestingly, Hemaspaandra, Spakowski, and
Vogel (2005) ensure that their own main result, which is about the complexity of the winner problem
for Kemeny elections, holds for both cases, but they have to use real care to make that hold. So, all
that being said, Kemeny elections are (as used in this paper) defined as follows. Let E = (C, V ) be an
election, where C = {c1, . . . , cm} and V = (v1, . . . , vn). For each preference order r and each voter vi,
1 ≤ i ≤ n, let d(r, vi) be the number of inversions between r and the preference order of vi (i.e., the
number of pairs of candidates {ci, cj} ranked by vi and r in the opposite order). The Kemeny score of
a preference order r is defined as

Pn
i=1 d(r, vi). A preference order r is said to be a Kemeny consensus

if its Kemeny score is lowest (tied for lowest is fine—the lowest does not have to be unique) among
all preference orders over C. A candidate ci is a Kemeny winner if ci is ranked first in some Kemeny
consensus.

341



Faliszewski, Hemaspaandra, & Hemaspaandra

Corollary 6.5. With number of candidates as the parameter, constructive
AC+DC+AV+DV+BV control and destructive AC+DC+AV+DV+BV control are in
FPT for Kemeny and, for each rational α, 0 ≤ α ≤ 1, for Copelandα.

We conclude with an important caveat. The FPT algorithms of this section are very
broad in their coverage, but in practice they would be difficult to use as their running
time depends on (the fixed-value parameter) m in a very fast-growing way and as Lenstra’s
algorithm has a large multiplicative constant in its polynomial running time. Thus the
results of this section should best be interpreted as indicating that, for multipronged control
in our setting, it is impossible to prove non-FPT-ness (and so it is impossible to prove fixed-
parameter hardness in terms of the levels of the so-called “W” hierarchy of fixed-parameter
complexity, unless that hierarchy collapses to FPT). If one is interested in truly practically
implementing a multipronged control attack, one should probably devise a problem-specific
algorithm rather than using our very generally applicable FPT construction.

7. Conclusions

This paper was motivated by the desire to move the study of control a step in the direction
of better capturing real-life scenarios. In particular, attackers will not tend to artificially
limit themselves to one type of attack, but rather may well pull out and employ every
trick in their playbook. And so we have studied control attacks (including even (unpriced)
bribery, for the first time, within the framework of control) in which multiple attack prongs
can be pursued by the attacker.

This paper has shown that that approach—combining various types of control into multi-
prong control attacks—is useful. For example, it allows us to express control vulnerability
results and proofs in a compact way, and to obtain vulnerability results that are stronger
than would be obtained for single prongs alone (and that immediately imply prior results,
which were just for single prongs). The central contribution of this paper is that it provides
a broad set of tools to allow one, from the immunity/vulnerability/resistance of the basic
control prongs, to almost always determine the complexity of combinations of those prongs.
For systems where each basic prong is immune, vulnerable, or resistant, the only blind spot
in our machinery has to do with cases where there are multiple vulnerable prongs, as there
we showed that the underlying prongs simply do not on their own determine the complexity
of their multiprong combination. Even for that case, for all the systems discussed in the
paper, and indeed for a very broad class of systems (“vulnerability-combining” systems)
that we expect will include nearly all natural systems, we show how to classify even in the
face of this difficulty. We provide a useful tool to help researchers prove that additional
systems are vulnerability-combining. Section 4.4 summarizes all that. And Table 5 sum-
marizes our results regarding the five election systems we have focused on in this paper; see
also Tables 2 and 3.

However, we have also seen that there exists a natural election system, OriginalLlull,
that unless P = NP is not constructive vulnerability-combining. That system is vulnerable
to both constructive AC control and constructive AV control yet is resistant to constructive
AC+AV control.

342



Multimode Control Attacks on Elections

Control type plurality Condorcet Copelandα,
for each 0 ≤ α ≤ 1

approval maximin

Con. Des. Con. Des. Con. Des. Con. Des. Con. Des.
AC R R I V R V I V R V
DC R R V I R V V I V V
AV V V R V R R R V R R
DV V V R V R R R V R R
BV V V R V R R R V R R

Table 5: Resistance to basic control types for the five main election systems studied in this
paper. In the table, I means the system is immune to the given control type, R
means resistance, and V means vulnerability. Constructive results for AC, DC,
AV, and DV for plurality and Condorcet are due to Bartholdi et al. (1992) and
the corresponding destructive results are due to Hemaspaandra et al. (2007). All
results for AC, DC, AV, and DV for approval are due to Hemaspaandra et al.
(2007). All results regarding Copeland are due to Faliszewski, Hemaspaandra,
Hemaspaandra, and Rothe (2009a). Constructive bribery results for plurality and
approval are due to Faliszewski, Hemaspaandra, and Hemaspaandra (2009a), and
the constructive bribery result for Condorcet is implicit in the work of Faliszewski,
Hemaspaandra, Hemaspaandra, and Rothe (2009a). All the remaining entries
(i.e., all results regarding maximin, and destructive bribery results for plurality,
approval, and Condorcet) are due to this paper (and are bold-italic in the table).
The main contribution of this paper, however, is the analysis of multiprong control
types. In particular, all constructive (or destructive) collections of prongs for the
systems here combine as specified by Classification Rule A of Section 4.2. This
holds due to Theorem 4.7, the paragraphs immediately following it, and the fact
that we prove all five systems in this table to be both constructive vulnerability-
combining and destructive vulnerability-combining (Theorems 4.11 and 5.1).

We have also shown that as far as fixed-parameter tractability goes, at least with respect
to the parameter “number of candidates,” a very broad class of election systems is vulnerable
to the most full attack over basic prongs, namely, a AC+DC+AV+DV+BV control attack.

Finally, in the appendix, we prove that no candidate whose Dodgson score is more than
‖C‖2 times the Dodgson winner’s score can be a maximin winner.

This paper studies multipronged control where the prongs may include various standard
types of control or bribery. However, it is straightforward to see that our framework can
be naturally extended to include manipulation, and we commend that direction to any
interested reader (and mention in passing that Section 4 of Faliszewski, Hemaspaandra, &
Hemaspaandra, 2009a, does find a connection between bribery and manipulation). To do
so, one would have to allow some of the voters—the manipulators—to have blank preference
orders and, if such voters were to be included in the election, the controlling agent would
have to decide on how to fill them in. (That is, the controlling agent in this model would
control both the control aspects and the manipulation aspects.) It is interesting that in
this model the controlling agent might be able to add manipulative voters (if there were
manipulators among the voters that can be added) or even choose to delete them (it may

343



Faliszewski, Hemaspaandra, & Hemaspaandra

seem that deleting manipulators is never useful but Zuckerman, Procaccia, & Rosenschein,
2009, give an example where deleting a manipulator is necessary to make one’s favorite
candidate a winner of a Copeland election).

We mention as a natural but involved open direction the study of multipronged control
in the setting where there are multiple controlling agents, each with a different goal, each
controlling a different prong. In such a setting, it is interesting to consider game-theoretic
scenarios as well as situations in which, for example, one of the controlling agents is seeking
an action that will succeed regardless of the action of the other attacker. Another important
direction is the following. Section 6 for the very specific (namely, fixed-parameter) case it
studies sets up a quite flexible framework for classifying a broad range of control-attack
problems as being in polynomial time. It would be interesting to see what highly flexible
schemes and matching results one can find to broadly classify the control complexity of
elections in the general case (for motivation, see for example the work broadly classifying
the manipulation complexity of scoring protocols, Hemaspaandra & Hemaspaandra, 2007;
Conitzer, Sandholm, & Lang, 2007; Procaccia & Rosenschein, 2007).

Acknowledgments

Supported in part by NSF grants CCF-0426761, IIS-0713061, and CCF-0915792, Polish
Ministry of Science and Higher Education grant N-N206-378637, the Foundation for Pol-
ish Science’s Homing/Powroty program, AGH University of Science and Technology grant
11.11.120.865, the ESF’s EUROCORES program LogICCC, and Friedrich Wilhelm Bessel
Research Awards to Edith Hemaspaandra and Lane A. Hemaspaandra. A preliminary ver-
sion (Faliszewski, Hemaspaandra, & Hemaspaandra, 2009b) of this paper appeared in the
proceedings of the 21st International Joint Conference on Artificial Intelligence, July 2009.
For their very helpful comments and suggestions, we are deeply indebted to JAIR handling
editor Vincent Conitzer, Edith Elkind, and the anonymous IJCAI and JAIR referees.

Appendix A. A Connection of Maximin Voting to Dodgson Voting

Section 5 focused on control in maximin voting. In this appendix, we focus on a different
facet of maximin voting, namely, we show a connection between maximin and the famous
voting rule (i.e., election system) of Dodgson.

Dodgson voting, proposed in the 19th century by Charles Lutwidge Dodgson (1876),22

works as follows. Let E = (C, V ) be an election, where C = {c1, . . . , cm} and V =
(v1, . . . , vn). For a candidate ci ∈ C, the Dodgson score of ci, denoted scoreDE (ci), is the
smallest number of sequential swaps of adjacent candidates on the preference lists of voters
in V needed to make ci become the Condorcet winner. The candidates with the lowest
score are the Dodgson election’s winners. That is, Dodgson defined his system to elect
those candidates that are closest to being Condorcet winners in the sense of adjacent-swaps
distance. Although Dodgson’s eighteenth-century election system was directly defined in
terms of distance, there remains ongoing interest in understanding the classes of voting rules
that can be captured in various distance-based frameworks (see, e.g., Meskanen & Nurmi,
2008; Elkind, Faliszewski, & Slinko, 2009, 2010c, 2010b).

22. Dodgson is better known as Lewis Carroll, the renowned author of “Alice’s Adventures in Wonderland.”

344



Multimode Control Attacks on Elections

Unfortunately, it is known that deciding whether a given candidate is a winner accord-
ing to Dodgson’s rule is quite complex. In fact, Hemaspaandra, Hemaspaandra, and Rothe
(1997), strengthening an NP-hardness result of Bartholdi et al. (1989b), showed that this
problem is complete for parallelized access to NP. That is, it is complete for the Θp

2 level
of the polynomial hierarchy. Nonetheless, many researchers have sought efficient ways of
computing Dodgson winners, for example by using frequently correct heuristics (Homan
& Hemaspaandra, 2009; McCabe-Dansted, Pritchard, & Slinko, 2008), fixed-parameter
tractability (see Bartholdi et al., 1989b; Faliszewski, Hemaspaandra, & Hemaspaandra,
2009a; Betzler, Guo, & Niedermeier, 2010, and the discussion in Footnote 17 of Faliszewski,
Hemaspaandra, Hemaspaandra, & Rothe, 2009a), and approximation algorithms for Dodg-
son scores (Caragiannis, Covey, Feldman, Homan, Kaklamanis, Karanikolas, Procaccia, &
Rosenschein, 2009).

In addition to its high computational cost in determining winners, Dodgson’s rule is
often criticized for not having basic properties one would expect a good voting rule to
have. For example, Dodgson’s rule is not “weak-Condorcet consistent” (Brandt et al.,
2010)—equivalently, it does not satisfy Fishburn’s “strict Condorcet principle”—and does
not satisfy homogeneity and monotonicity (see Brandt, 2009, which surveys a number of
defects of Dodgson’s rule). We provide definitions for the latter two notions (in the former
case just for the case we need here, namely, anonymous rules), as they will be relevant to
this section.

Homogeneity. We say that an anonymous voting ruleR is homogeneous if for each positive
integer k and each election E = (C, V ), where C = {c1, . . . , cm} and V = (v1, . . . , vn),
it holds that R has the same winner set on E as on E′ = (C, V ′), where V ′ =
(v1, . . . , v1︸ ︷︷ ︸

k

, v2, . . . , v2︸ ︷︷ ︸
k

, . . . , vn, . . . , vn︸ ︷︷ ︸
k

).

Monotonicity. We say that a voting rule R is monotone if for each election E = (C, V ),
where C = {c1, . . . , cm} and V = (v1, . . . , vn), it holds that if some candidate ci ∈ C
is a winner of E then ci is also a winner of an election E′ that is identical to E
except that some voters rank ci higher (without changing the relative order of all the
remaining candidates).

Continuing the Caragiannis et al. (2009) line of research on approximately comput-
ing Dodgson scores, Caragiannis, Kaklamanis, Karanikolas, and Procaccia (2010) de-
vised an approximation algorithm for computing Dodgson scores that, given an election
E = (C, V ), where C = {c1, . . . , cm} and V = (v1, . . . , vn) and a candidate ci in C, com-
putes in polynomial time a nonnegative integer scE(ci) such that scoreDE (ci) ≤ scE(ci) and
scE(ci) = O(m logm) · scoreDE (ci). That is, the algorithm given by Caragiannis et al. (2010)
is, in a natural sense, an O(m logm)-approximation of the Dodgson score.23 This algorithm

23. Throughout this section, we use the notion “f(m)-approximation of g” in the sense it is typically used
when dealing with minimization problems. That is, we mean that the approximation outputs a value that
is at least g and at most f(m) · g. We are slightly informal (i.e., sloppy) regarding the interplay between
this notation and Big-Oh notation; however, the sloppiness is of a quite standard type that will not
cause confusion. We assume that the type of the input to g and type of the input to the approximation
is clear from context; in this paper, in both cases, the arguments are an election E and a candidate ci.

345



Faliszewski, Hemaspaandra, & Hemaspaandra

has additional properties: If one defines a voting rule to elect those candidates that have
lowest scores according to the algorithm, then that voting rule is Condorcet consistent (i.e.,
when a Condorcet winner exists, he or she is the one and only winner under the voting
rule), homogeneous, and monotone.

The mentioned result of Caragiannis et al. (2010) is very interesting. In our next theorem
we show that maximin—which like the Caragiannis et al. rule is Condorcet-consistent,
homogeneous, and monotone—also elects candidates that are, in a certain different yet
precise sense, “close” to being Dodgson winners. This is interesting as maximin is often
considered to be quite different from Dodgson’s rule. Our proof is inspired by that of
Caragiannis et al. (2010).

Theorem A.1. Let E = (C, V ) be an election and let W ⊆ C be a set of candidates that
win in E according to the maximin rule. Let m = ‖C‖ and let s = minci∈C scoreDE (ci). For
each ci ∈W it holds that s ≤ scoreDE (ci) ≤ m2s.

Proof. Let us fix an election E = (C, V ) with C = {c1, . . . cm} and V = (v1, . . . , vn). For
each two candidates ci, cj ∈ C we define dfE(ci, cj) to be the smallest number k such that
if k voters in V changed their preference order to rank ci ahead of cj , then ci would be
preferred to cj by more than half of the voters. Note that if for some ci, cj ∈ C we have
dfE(ci, cj) > 0 then

NE(ci, cj) + dfE(ci, cj) =
⌊n

2

⌋
+ 1.

For each candidate ci ∈ C we define sc′E(ci) to be

sc′E(ci) = m2 max{dfE(ci, cj) | cj ∈ C − {ci}}.

We now prove that sc′ is an m2-approximation of the Dodgson score.

Lemma A.2. For each ci ∈ C it holds that scoreDE (ci) ≤ sc′E(ci) ≤ m2scoreDE (ci).

Proof. Let us fix some ci ∈ C. To see that the second inequality in the lemma statement
holds, note that max{dfE(ci, cj) | cj ∈ C − {ci}} ≤

∑
cj∈C−{ci} dfE(ci, cj) ≤ scoreDE (ci)

because for each candidate ck we, at least, have to perform dfE(ci, ck) swaps to ensure that
ci defeats ck in their majority head-to-head contest. Thus, after multiplying by m2, we have

m2 max{dfE(ci, cj) | cj ∈ C − {ci}} ≤ m2scoreDE (ci).

Let us now consider the first inequality. Let ck be some candidate in C − {ci}. To make
sure that ci is ranked higher than ck by more than half of the voters, we can shift ci to
the first position in the preference lists of max{dfE(ci, cj) | cj ∈ C − {ci}} ≥ dfE(ci, ck)
voters (or, all the remaining voters if less than max{dfE(ci, cj) | cj ∈ C − {ci}} voters do
not rank ci as their top choice). This requires at most m adjacent swaps per voter. Since
there are m− 1 candidates in C − {ci}, m2 max{dfE(ci, cj) | cj ∈ C − {ci}} adjacent swaps
are certainly sufficient to make ci a Condorcet winner. (Lemma A.2)

It remains to show that if some candidate ci is a maximin winner in E then sc′E(ci) is
minimal. Fortunately, this is straightforward to see. If some candidate ci is a Condorcet
winner of E then he or she is the unique maximin winner and he or she is the unique

346



Multimode Control Attacks on Elections

candidate ci with sc′E(ci) = 0. Let us assume that there is no Condorcet winner of E. Let
us fix some candidate ci ∈ C and let ck ∈ C − {ci} be a candidate such that sc′E(ci) =
m2dfE(ci, ck). That is, dfE(ci, ck) = max{dfE(ci, cj) | cj ∈ C − {ci}} and dfE(ci, ck) > 0.
Due to this last fact and our choice of ck, we have dfE(ci, ck) =

⌊
n
2

⌋
+ 1−NE(ci, ck) and so

NE(ci, ck) =
⌊n

2

⌋
+ 1− dfE(ci, ck) = min

cj∈C−{ci}
NE(ci, cj) = scoreE(ci),

where scoreE(ci) is the maximin score of ci in E. Thus each candidate ci with the lowest
value sc′E(ci) also has the highest maximin score.

Theorem A.1 says that every maximin winner’s Dodgson score is no less than the Dodg-
son score of the Dodgson winner(s) (that fact of course holds trivially), and is no more than
m2 times the Dodgson score of the Dodgson winner(s). That is, we have proven that no
candidate whose Dodgson score is more than m2 times that of the Dodgson winner(s) can
be a maximin winner.

References

Bartholdi, III, J., & Orlin, J. (1991). Single transferable vote resists strategic voting. Social
Choice and Welfare, 8 (4), 341–354.

Bartholdi, III, J., Tovey, C., & Trick, M. (1989a). The computational difficulty of manipu-
lating an election. Social Choice and Welfare, 6 (3), 227–241.

Bartholdi, III, J., Tovey, C., & Trick, M. (1989b). Voting schemes for which it can be
difficult to tell who won the election. Social Choice and Welfare, 6 (2), 157–165.

Bartholdi, III, J., Tovey, C., & Trick, M. (1992). How hard is it to control an election?
Mathematical and Computer Modeling, 16 (8/9), 27–40.

Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2010).
Computational aspects of approval voting. In Laslier, J., & Sanver, M. (Eds.), Hand-
book on Approval Voting, pp. 199–251. Springer.

Betzler, N., & Dorn, B. (2009). Towards a dichotomy of finding possible winners in elec-
tions based on scoring rules. In Proceedings of the 34th International Symposium on
Mathematical Foundations of Computer Science, pp. 124–136. Springer-Verlag Lecture
Notes in Computer Science #5734.

Betzler, N., Guo, J., & Niedermeier, R. (2010). Parameterized computational complexity
of Dodgson and Young elections. Information and Computation, 208 (2), 165–177.

Betzler, N., Hemmann, S., & Niedermeier, R. (2009). A multivariate complexity analysis
of determining possible winners given incomplete votes. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence, pp. 53–58. AAAI Press.

Betzler, N., & Uhlmann, J. (2009). Parameterized complexity of candidate control in elec-
tions and related digraph problems. Theoretical Computer Science, 410 (52), 43–53.

Black, D. (1958). The Theory of Committees and Elections. Cambridge University Press.

Brandt, F. (2009). Some remarks on Dodgson’s voting rule. Mathematical Logic Quarterly,
55 (4), 460–463.

347



Faliszewski, Hemaspaandra, & Hemaspaandra

Brandt, F., Brill, M., Hemaspaandra, E., & Hemaspaandra, L. (2010). Bypassing combina-
torial protections: Polynomial-time algorithms for single-peaked electorates. In Pro-
ceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 715–722. AAAI
Press.

Caragiannis, I., Covey, J., Feldman, M., Homan, C., Kaklamanis, C., Karanikolas, N., Pro-
caccia, A., & Rosenschein, J. (2009). On the approximability of Dodgson and Young
elections. In Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 1058–1067. Society for Industrial and Applied Mathematics.

Caragiannis, I., Kaklamanis, C., Karanikolas, N., & Procaccia, A. (2010). Socially desirable
approximations for Dodgson’s voting rule. In Proceedings of the 11th ACM Conference
on Electronic Commerce, pp. 253–262. ACM Press.

Conitzer, V., & Sandholm, T. (2006). Nonexistence of voting rules that are usually hard to
manipulate. In Proceedings of the 21st National Conference on Artificial Intelligence,
pp. 627–634. AAAI Press.

Conitzer, V., Sandholm, T., & Lang, J. (2007). When are elections with few candidates
hard to manipulate? Journal of the ACM, 54 (3), Article 14.

Dobzinski, S., & Procaccia, A. (2008). Frequent manipulability of elections: The case of two
voters. In Proceedings of the 4th International Workshop On Internet And Network
Economics, pp. 653–664. Springer-Verlag Lecture Notes in Computer Science #5385.

Dodgson, C. (1876). A method of taking votes on more than two issues. Pamphlet printed
by the Clarendon Press, Oxford, and headed “not yet published” (see the discussions
in McLean & Urken, 1995, and Black, 1958, both of which reprint this paper).

Dorn, B., & Schlotter, I. (2010). Multivariate complexity analysis of swap bribery. In
Proceedings of the 5th International Symposium on Parameterized and Exact Compu-
tation, pp. 107–122. Springer-Verlag Lecture Notes in Computer Science #6478.

Elkind, E., Faliszewski, P., & Slinko, A. (2009). On distance rationalizability of some voting
rules. In Proceedings of the 12th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 108–117. ACM Press.

Elkind, E., Faliszewski, P., & Slinko, A. (2010a). Cloning in elections. In Proceedings of the
24th AAAI Conference on Artificial Intelligence, pp. 768–773. AAAI Press.

Elkind, E., Faliszewski, P., & Slinko, A. (2010b). Good rationalizations of voting rules.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 774–779.
AAAI Press.

Elkind, E., Faliszewski, P., & Slinko, A. (2010c). On the role of distances in defining voting
rules. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems, pp. 375–382. International Foundation for Autonomous Agents
and Multiagent Systems.

Erdélyi, G., Nowak, M., & Rothe, J. (2009). Sincere-strategy preference-based approval
voting fully resists constructive control and broadly resists destructive control. Math-
ematical Logic Quarterly, 55 (4), 425–443.

348



Multimode Control Attacks on Elections

Erdélyi, G., Piras, L., & Rothe, J. (2010a). Bucklin voting is broadly resistant to control.
Tech. rep. arXiv:1005.4115 [cs.GT], arXiv.org.

Erdélyi, G., Piras, L., & Rothe, J. (2010b). Control complexity in fallback voting. Tech.
rep. arXiv:1004.3398 [cs.GT], arXiv.org.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2009a). How hard is bribery in
elections? Journal of Artificial Intelligence Research, 35, 485–532.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2009b). Multimode attacks on
elections. In Proceedings of the 21st International Joint Conference on Artificial In-
telligence, pp. 128–133. AAAI Press.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2010a). Multimode control attacks
on elections. Tech. rep. arXiv:1007.1800 [cs.GT], Computing Research Repository,
http://arXiv.org/corr/.

Faliszewski, P., Hemaspaandra, E., & Hemaspaandra, L. (2010b). Using complexity to
protect elections. Communications of the ACM, 53 (11), 74–82.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2007). Llull and
Copeland voting broadly resist bribery and control. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence, pp. 724–730. AAAI Press.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009a). Llull and
Copeland voting computationally resist bribery and constructive control. Journal of
Artificial Intelligence Research, 35, 275–341.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009b). A richer under-
standing of the complexity of election systems. In Ravi, S., & Shukla, S. (Eds.), Funda-
mental Problems in Computing: Essays in Honor of Professor Daniel J. Rosenkrantz,
pp. 375–406. Springer.

Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2011). The shield that
never was: Societies with single-peaked preferences are more open to manipulation
and control. Information and Computation, 209 (2), 89–107.

Faliszewski, P., Hemaspaandra, E., & Schnoor, H. (2008). Copeland voting: Ties matter.
In Proceedings of the 7th International Conference on Autonomous Agents and Mul-
tiagent Systems, pp. 983–990. International Foundation for Autonomous Agents and
Multiagent Systems.

Faliszewski, P., Hemaspaandra, E., & Schnoor, H. (2010). Manipulation of Copeland elec-
tions. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems, pp. 367–374. International Foundation for Autonomous Agents
and Multiagent Systems.

Friedgut, E., Kalai, G., & Nisan, N. (2008). Elections can be manipulated often. In Proceed-
ings of the 49th IEEE Symposium on Foundations of Computer Science, pp. 243–249.
IEEE Computer Society.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company.

349



Faliszewski, Hemaspaandra, & Hemaspaandra

Hägele, G., & Pukelsheim, F. (2001). The electoral writings of Ramon Llull. Studia Lulliana,
41 (97), 3–38.

Hemaspaandra, E., & Hemaspaandra, L. (2007). Dichotomy for voting systems. Journal of
Computer and System Sciences, 73 (1), 73–83.

Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (1997). Exact analysis of Dodgson
elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP.
Journal of the ACM, 44 (6), 806–825.

Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2007). Anyone but him: The complexity
of precluding an alternative. Artificial Intelligence, 171 (5–6), 255–285.

Hemaspaandra, E., Hemaspaandra, L., & Rothe, J. (2009). Hybrid elections broaden
complexity-theoretic resistance to control. Mathematical Logic Quarterly, 55 (4), 397–
424.

Hemaspaandra, E., Spakowski, H., & Vogel, J. (2005). The complexity of Kemeny elections.
Theoretical Computer Science, 349 (3), 382–391.

Homan, C., & Hemaspaandra, L. (2009). Guarantees for the success frequency of an algo-
rithm for finding Dodgson-election winners. Journal of Heuristics, 15 (4), 403–423.

Isaksson, M., Kindler, G., & Mossel, E. (2010). The geometry of manipulation—A quanti-
tative proof of the Gibbard–Satterthwaite Theorem. In Proceedings of the 51st IEEE
Symposium on Foundations of Computer Science, pp. 319–328. IEEE Computer So-
ciety Press.

Kemeny, J. (1959). Mathematics without numbers. Daedalus, 88, 577–591.

Lenstra, Jr., H. (1983). Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8 (4), 538–548.

Liu, H., Feng, H., Zhu, D., & Luan, J. (2009). Parameterized computational complexity
of control problems in voting systems. Theoretical Computer Science, 410 (27–29),
2746–2753.

Liu, H., & Zhu, D. (2010). Parameterized complexity of control problems in maximin
election. Information Processing Letters, 110 (10), 383–388.

Maudet, N., Lang, J., Chevaleyre, Y., & Monnot, J. (2010). Possible winners when new
candidates are added: The case of scoring rules. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence, pp. 762–767. AAAI Press.

McCabe-Dansted, J., Pritchard, G., & Slinko, A. (2008). Approximability of Dodgson’s
rule. Social Choice and Welfare, 31 (2), 311–330.

McLean, I., & Lorrey, H. (2006). Voting in the medieval papacy and religious orders. Report
2006-W12, Nuffield College Working Papers in Politics, Oxford, Great Britain.

McLean, I., & Urken, A. (1995). Classics of Social Choice. University of Michigan Press.

Meir, R., Procaccia, A., Rosenschein, J., & Zohar, A. (2008). The complexity of strategic
behavior in multi-winner elections. Journal of Artificial Intelligence Research, 33,
149–178.

350



Multimode Control Attacks on Elections

Menton, C. (2010). Normalized range voting broadly resists control. Tech. rep.
arXiv:1005.5698 [cs.GT], arXiv.org.

Meskanen, T., & Nurmi, H. (2008). Closeness counts in social choice. In Braham, M., &
Steffen, F. (Eds.), Power, Freedom, and Voting. Springer-Verlag.

Niedermeier, R. (2006). Invitation to Fixed-Parameter Algorithms. Oxford University Press.

Papadimitriou, C. (1994). Computational Complexity. Addison-Wesley.

Procaccia, A., & Rosenschein, J. (2007). Junta distributions and the average-case complexity
of manipulating elections. Journal of Artificial Intelligence Research, 28, 157–181.

Saari, D., & Merlin, V. (2000). A geometric examination of Kemeny’s rule. Social Choice
and Welfare, 17 (3), 403–438.

Schöning, U. (1986). Complete sets and closeness to complexity classes. Mathematical
Systems Theory, 19 (1), 29–42.

Shoham, Y., & Leyton-Brown, K. (2009). Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press.

Walsh, T. (2009). Where are the really hard manipulation problems? The phase transition in
manipulating the veto rule. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence, pp. 324–329. AAAI Press.

Xia, L., & Conitzer, V. (2008a). Generalized scoring rules and the frequency of coalitional
manipulability. In Proceedings of the 9th ACM Conference on Electronic Commerce,
pp. 109–118. ACM Press.

Xia, L., & Conitzer, V. (2008b). A sufficient condition for voting rules to be frequently
manipulable. In Proceedings of the 9th ACM Conference on Electronic Commerce,
pp. 99–108. ACM Press.

Xia, L., Zuckerman, M., Procaccia, A., Conitzer, V., & Rosenschein, J. (2009). Complexity of
unweighted manipulation under some common voting rules. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence, pp. 348–353. AAAI Press.

Young, H., & Levenglick, A. (1978). A consistent extension of Condorcet’s election principle.
SIAM Journal on Applied Mathematics, 35 (2), 285–300.

Zuckerman, M., Procaccia, A., & Rosenschein, J. (2009). Algorithms for the coalitional
manipulation problem. Artificial Intelligence, 173 (2), 392–412.

351


